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Convolutional autoencoders are used to deconstruct the changing dynamics of
two-dimensional Kolmogorov flow as Re is increased from weakly chaotic flow at Re =
40 to a chaotic state dominated by a domain-filling vortex pair at Re = 400. ‘Latent
Fourier analysis’ (Page et al., Phys. Rev. Fluids 6, 2021, p. 034402) reveals a detached
class of bursting dynamics at Re = 40 which merge with the low-dissipation dynamics
as Re is increased to 100 and provides an efficient representation within which to
find unstable periodic orbits (UPOs) using recurrent flow analysis. Focusing on initial
guesses with energy in higher latent Fourier wavenumbers allows a significant number of
high-dissipation-rate UPOs associated with the bursting events to be found for the first
time. At Re = 400, the UPOs discovered at lower Re move away from the attractor, and an
entirely different embedding structure is formed within the network devoid of small-scale
vortices. Here latent Fourier projections identify an associated ‘large-scale’ UPO which
we believe to be a finite-Re continuation of a solution to the Euler equations.

Key words: low-dimensional models

1. Introduction

The dynamical systems view of turbulence (Hopf 1948; Eckhardt et al. 2002; Kerswell
2005; Eckhardt et al. 2007; Gibson, Halcrow & Cvitanovic 2008; Cvitanovic & Gibson
2010; Kawahara, Uhlmann & van Veen 2012; Suri et al. 2020; Graham & Floryan 2021;
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Crowley et al. 2022) has revolutionised our understanding of transitional and weakly
turbulent shear flows. In this perspective, a realisation of a turbulent flow is considered
as a trajectory in a very high-dimensional dynamical system, in which unstable periodic
orbits (UPOs) and their stable and unstable manifolds serve as a skeleton for the chaotic
dynamics (Hopf 1948; Cvitanović et al. 2016). However, progress with these ideas in
multiscale turbulence at high Reynolds numbers (Re) has been slower, which can be
largely attributed to the challenge of finding suitable starting guesses for UPOs to input
in a Newton–Raphson solver (Kawahara & Kida 2001; Viswanath 2007; Cvitanovic &
Gibson 2010; Chandler & Kerswell 2013). As such, it is unknown whether a reduced
representation of a high-Re flow in terms of UPOs is possible, and how rapidly the number
of such solutions grows as Re increases. In this work, we outline a methodology based on
learned embeddings in deep convolutional autoencoders that can both (i) map out the
structure/population of solutions in state space at a given Re and (ii) generate effective
guesses for UPOs that describe the high dissipation bursting dynamics.

Since the first discovery of a UPO in a (transiently) turbulent Couette flow by Kawahara
& Kida (2001) there has been a flurry of interest and the convergence of many more UPOs
in the same configuration (Viswanath 2007; Cvitanovic & Gibson 2010; Page & Kerswell
2020) and other simple geometries including two- and three-dimensional Kolmogorov
flow (Chandler & Kerswell 2013; Yalnız, Hof & Budanur 2021), pipe flow (Willis,
Cvitanovic & Avila 2013; Budanur et al. 2017), planar channels (Zammert & Eckhardt
2014; Hwang, Willis & Cossu 2016) and Taylor–Couette flow (Krygier, Pughe-Sanford &
Grigoriev 2021; Crowley et al. 2022). Individual UPOs isolate a closed cycle of dynamical
events which are also observed transiently in the full turbulence (Wang, Gibson & Waleffe
2007; Hall & Sherwin 2010), although all solutions found to date have a much narrower
range of scales than the full turbulence itself, e.g. domain-filling vortices and streaks
(Kawahara & Kida 2001), spatially isolated structures (Gibson & Brand 2014) or attached
eddies in unbounded shear (Doohan, Willis & Hwang 2019). Recent work has identified
families of equilibria and travelling waves which become increasingly localised as Re is
increased, some of which are reminiscent of structures observed instantaneously in fully
turbulent flows (Deguchi 2015; Eckhardt & Zammert 2018; Yang, Willis & Hwang 2019;
Azimi & Schneider 2020).

