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Abstract

In a well-known paper, Hall and Higman proved the reduction theorem on a coprime order operator group
acting on a finite group. This theorem plays an important role in local analysis of finite group theory.
In this paper, we generalize the Hall-Higman reduction theorem by dropping the restrictive hypothesis
(|G|, |//|) = 1 and determine the detailed structure of G completely.

1991 Mathematics subject classification (Amer. Math. Soc): 20D10, 20D15.

1. Introduction

It is useful to consider the following critical case when we consider a group acting on

another group. Let G be a finite group, and H an operator group of G.

HYPOTHESIS (*) . / / acts nontrivially on G but acts trivially on every proper H-

invariant subgroup of G.

Our purpose is to determine the structure of a group G which satisfies hypothesis (*).

In [2], Hall and Higman have considered this question when (\G\,\H\) = 1. They

proved the following famous reduction theorem.

REDUCTION THEOREM. Suppose that (G, H) satisfies hypothesis (*) with

(\G\, \H\) = 1. Then G is a special p-group.

The hypothesis (|G|, \H\) — 1 here is very restrictive. For example, the very

important case of a subgroup H of G acting on G by conjugation cannot satisfy
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this coprime order hypothesis. In this paper, we drop this hypothesis and obtain the
detailed structure of G. We also give some applications and examples.

The main results are as follows:

MAIN THEOREM. Suppose that (G, H) satisfies hypothesis (*). Then, there is a
unique maximal H-invariant subgroup C of G. Moreover, C = CG(//) = NG(H)
is a normal abelian subgroup of G and [G, H]C < CG(C). Furthermore, G must
satisfy one of the following conditions:

(I) [G, H] ^ G. Then \G/C\ = p, H/CH{G) is isomorphic to a subgroup ofC
and H' acts trivially on G. Furthermore, F{G) ^ C if and only if G is a p-group.

(II) [G, H] = G. Then C < Z(G). Furthermore,
(1) Assume RS(G) ^ G. Then G is a p-group in srfsrfe n s&esf with class < 2. H

acts trivially on <I>(G) and irreducibly on G/Z(G). G' is an elementary p-subgroup.
If p ^ 2, the xp = I for every element x of G.

(2) Assume RS(G) = G. Then C = Z(G) = F(G) = 4>(G). Moreover
G/Z(G) = Gi x . . . x Gk is a direct product of isomorphic nonabelian simple
groups. For every i e { 1 , . . . , k}, there exists //, < H such that \H : Ht\ = k,
Gt = Inn(G,) < //./C^CG,) < Aut(G,). (Hence H is nonsolvable).

Our notation follows that of [4]. All the groups in this paper are finite, p always
denotes a prime, srf denotes the class of abelian groups while srfe denotes the class
of elementary abelian groups. ^ denotes the class of {1, Cp}, where Cp is the group
of order p. RS(G) = D{N \ N <G such that G/N is solvable}.

[G]H expresses the semidirect product of the group G and H where G < [G]H.

2. Preliminaries

LEMMA 2.1. Let Mbea subgroup ofG. Suppose that M ^ 1 and NG(P) < M for
every nontrivial p-subgroup of M and p G n(M). Then M is a Hall subgroup of G
and G is a Frobenius group with Frobenius complement M.

PROOF. Let p <= n(M) and P e Sylp(M). Since NG(P) < M, we have P €
Sylp(G). Hence M is a Hall subgroup of G. For every x e GwithMDM* ^ 1,there
exists p | \M n Mx\. Let 1 ^ P e Sylp(M D Mx). We have NC(P) < M and Mx

and so P e Sylp(G) n Sylp(M) n Sylp(AP). Since P and Px e Sylp(M), there exists
m € M such that/"" = Px ' by Sylow's theorem. It follows that x e MNG(P) < M.
Thus M fl Mx = 1, for every x e G — M. This yields that G is a Frobenius group
with Frobenius complement M.