The most popular method for computing periodic orbits, termed ‘recurrent flow
analysis’, relies on a turbulent orbit shadowing a UPO for at least a full cycle, with the
near-recurrence, measured with an L2 norm, identifying a guess for both the velocity
field and period of the solution (Viswanath 2007; Cvitanovic & Gibson 2010; Chandler
& Kerswell 2013). This inherently restricts the approach to lower Re, as the shadowing
becomes increasingly unlikely as the Reynolds number is increased due to the increased
instability of the UPOs, although in two dimensions the effect may not be uniform as Re is
increased due to connection to weakly unstable solutions of the Euler equation in the limit
Re → ∞ (Zhigunov & Grigoriev 2023). Furthermore, measuring near-recurrence with an
Euclidean norm is unlikely to be a suitable choice for a distance metric on the solution
manifold, unless the near-recurrence is very close (Page, Brenner & Kerswell 2021). More
recent methods have sought to remove the reliance on near-recurrence, for example by
using dynamic mode decomposition (Schmid 2010) to identify the signature of nearby
periodic solutions (Page & Kerswell 2020; Marensi et al. 2023), or by using variational
methods that start with a closed loop as an initial guess (Lan & Cvitanovic 2004; Parker
& Schneider 2022).

Periodic orbit theory has rigorously established how the statistics of UPOs can be
combined to make statistical predictions for chaotic attractors in uniformly hyperbolic
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systems (Artuso, Aurell & Cvitanovic 1990a,b). The hope in turbulent flows is that a
similar approach may be effective even with an incomplete set of UPOs. For instance,
see the statistical reconstructions in Page et al. (2024) or the Markovian models of weak
turbulence in Yalnız et al. (2021); recent work in the Lorenz equations indicates that it is
possible to learn ‘better’ weights than periodic orbit theory using data-driven techniques
when only a small number of solutions are available (Pughe-Sanford et al. 2023). These
types of approach are attractive because they allow one to unambiguously weigh individual
dynamical processes in their contribution to the long-time statistics of the flow. However,
the ability to apply these ideas at high-Re is currently limited by the search methods
described previously, while extrapolating results at low Re upwards is challenging because
of the emergence of new solutions in saddle-node bifurcations, the turning-back of solution
branches and the fact that solutions that can be continued upwards in Re may leave the
attractor (e.g. Gibson et al. 2008; Chandler & Kerswell 2013).

The challenge of extending the dynamical systems approach to high Re, at least
in classical time-stepping-based approaches, also involves a computational element
associated with both the increased spatial/temporal resolution requirements and the
slowdown of the ‘GMRES’ aspect of the Newton algorithm used to perform an
approximate inverse of the Jacobian (van Veen et al. 2019); note, however, that Zhigunov
& Grigoriev (2023) were able to successfully converge a number of exact solutions
of the Euler equation with a regularising hyperviscosity. Modern data-driven and
machine-learning techniques can play a role here, for instance by reducing underlying
resolution requirements through learned derivative stencils (Kochkov et al. 2021), or by
building effective low-order models of the flow (see, e.g. the overview in Brunton, Noack
& Koumoutsakos 2020). In dynamical systems, neural networks have been highly effective
in estimating attractor dimensions (Linot & Graham 2020) and more recently in building
low-order models of weakly turbulent flows (De Jesús 2023; Linot & Graham 2023).
More recent network architectures have shown great promise as simulation tools with the
surprising ability to work well when deployed in parts of the state space which were unseen
in training (Kim et al. 2021; Röhm, Gauthier & Fischer 2021), presumably because they
have learnt a latent representation of the governing equations. One aspect of the model
reduction considered in Linot & Graham (2023) that is particularly promising is that the
low-order model (a ‘neural’ system of differential equations) was used to find periodic
orbits that corresponded to true UPOs of the Navier–Stokes equation. However, all of
these studies have only been performed at modest Re or in other simpler partial differential
equations (PDEs). Our focus here is on using learned low-dimensional representations to
examine the impact of increasing Re on the flow dynamics.