LEMMA 2.2. Let N < Z(G), N n <J>(G) = 1. Then G = G{ x N for a subgroup
d ofG.
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PROOF. Suppose N ^ 1. Let d = min{M | NM = G}. We assert that N n G, =
1. In fact, if N n Gy ^ 1, then there is a maximal subgroup M of G such that
M £ N n d and (N n d)M = G. Thus M C\GX < Gx since Gi < G, where
G = NGi = N(G1n((WnGi)M) = iV(AfnCi)(MnG,) = N(M nG,) , contrary
to the choice of G. Hence G = Gi x N.

L E M M A 2.3. Le? G = G i x S = G 2 x 5 , w/jere 5 is a solvable group and G\ is a

direct product of some nonabelian simple groups. Then G\ = G2.

PROOF. GI = G/S = G2. Let G = Gn x . . . x Gu, where G1( is a nonabelian
simple group for every / G {1,2, . . . ,*}. Since Gn < G2 x 5, for each gn e G u , we
can uniquely express gu as gn = g2s where g2 e G2, s e S. Set a : gu —> 5. Then
CT is a homomorphism from Gn into 5, since g^s^g^s2 = g{lg

2
ls

1s2. Now Gn is
nonabelian simple and 5 is solvable. Hence Ker a ^ 1, Ker a = G and so Gu < G2.
Similarly, G,, < G2 for every i e {1,2, . . . ,*} and finally Gi = G2.

We say that a group / / acts irreducibly on a group G provided that G has no
nontrivial proper //-invariant subgroup.

LEMMA 2.4. Suppose that a solvable group H acts faithfully and irreducibly on a
finite group G. Then G is an elementary abelian p-group.

PROOF. The result is trivial if H = 1. Consider H ^ 1. Since H is solvable,
there exists a minimal normal ^-subgroup Q of H such that CG(Q) is //-invariant.
Irreducibility implies that CG(Q) = 1. By the orbit formula, \G\ = \CG(Q)\ + kq =
1 (mod q), so G is a q'- group. By Glauberman's theorem [4, Theorem 7.5] there exists
P e Sylp(G) such that P is (2-invariant for every p e n(G). The same theorem
yields that the (2-invariant Sylow p-subgroup is unique since CC(Q) = 1- Since
Q < H, we have (Ph)Q = (PQ)h = Ph. Hence Ph = P by uniqueness and so P is
//-invariant. Again, irreducibility yields that G = P and <&(P) = 1, that is , G is an
elementary abelian p-group.

3. Proof of the main theorem

LEMMA 3.1. Suppose that (G, H) satisfies hypothesis (*). Then:
(1) G/[G, H] is a cyclic p-group or the identity group.
(2) The unique maximal H-invariant subgroup of G is C = CG(H) = NG(H)

and C is a normal subgroup of G.
(3) [G, //] < CG(N)for every proper H-invariant subgroup N of G.
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PROOF. (1) The conclusion is obvious if G = [G, / / ] . Suppose [G, H] < G.
Since H acts trivially on G/[G, H] but nontrivially on G, there exists x € G such that
[x, //] ^ 1 and (x)[G, H] is an //-invariant subgroup of G. Hypothesis (*) yields
thatG = (x)[G,H], that is, G/[G,H] is cyclic. Let G/[G, H] = PX/[G, H] x . . . x
Pk/[G, //] be the direct product of Sylow subgroups, where each Pt is //-invariant.
We have k = 1 and G/[G, H] is a cyclic p-group by hypothesis (*).