In previous work (Page et al. 2021, hereafter PBK21), we used a deep convolutional
neural network architecture to examine the state space of a two-dimensional turbulent
Kolmogorov flow (monochromatically forced on the 2-torus) in a weakly turbulent regime
at Re = 40. By exploiting a continuous symmetry in the flow we performed a ‘latent
Fourier analysis’ of the embeddings of vorticity fields, demonstrating that the network
built a representation around a set of spatially periodic patterns which strongly resembled
known (and unknown) unstable equilibria and travelling wave solutions. In this paper,
we consider the same flow but use a more advanced architecture to construct low-order
models over a wide range of 40 ≤ Re ≤ 400. Latent Fourier analysis provides great insight
into the changing structure of the state space as Re increases, by, for example, showing
how high-dissipation bursts merge with the low-dissipation dynamics beyond the weakly
chaotic flow at Re = 40. It also allows us to isolate O(150) new UPOs associated with
high-dissipation events that have not been found by any previous approach.
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Two-dimensional turbulence is a computationally attractive testing ground for
these ideas because of the reduced computational requirements and the ability to
apply state-of-the-art neural network architectures which have been built with image
classification in mind (LeCun, Bengio & Hinton 2015; Huang et al. 2017). Kolmogorov
flow itself has been widely studied with very large numbers of simple invariant solutions
documented in the literature (Chandler & Kerswell 2013; Lucas & Kerswell 2014,
2015; Farazmand 2016; Parker & Schneider 2022), although the phenomenology in two
dimensions is distinct from three-dimensional wall-bounded flows discussed previously
due to the absence of a dissipative anomaly and the inverse cascade of energy to
large scales (Onsager 1949; Kraichnan 1967; Leith 1968; Batchelor 1969; Kraichnan &
Montgomery 1980; Boffetta & Ecke 2012). There is the intriguing possibility that UPOs
at high-Re in this flow actually connect to (unforced) solutions of the Euler equation
(Zhigunov & Grigoriev 2023), and we are able to use our embeddings to explore this
effect here by designing a UPO-search strategy for structures with particular streamwise
scales. Our analysis highlights the role of small-scale dynamical events in high-dissipation
dynamics, and also suggests that the UPOs needed to describe turbulence at high Re may
need to be combined in space as well as time, a viewpoint which is consistent with idea of
a ‘spatiotemporal’ tiling advocated by Gudorf & Cvitanovic (2019) and Gudorf (2020).

The remainder of the manuscript is structured as follows: In § 2 we describe the flow
configuration and datasets at the various Re, along with a summary of vortex statistics
under increasing Re. We also outline a new architecture and training procedure that can
accurately represent high dissipation events in all the flows considered. In § 3 we perform
a latent Fourier analysis for three values of Re, generating low-dimensional visualisations
of the state space to examine the changing role of large-scale patterns and the emergence
of the condensate. Section 4 summarises our UPO search, where we perform a modified
recurrent flow analysis at Re = 40 before using the latent Fourier modes themselves to find
large numbers of new high-dissipation UPOs. Finally, conclusions are provided in § 5.

2. Flow configuration and neural networks

2.1. Kolmogorov flow
We consider two-dimensional flow on the surface of a 2-torus, driven by a monochromatic
body force in the streamwise direction (‘Kolmogorov’ flow). The out-of-plane vorticity
satisfies

∂tω + u · ∇ω = 1
Re

�ω − n cos ny, (2.1)

where ω = ∂xv − ∂yu, with u = (u, v). In (2.1) we have used the amplitude of the
forcing from the momentum equation, χ , and the fundamental vertical wavenumber of
the box, k = 2π/Ly, to define a length scale, k−1, and timescale,

√
1/(kχ), so that

Re := √
χk−3/2/ν. Throughout we set Lx = Ly and the forcing wavenumber n = 4 as in

previous work (Chandler & Kerswell 2013, PBK21).
Equation (2.1) is equivariant under continuous shifts in the streamwise direction,

Ts : ω(x, y) → ω(x + s, y), under shift-reflects by a half-wavelength in y, S : ω(x, y) →
−ω(−x, y + π/4) and under a rotation by π, R : ω(x, y) → ω(−x, −y). In contrast with
other recent studies (Linot & Graham 2020; De Jesús 2023), which pre-process data by
pulling back continuous symmetries using the method of slices (Budanur et al. 2015, 2017),
we explicitly do not perform symmetry reduction. Our neural networks, described fully
later in this section and in Appendix A, are all fully convolutional without fully connected
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layers: they are invariant under translations (albeit discrete translations set by the spatial
resolution) hence the training will be unaffected by the application of pullback to the data.

We consider a range of Reynolds numbers, Re ∈ {40, 80, 100, 400}. For the majority of
this paper we will focus only on Re ∈ {40, 100, 400}, with the Re = 80 results included
only to verify trends in the autoencoder performance. Our training and test datasets are
generated with the open-source, fully differentiable flow solver JAX-CFD (Kochkov et al.
2021). The workflow for converging UPOs was refined during the course of the project:
we primarily converge periodic orbits in the spectral version of JAX-CFD (Dresdner et al.
2023), though some results at Re = 40 were obtained with an in-house spectral code
(Chandler & Kerswell 2013; Lucas & Kerswell 2014). Resolution requirements were
adjusted based on the specific Re considered, ranging from 2562 at Re = 40 (in the
finite-difference version of JAX-CFD) to 10242 at Re = 400. Lower resolutions (by a factor
of two) were used in the spectral solvers when converging UPOs. We downsampled our
higher Re training and test data to a resolution of 1282 for consistent input to the neural
networks. Note that previous work has demonstrated the adequacy of a 1282 resolution in
a spectral solver as high as Re = 100 (see Chandler & Kerswell 2013; Lucas & Kerswell
2015), hence downsampling will not be an issue for most Re considered. The truncation
at Re = 400 retains around nine decades in the time-averaged enstrophy spectrum (not
shown) hence results in a loss of resolution of small-scale vortical structures of amplitude
�10−4. This does not affect the performance of the autoencoder, which we will show to
be equally effective at high dissipation when more small-scale structure is present.