(2) It is clear that every proper //-invariant subgroup of G is contained in C =
CG{H). Therefore C is the unique maximal //-invariant subgroup of G. We claim
that NC(H) = C. In fact, if NG(H) > C, we have NG(H) = G since NG(H) is
//-invariant. It is easy to see that [G, //] = 1 in this case, contrary to the hypothesis.
Our next goal is to show that C < G by induction on \G\. If C = 1, there is
nothing to prove. We consider C ^ 1. Set Core(C) = f)x(kG Cx. Suppose Core
(C) = 1. Then there is no nontrivial normal subgroup of G contained in C. For
each p e n{C), let 1 ^ P be a p-subgroup of C. Since NG(P) is //-invariant and
NG(P) ± G, we have NG(P) < C. Now G = K[C] by Lemma 2.1, where K is
the Frobenius core and so is //-invariant. Since C ^ 1, it follows that K ^ G and
hence K < C. Thus G < C ^ G, a contradiction. Thus we have Core(C) 7̂  1.
Consider H acting on G = G/Core(C). Suppose H acts nontrivially on G. Then
(G, //) satisfies hypothesis (*) and the unique maximal //-invariant subgroup of G,
CG(H) — L/Core(C) is normal in G by induction. It is clear that L > C and L ^ G.
We conclude that C = L <G.IfH acts trivially on G, then [G, //] < Core(C) < C
and G/Core(C) is cyclic, hence C < G. This completes the proof of (2).

(3) Since [C, //] = 1 and C < G, we have [C, //, G] = 1 = [G, C, / / ] . Thus
we have [G, //] < CG(C). Hence [G, //] < GG(N) for every proper //-invariant
subgroup /V of G by (2).

In the following, C always denotes CG{H).

THEOREM 3.1. Suppose that (G, H) satisfies hypothesis (*) with [G, //] ^ G.
77i£« \G/C\ = p and C is an abelian group. Moreover H/CH(G) is isomorphic to a
subgroup ofC, and H' acts trivially on G.

PROOF. Since [G, / /] < G, [G, / /] is normal and //-invariant in G, and [G, //] <
C by Lemma 3.1 (3). Since H acts trivially on G/C and C is a maximal //-
invariant subgroup of G, we find G/C has no nontrivial proper subgroup, and so
I G/C I = p for some prime p. Since / / acts trivially on both G/C and C but
nontrivially on G, there is some a e G such that [a, H] ^ 1 and (a)C = G. For
each h e // , there is an unique ch e C such that ah = cha. Set a : /? -> cA.
Then a is a homomorphism from // to C. In fact, if a*1 = c/,,a, a*2 = chla, then
a'"'!2 = (chla)h2 = chlch2a. Since Kercr = CH(a) = Cw(a, C) = CW(G), we have
that HICH (G) is isomorphic to a subgroup of C. It remains to prove that C is abelian.
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For every x e C, C < G yields that xa e C. Since H acts trivially on C, we
get xa = (xa)h = (a-lxa)h = (ahyxxhah = a~xc~h

xxcha for every h e H. Thus
xch = chx, ch e Z(C), a'1 = cha e Z(C)(a). Since Z(C) char C < G, Z(C)(a) is a
subgroup of G. Hence Gi = <aA | h e H) < Z(C)(a). It is clear that a e Gu G\ is
//-invariant and// acts nontrivially on G\. SoG = Gi < Z{C){a) by hypothesis (*).
It follows that C/Z(C) is cyclic and C is abelian.

REMARK 1. By Lemma 3.1(3) and Theorem 3.1, we have that C is abelian in all
cases (independently of whether [G, //] = G or not).

THEOREM 3.2. Suppose that (G, H) satisfies hypothesis (*) vv/f/j [G, / /] = G.

(1) every proper H-invariant subgroup ofG is contained in Z(G);
(2) furthermore, if RS(G) ^ G, then we have the following:

(a) G is a p-group in srfsrfe Pi srfesrf with class at most two.
(b) G' < O(G) < Z(G), G' is an elementary abelian p-group. H acts trivially

on 4>(G) and irreducibly on G/Z{G).
(c) Ifp^2, then xp = 1 for every x e G.

PROOF. (1) For each proper //-invariant subgroup N of G, we have G =
[G, H] < CC(N) by Lemma 3.1 (3). Thus N < Z(G).