At each Re ∈ {40, 80, 100} we generated a training dataset by initialising 1000
trajectories from random initial conditions, discarding an initial transient before saving 100
snapshots from each, with snapshots separated by an advective time unit (in dimensional
variables this corresponds to �t∗ = 1/

√
kχ ). When training the neural networks we

applied a random symmetry transform to each of the N = 105 snapshots

ω → T αS mRqω, with α ∈ [0, 2π), m ∈ {0, 1, . . . , 7} and q ∈ {0, 1} (2.2)

each time we looped through the dataset. This data augmentation was included for
historical reasons from previous architectural iterations which featured fully connected
layers. As a result of the purely convolutional nature of the network, some of the symmetry
operations are likely redundant: the network is essentially equivariant under translations
in x and y by design (approximately if the shifts are not integer numbers of grid points).
However, convolutions are not invariant under the reflect or rotation operations, hence data
augmentation is beneficial there. Note that the data augmentation is applied randomly as
batches of snapshots are fed into the optimiser and we do not generate copies of the original
dataset. Test datasets of the same size were also generated in the same manner. For the
highest Re = 400, our training dataset was smaller and formed of 700 trajectories and our
test dataset at Re = 400 consisted of 200 trajectories. In training (network architecture
discussed in detail below) we reserved 10 % of the training data as a ‘validation’ set
which is not used to update the model parameters. The performance of the model is
recorded on the validation set as the model is trained as a method of determining whether
overfitting occurs. This can be detected should the loss evaluated on the validation set
depart significantly from that reported on the training data (Bishop 2006).

The dynamical regimes considered in this paper range from a weakly chaotic flow
at Re = 40 to the formation of a pair of large-scale vortices that dominate the flow,
the ‘condensate’ (Onsager 1949; Smith & Yakhot 1993), at Re = 400. These qualitative
differences in the flow are explored in figure 1 where we report snapshots at Re ∈
{40, 100, 400} (Re = 80 is largely indistinguishable from Re = 100) along with some
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|ΓV |/〈|ΓV |〉
Figure 1. Vorticity snapshots and statistics for Re = 40, 100 and 400. Results at Re = 80 are qualitatively
very similar to those at Re = 100 and are not shown. Top three rows show snapshots from within the test
dataset at Re = 40 (top; maximum contour levels ±8), Re = 100 (centre; maximum contour levels ±10) and
Re = 400 (bottom; maximum contour levels ±20). Black/white lines indicate connected regions (‘vortices’
discussed in the text) where |ω(x, t) − 〈ω〉| ≥ 2ωRMS. Bottom row summarises the vortex statistics in the
test datasets at Re = 40 (black), 100 (red) and 400 (blue), from left to right showing PDFs of numbers of
vortices NV (modal contribution highlighted with the shaded vertical bars), vortex area AV and normalised
vortex circulation |ΓV |/〈|ΓV |〉 (dashed line is exp(−(2/3)|ΓV |/〈|ΓV |〉)).

statistical analysis of the vortical structures present in the flow. The vortex statistics
shown here are computed by first computing the root-mean-square vorticity fluctuations
ωRMS :=

√
〈(ω(x, t) − ω̄( y))2〉, where �• is a time, (‘horizontal’) x and ensemble average

and 〈•〉 := ∫ 2π

0 �• dy/2π is fully spatially averaged. We then extract spatially localised
‘vortices’ as connected regions where |ω(x, t) − 〈ω〉| ≥ 2ωRMS.
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The vortex statistics shown in figure 1 indicate the persistence of a large-scale flow
structure at Re = 400: at this point the flow spends 50 % of its time in a state where
there are a pair of vortices, and often higher numbers of vortices, NV > 2, actually
indicates a state like that shown in the third and fourth snapshots at Re = 400 where
a small-scale region of high shear qualifies as a ‘vortex’ under our selection criteria.
These observations are clearly supported by a peak in both the vortex area and circulation
probability density functions (PDFs) at Re = 400. In contrast, the statistics at Re = 40
and Re = 100 do not indicate the dominance of a single large-scale coherent state, but
instead the vortex statistics are qualitatively similar to those reported in the early stages of
decaying two-dimensional turbulence reported by Jiménez (2020); see the dashed line in
the circulation statistics shown in figure 1.

As observed in earlier studies (Chandler & Kerswell 2013; Farazmand & Sapsis
2017, PBK21), the ‘turbulence’ at Re = 40 is only weakly chaotic and spends much
of its time in a state which is qualitatively similar to the first non-trivial structure to
bifurcate off the laminar solution at Re ≈ 10, but with intermittent occurrences of more
complex high-dissipation structures. In contrast, the dynamics at Re = 100 are much richer
and display an interplay between larger-scale structures and small-scale dynamics. The
increasing dominance of large-scale structure as Re increases can be tied to the emergence
of new simple invariant solutions, which can presumably be connected to solutions of the
Euler equations as Re → ∞ (Zhigunov & Grigoriev 2023). Similarly, the decreasing role
of smaller scale vortical events in this limit can be associated with the movement of a set
of small-scale UPOs away from the attractor. Our aim is to use learned embeddings within
deep autoencoders to explore this process, mapping out the structure of the state space
under increasing Re and finding the associated UPOs.

2.2. DenseNet autoencoders
We construct low-dimensional representations of Kolmogorov flow by training a family of
deep convolutional autoencoders, {Am}, which seek to reconstruct their inputs

Am(ω) ≡ [Dm ◦ Em](ω) ≈ ω. (2.3)

The autoencoder takes an input vorticity field and constructs a low-dimensional embedding
via an encoder function, Em : R

Nx×Ny → R
m, before a decoder converts the embedding

back into a vorticity snapshot, Dm : R
m → R

Nx×Ny . The scalar vorticity is input to the
autoencoder as an Nx × Ny ‘image’ with a single channel representing the value of ω(x, y)
at the grid points.

The architecture trained in PBK21 performed well at Re = 40, but we were unable to
obtain satisfactory performance at higher Re with the same network. Even the relatively
strong performance at Re = 40 in the PBK21 model was skewed towards low-dissipation
snapshots, with the performance on the high-dissipation events being substantially weaker.
To address this performance issue, we: (i) designed a new architecture with a more
complex graph structure and feature map shapes motivated by discrete symmetries in the
system; and (ii) trained the network with a modified loss function to encourage a good
representation of the rarer, high-dissipation events.

The structure of the new autoencoder is a purely convolutional network, with
dimensionality reduction performed via max pooling as in PBK21. However, we use
so-called ‘dense blocks’ (Huang et al. 2017, 2019) in place of single convolutional layers,
allowing for increasingly abstract features as the outputs of multiple previous convolutions
are concatenated prior to the next convolution operation. Our dense blocks (described
fully in Appendix A) are each made up of three individual convolutions, with the output
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feature maps of each convolution then concatenated with the input. This means that
the feature maps at a given scale (before a pooling operation is applied) can be much
richer than a single convolution operation. For instance, if the input to a particular dense
block is an image with K channels, and each convolution adds 32 features, then the
output of the block is an image with K + 3 × 32 channels. For comparison, a standard
convolution with 32 filters of size N′

x × N′
y on the same image would be specified

by O(32 × N′
x × N′

y × K) parameters, whereas the dense block described here requires
O(32 × N′

x × N′
y × (96 + 3K)) parameters due to the repeated concatenation with the

upstream input feature maps. We also made other minor modifications to the network
that are detailed in Appendix A. At the innermost level, the network represents the input
snapshot with a set of M feature maps of shape 4 × 8, where the ‘8’ (corresponding to the
physical y direction) is fixed by the 8-fold shift-reflect symmetry, S 8ω ≡ ω, in the system.
The restriction to purely convolutional layers and the smallest feature map size constrains
the dimension of the latent space to be a multiple of 32. Overall our new model is roughly
twice as complex as that outlined in PBK21, with ∼2.15 × 106 trainable parameters for the
largest models (m = 1024): the increased cost of the dense blocks being offset somewhat
by the absence of any fully connected layers. For context, training for 500 epochs on 105

vorticity snapshots (see Appendix A) takes roughly 48 h on a single NVIDIA A100 GPU
(80 GB memory).