(2) If RS(G) ^ G, then RS(G) < Z(G) by (1). So G/Z(G) is solvable and
G' < G, and G' < Z(G) by (1). Therefore G/Z(G) is abelian and G is nilpotent. It
is easy to show that G is a p-group by hypothesis (*).

Proof of (b). It is clear that G' < <J>(G) < Z(G). H acts trivially on <t>(G) since
4>(G) # G. By (1) and 4>(G) < Z(G) we conclude that G/Z(G) is elementary
abelian and H acts irreducibly on G/Z(G). For x, j € G, we have y'' € ^(G) <
Z(G) and [x, y] e Z(G). Thus 1 = [x, vp] = [x, v]p and so G' is an elementary
abelian p-group.

Proof of (a). GIG' e srf, G' € srfe by (b), and G/Z{G) e srfe. Hence G e
^(^^ n s/esi/ and the class of G is at most 2.

Proof of(c). Ifp ^ 2,thenp | p(p-l)/2. Since //acts trivially on GPG', (G')p =
1 andG' < Z(G), and we have [x, h]p = (x^x1-)" = (xp)-l(xp)h[x-1,xh]p(p-1)/2 =
1. The conclusion follows from that [G, / /] = G and (xy)p = xpyp[x,

LEMMA 3.2.

(1) Suppose that group H acts faithfully and irreducibly on a nonabelian simple
group G. Then G = Inn(G) < H < Aut(G).

(2) Suppose that a group H acts faithfully and irreducibly on a nonsolvable group
G. Then G = G\ x . . . x G* is a direct product of isomorphic nonabelian simple
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groups, and for each i e [I,... ,k], there is // , < H with \H : / / , | = k, such that

d = Inn(G,) < //,/Cw,(G,) < Aut(G,). {Hence H is nonsolvable).

PROOF. (1) Consider L = [G]H. Then CL(G) < L. It is obvious that Inn(G) =
G and H = NH(G)/CH(G) < Aut(G). We only need to prove Inn(G) < //.

(a) We claim CL(H) ^ 1.
If this is false, then H = L/G < Aut(G)/Inn(G) since L = NL(G)/CL(G)

< Aut(G). Now Aut(G) is solvable by [1, Theorem 4.239] and so H is solvable. By
Lemma 2.4, G is a p-group, which contradicts the fact that G is nonabelian simple.

(b) G = {g\geG,3he H, such that gh e CL{G)}.
Set Gi = {g | g e G, 3/z e / / , such that gh e CL(G)}. Since GH(G) = 1

and CL(G) ^ 1, we have 1 e G, and G, ^ {1}. Let gu g2 e Gu hx,h2 e / / b e
such that gihi e CL(G), i = 1,2. Then hx = g^igihx) = gih{gi\ gi/i, = hxgu

g~iXKX = (gihi)-' € CL(G), so ^ ' € G,. Moreover (g2gl)(hlh2) = g2(gxhx)h2 =
g\h\g2h2 e CL(G). Thus Gi is a subgroup of G. For each A e / / , g?/i? = (gi/ii)* e
CL(G)h = CL(G). Thus g* 6 Gx. It follows that 1 ^ Gi is an //-invariant subgroup
of G and so G — G\.

(c) There is an injective map from G to / / . In fact, for each g e G, there is
hg € H such that ghg 6 CL(G). If gA, = ghg,, then Aj1*; = (ghgr

lghg, e
CL(G) n / / = CH(G) = I, so hg = hg>. Thus Ag is uniquely determined by g. Let
CT : g —> ft^"1. We assert that CT is an injective homomorphism from G to // . In
fact, suppose gxhgx,g2hgl e CL(G). Then gig2hg2hgl = g2hg2gihgl e CL(G). Thus
<r(gig2) = ihg2hgXl = h-glh'l = o{gl)a{g2), so CT is a homomorphism. Now
Ker CT < G. If Ker a = G, then hg = 1, for every g e G and so G < CL(G). Thus
G is abelian, a contradiction. Therefore Ker CT = 1 since G is simple.

For each Ig e hin(G), x € G, xg*« = JC, x« = jc*1*1. Hence H contains every Ig. It
follows that G = Inn(G) <H< Aut(G).

Proof of (2). H acts irreducibly on G, so G is characteristically simple. Hence
G = G\ x . . . x Gk is a direct product of isomorphic nonabelian simple groups.
Let //, = NH(Gi). Let H = HY + Hxa2 + ... + H{an, {I = aua2,..., an] be the
transversal of H\ in / / . Since Gi is a minimal normal subgroup of G, Ga{ — G"', if
and only if at = aj. Now 1 ^ (G? : h e H) = G, x G,2 x . . . x Ga{ = G since
{G\ : h e H) is an //-invariant subgroup of G. It is clear that k = n, hence \H :
//, | = k. If 1 ̂  #! < G and tf, is //;-invariant, then 1 ^ A: = Kx x . . . x K°" < G
and K is //-invariant, contrary to irreducibility. It follows that H\ acts irreducibly on
G. Hence G, = Inn(G,) < Hi/CmiGd < Aut(G,) by (1). The same argument for i
implies the conclusion.

THEOREM 3.3. Suppose that (G, //) satisfies the hypothesis (*) with RS(G) = G.
Then G = [G, / /] and C = CG(H) = Z(G) = F(G) = O(G). G w a perfect
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quasinilpotent group, and G = G/Z(G) = G\ x . . . x Gk is a direct product of
isomorphic nonabelian simple groups. For each i e {1, . . . , £ } , there is //, < H
with \H : Ht\ = k, such that G, = Inn(G,) < Hi/CHi(Gi) < Aut(G,). (Hence H is
nonsolvable).

PROOF. G = [G, H] follows from Theorem 3.1. Since RS(G) - G, G = G' and G
is perfect. Thus F(G) + G± Z(G), hence F(G) = C = Z(G) by Theorem 3.2 (1)
andLemma3.1. HenceG = G/Z(G) has no nontrivial proper//-invariant subgroup,
so G = G\ x . . . x Gk has the properties mentioned in Lemma 3.2. G is perfect
nilpotent by [3, X Section 13]. There is only $>(G) = Z(G) left to prove. We prove
this by induction on \G\.

Firstly, we consider 4>(G) = 1. IfZ(G) ^ l,thenG = Z{G)xGx by Lemma 1.2.
Since G\ = G/Z(G) is a direct product of isomorphic nonabelian simple groups,
Z(G) x d = G = Gh = Z(G)h x G\, Vh e H. Hence Gx = G\ by Lemma 1.3.
thusG, ^ GandG, is//-invariant. This yields that Gx < Z(G) and G < Z(G) # G,
a contradiction. We conclude that Z(G) = C = 1 if O(G) = 1.

Now, consider O(G) ^ 1. Consider H acting on G/<f>(G). If H acts trivially on
G/<&(G), then G = [G, / /] < 4>(G), a contradiction. Hence (G/4>(G), //) satisfies
hypothesis (*) and /?S(G/O(G)) = G/<t>(G), <D(G/*(G)) = 1. The proceeding
argument yields that 1 ^ Z(G/<I>(G)) > Z(G)/4>(G) and so O(G) = z(G) = C.

The main Theorem follows from Theorem 3.1, Theorem 3.2 and Theorem 3.3.

4. Applications and examples

COROLLARY 4.1. Let G be a solvable group. Let H be an operator group of G.
Suppose H acts trivially on every H-invariant sftfp-subgroup of G and every H-
invariant p-subgroup of G which lies in srfsf e D s/es/ with class at most two. Then
H acts trivially on G.

PROOF. Assume that the conclusion is false and let G be a counterexample of
minimal order. Since the hypotheses in Corollary 4.1 are inherited for //-invariant
subgroups, by the choice of G, H acts trivially on every proper //-invariant subgroup
of G. Thus (G, //) satisfies hypothesis (*). Since G is solvable, by Theorem 3.1
and Theorem 3.2, G e sftfp or G is a p-group in srf£?e (1 srfes/ with class at most
two. Thus H acts trivially on G, contrary to our choice. This shows that there is no
counterexample and the corollary is proved.