We train the networks to minimise the following loss:

L := γ

N

∑
j

‖Am(ωj) − ωj‖2 + (1 − γ )

N

∑
j

‖[Am(ωj)]2 − ω2
j ‖2, (2.4)

over 500 epochs (batch size of 64, constant learning rate in an Adam optimiser η = 5 ×
10−4, see Kingma & Ba 2015). An additional term has been added to the standard ‘mean
squared error’ in the loss function (2.4). The new term is essentially a mean squared error
on the square of the vorticity field: high-dissipation events are associated with large values
of the enstrophy

∫∫
ω2 d2x, and the new term in (2.4) makes the strongest contribution to

the overall loss in these cases, whereas quiescent, low-dissipation snapshots are dominated
by the standard mean-squared-error term. The rationale here is to encourage the network
to learn a reasonable representation of high-dissipation events, particularly as we increase
Re. Treatment via a modified loss is required as these events make up only a small fraction
of the training dataset: a similar effect could perhaps be anticipated if the training data
were drawn from a modified distribution skewed to high-dissipation events rather than
sampled from the invariant measure. Intriguingly, we found that the addition of this term
lead to better overall mean squared error than a network trained to minimise the mean
squared error alone. We trained independent networks at Re = 40 with various γ and
found γ = 1/2 to be most effective. We fix γ to this value for all networks and Re.

The networks were trained by normalising the inputs ω → ω/ωnorm, where ωnorm =
25 for Re ∈ {40, 80, 100} and ωnorm = 60 for Re = 400. For a consistent analysis of the
performance across the architectures and Re, we do not report the loss (2.4) directly, but
instead compute the relative error for each snapshot

εj := ‖ωj − Am(ωj)‖
‖ωj‖ , (2.5)

where the norm ‖ω‖ :=
√

(1/4π2)
∫∫

ω2 d2x. The average error over the test set for our
new architecture is reported for a range of embedding dimensions m ∈ {32, 64, . . . , 1024}
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ε

Figure 2. Average relative error (2.5) over the test set(s) as a function of embedding dimension for the best
examples of all models trained in this work (recall the latent space dimension has a multiple of 32 by design).

8

4

0

–4

–8

8

–8

–4

0

4

12

6

0

–6

–12

12

–12

–6

0

6

Figure 3. Snapshots of vorticity (top) at Re = 100 (left) and Re = 400 (right). Below is the output of the
autoencoder, ωnormAm(ω). The network at Re = 100 has minimum dimension m = 512, whereas at Re = 400
we use the m = 1024 network. Relative errors (2.5) from left to right are ε = 0.036, ε = 0.065 ε = 0.102 and
ε = 0.085.

and all Re in figure 2. Unsurprisingly, there is monotonic reduction in the error with
increasing network dimensionality m at fixed Re, and monotonic increase in the error
with increasing Re at fixed m. The best performing network at Re = 40 shows an average
relative error of ∼1 % (exact test-set mean error 0.016, and standard deviation 0.0076),
whereas the performance at Re = 400 has dropped to ∼8 % (mean test-set error of 0.077
and standard deviation 0.017). Visually, snapshots from all networks are very hard to
distinguish from the ground truth once εj � 0.1: some examples for two specific networks
and Re pairs are reported in figure 3 with a ‘good’ and ‘bad’ snapshot included (in terms
of relative error (2.5)). For comparison, the same error measure evaluated on the induced
velocity fields computed from ω and Am(ω) is ∼2 % for snapshots where the vorticity
error is εj ≈ 10 % at Re = 400, and can be as much as a full order of magnitude better.

The distribution of errors over the test dataset is explored in more detail for the m = 256
networks at all four Reynolds numbers in figure 4, where we examine the dependence of
reconstruction error on the dissipation of the snapshot. Notably, there is no significant
loss of performance on the rarer, high-dissipation events. This is to be contrasted with
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Figure 4. Histograms of the test datasets for all Re ∈ {40, 80, 100, 400} (Re increasing left to right in the
figure), visualised in terms of the relative error (2.5) computed using the m = 256 networks and the snapshot
dissipation value normalised by the laminar value, Dl = Re/(2n2). The form of the loss function used
in training (2.4) ensures that the rarer high-dissipation events are embedded to a similar standard to the
low-dissipation data which make up a much larger proportion of the observations. Colours represent the number
of snapshots in each bin, with a logarithmic colourmap.

the sequential autoencoders considered in PBK21 and was achieved using the dual loss
function (2.4) which encourages a robust embedding of snapshots with stronger enstrophy.
We exploit the quality of the high-dissipation embeddings here to explore the nature of
high-dissipation events as Re increases. We note that the errors reported in figures 2
and 4 are unaffected by the application of discrete symmetry transforms to the vorticity
fields due to the data augmentation which was applied during training, and which was
described earlier in § 2. For example, using a relative error which includes discrete
symmetries (e.g. ‖S kRωj − Am(S kRωj)‖/‖ωj‖, with k ∈ {1, 3, 5, 7}) yields results
which are essentially indistinguishable from those discussed previously (not shown).

For the remainder of this paper we consider three networks, (Re, m) = (40, 128),
(100, 512) and (400, 1024). This covers the full range of Re for which we have trained
models (excluding Re = 80 which is qualitatively very similar to Re = 100), with
embedding dimensions {m} selected to balance model performance against interpretability.
Each of the three networks yields average relative errors ε of between roughly 2 % and 8 %.

3. Latent Fourier analysis

3.1. Methodology
PBK21 introduced ‘latent Fourier analysis’ as a method to interpret the latent
representations within neural networks for systems exhibiting a continuous symmetry.
We will use the same approach here to understand how the state space of Kolmogorov
flow complexifies under increasing Re, with a particular focus on the high-dissipation
‘bursting’ events. We briefly outline the numerical procedure for performing a latent
Fourier decomposition of an encoded vorticity field, Em(ω).

To perform a latent Fourier analysis we seek a linear operator that can perform a
continuous streamwise shift in the latent space

TαEm(ω) := Em(Tαω), (3.1)

where α is a chosen shift in the x-direction. An approximate latent-shift operator T̂α is
found via a least-squares minimisation (i.e. dynamic mode decomposition; Rowley et al.
2009; Schmid 2010) over the test set of embedding vectors and their x-shifted counterparts:

T̂α = Em({Tαω})Em({ω})+ ∈ R
m×m, (3.2)
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where the + indicates a Moore–Penrose pseudo-inverse and

Em({ω}) := [Em(ω1) · · · Em(ωN)] ∈ R
m×N, (3.3)

with N � m (N = O(105)). As in PBK21, we consider a shift α = 2π/p, with p ∈ N,
and given that T p

αEm(ω) = Em(ω) due to streamwise periodicity, the eigenvalues of the
discrete latent-shift operator are Λ = exp(2πil/p), where l ∈ Z is a latent wavenumber.

The parameter p is incrementally increased (i.e. reducing α) until we stop recovering
new latent wavenumbers. Across our networks, we find that only a handful of latent
wavenumbers are required: substantially fewer than the number of wavenumbers required
to accurately resolve the flow. For example, lmax = 3 for the m = 128 network at Re = 40,
whereas the much higher-dimensional network m = 1024 at Re = 400 uses wavenumbers
as high as lmax = 8. This compression comes about because each latent wavenumber
l is associated with vorticity fields which are periodic over 2π/l. This means Fourier
wavenumbers k f = ml for integer m ∈ Z can all be mapped onto l resulting in a
dramatically reduced maximum wavenumber lmax.

In practice streamwise-translation invariance is not embedded perfectly in any of our
networks, and we use only the subset of the latent space which does exhibit equivariance
under streamwise shifts by only retaining modes for which |Λj| > 0.9. With the non-zero
latent wavenumbers determined we can now write down an expression for an embedding
of a snapshot subject to an arbitrary shift, s ∈ R, in the streamwise direction:

Em(Tsω) =
lmax∑

l=−lmax

⎛⎝ d(l)∑
k=1

P l
k(Em(ω))

⎞⎠ eils, (3.4)

where
P l

k(Em(ω)) := [(ξ (l)†
k )HEm(ω)]ξ (l)

k , (3.5)

with ξ (l)
k the kth eigenvector of the shift operator T̂α ,

T̂αξ
(l)
k = exp(2πil/p)ξ

(l)
k , (3.6)

in the subspace l and ξ (l)†
k is the corresponding adjoint eigenfunction so (ξ

(l)†
i )Hξ

(l)
j =

δij with superscript H indicating the conjugate-transpose. Equation (3.4) makes the
connection with a Fourier transform clear. The small number of non-zero latent
wavenumbers means that each must encode a wide variety of different patterns in the flow:
each latent wavenumber is (potentially highly) degenerate with geometric multiplicity d(l)
whereas a given Fourier mode is not (ignoring the same degeneracy both possess in y). In
(3.4) the quantity P l

k(Em(ω)) is the projection of the embedding vector onto direction k
within the eigenspace of latent wavenumber l. We obtain these projectors via a singular
value decomposition (SVD) within a given eigenspace, which is described in § 3.2. We
refer to the decode of a projection onto individual latent wavenumbers as a ‘recurrent
pattern’.