COROLLARY 4.2. Suppose that H is a solvable operator group of G and H acts
nontrivially on G but acts trivially on every proper H-invariant £/*£p-subgroup of
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G and every proper H-invariant p-subgroup with class at most two which lies in
'e fl srfes4'. Then G is solvable.

PROOF. Assume that the conclusion is false and let G be a counterexample of
minimal order. We assert that (G, H) satisfies hypothesis (*).

In fact, H acts nontrivially on G. Suppose H acts nontrivially on a proper H-
invariant subgroup G\ of G. Then G\ satisfies the assumption of Corollary 4.2;
thus G\ is solvable by the choice of G. Hence (G, H) satisfies hypothesis (*). By
Theorem 3.2, C = CG{H) < G and C is abelian. Consider H acting on G/C.

Assume C ^ 1. If H acts trivially on G/C, then G/C is cyclic by Lemma 3.1
and so G is solvable, a contradiction. If H acts nontrivially on G/C, then (G/C, H)
satisfies hypothesis (*) and so satisfies the hypothesis of Corollary 4.2. The choice of
G yields that G/C is solvable and hence so is G, contrary to our choice.

Therefore C = 1. Since (G, H) satisfies hypothesis (*), Lemma 3.1 yields that
every proper //-invariant subgroup of G is contained in C = 1. Hence H acts
irreducibly on G. Since H is solvable, by Lemma 2.4, G is an elementary abelian
p-group, contrary to our assumption. This shows that there is no counterexample and
the corollary is proved.

We say that a group G is 3-step solvable if G(3) = 1.

COROLLARY 4.3. Suppose that A is an abelian subgroup of G and suppose A lies
in the centre of every 3-step solvable subgroup ofG which contains A. Then A lies in
the centre ofG.

PROOF. Consider A acting on G by conjugation. Assume that the conclusion is
false and let G be a counterexample. Now A ^ Z(G) means that A acts nontrivially
on G. For every M < G, where M is A -invariant and either M e sf^tp or M is a
p-group in srfsrfe D srfesrf with class at most two, we have M<2) = 1 and M < MA,
(MA)' < M. Hence (MA)0) = 1. By assumption, A < Z(MA), that is, A acts
trivially on M. Corollary 4.2 yields that G is solvable. Now, Corollary 4.1 forces that
A acts trivially on G, contrary to our assumption. This completes the proof of the
theorem.

COROLLARY 4.4. A p-elementx ofG lies in Z(G) ifandonly if both of the following
hold

(1) there exists P e Sylp(G), such that P n {xs \ g e G} = x;
(2) x centralizes every p'-characteristic subgroup of M, where M is a 3-step

solvable subgroup ofG which contains x.

PROOF. Similar to the proof of Corollary 4.3
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REMARK 2.

(1) Corollaries 4.3 and 4.4 are generalisations of the main results in [5].
(2) Suppose (G, H) satisfies hypothesis (*) with (\G\, \H\) = 1. Then G is

described by case 11(1) of the Main Theorem, by Glauberman's theorem. We can
easily prove that G is a special p-group and obtain the original Hall-Higman theorem.

(3) The tools used in the proof of the applications above are elementary; all of
them can be found in [4].

We give an example for each case in the Main Theorem.
(I) G = A4 = [B4]C3 where B4 is Klein 4-group. Let H = B4 with H acting on

G by conjugation. Every proper //-invariant subgroup of G is contained in B4.
(II) (1) Let G be any cyclic group of order P, p an odd prime, 1 ̂  H < Aut(G).
(II) (2) (i) Let G be a nonabelian characteristic simple group, H = Aut(G).

(ii) Let G/Z(G) be a nonabelian simple group, G = H, H acting on G
by conjugation.
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