At the innermost representation in the autoencoders the turbulent flow is represented
with a set of feature maps of shape 4 × 8, where the convolutional operations mean that the
four horizontal cells each correspond to a quarter of the original domain, i.e. the network
has constructed some highly abstract feature that was originally located in one-quarter of
the physical domain in x. The correspondence of components of the innermost feature
maps to specific regions of physical space is ensured by: (i) restricting the architecture to
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purely convolutional layers; (ii) periodic padding of the image at each layer of the network
so that the output of the discrete convolution operation retains the same shape as the input;
and (iii) shrinking of the convolutional filters as pooling operations are applied to retain
a consistent size relative to the physical domain. Full architectural details are provided
in Appendix A. This physical-space correspondence can be verified by shifting the input
vorticity field by an exact quarter of the domain in x, after which the innermost feature
maps are unchanged apart from a permutation of rows to match the shifting operation.
Similarly, the eight vertical cells isolate some feature located in one of eight vertical bands
in the original image: the Kolmogorov forcing fits eight half-wavelengths in the domain,
and the ‘shift’ in the shift-reflect symmetry is one half-wavelength. The convolutions are
invariant to arbitrary translations in y, but the shift-reflect by a half-wavelength must be
‘learned’, which we accomplish via the data augmentation discussed in § 2. This is also
the case for the rotational symmetry, which we account for in the augmentation during
network training.

The choice of a particular feature map size for the encoder can be used to encourage
the network to learn recurrent patterns at a particular scale. This architectural choice is
at the root of the relatively low values of lmax observed for the networks. For example,
consider the case of a single feature map for the encoder: this would correspond to the
m = 32 networks trained here. In this case, we are effectively coarse-graining the original
vorticity snapshot to a single 4 × 8 image, where, as discussed previously, each of the four
rows corresponds to one-quarter domain in x. Therefore, by the Nyquist sampling criterion
that the minimum length scale that can be resolved is twice the grid spacing (i.e. Lx/2),
the maximum wavenumber obtained in the horizontal direction is lmax = 2: the network
has to learn to couple smaller-scale features to large scales in the most efficient way. By
expanding the number of feature maps at the innermost level, as is done for the m > 32
networks (note that the m = 1024 network has 32 feature maps), in principle we allow
for higher latent wavenumbers, but it is seemingly inefficient for the network to embed
features in this way, and instead most of the energy is contained in relatively low l. This is
a benefit from an interpretability point of view, since individual recurrent patterns have a
physical significance; each features a large number of physical wavenumbers with a base
periodicity set by the value of l.

We report eigenvalue spectra for the latent wavenumbers in figure 5 for each of the
three networks considered here. These figures were generated by first selecting a shift
α = 2π/p, computing the spectra of T̂α and inverting Λ = exp(2πil/p). As described
previously, we incrementally decreased the shift until we stopped recovering new l, i.e.
the spectra reported in figure 5 are independent of α. This independence is also true of
decodes of projections onto eigenvectors of T̂α which we discuss in subsequent sections.

The clustering of points in figure 5 around the integer values of l shows that the
eigenvalues of the shift operator are highly degenerate. The maximum latent wavenumber
found (and the size of each eigenspaces) expands with increasing Re, and consequently a
smaller value of α is needed to construct the shift operator (3.1). There are large numbers
of points clustered on integer values of l in figure 5, though we also find that some structure
in the network can not be accurately shifted with a linear operator, and we also observe
‘decaying’ eigenvalues with negative imaginary part. This behaviour is more apparent as
Re increases and represents the imperfect embedding of continuous translations in the
network (recall that the innermost representation coarse-grains the input image to a spatial
‘resolution’ of 4 × 8); we consider only a subset of the latent space where translation is
robust by thresholding |Λ| > 0.9.
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Figure 5. Eigenvalues of the latent shift operator, T̂α , visualised in terms of latent wavenumbers l = lr +
ili (in a perfect approximation li = 0). (a) Network (Re, m) = (40, 128), with shift α = 2π/11. (b) Network
(Re, m) = (100, 512), with shift α = 2π/17. (c) Network (Re, m) = (400, 1024), with shift α = 2π/23. Latent
wavenumbers are determined by writing the eigenvalues of the shift operator as Λ = exp(2πil/p), where α ≡
2π/p. Horizontal dotted lines indicate the threshold |Λ| = 0.9 or, equivalently, li = −p log(0.9)/2π, below
which eigenvalues are discarded when doing latent projections. Dotted vertical lines indicate integer values
of lr.

Despite the expanding lmax with increasing Re and the increasing inaccuracy of the
shift operator, all networks can produce a fairly robust representation of the flow with just
three non-zero l. The reconstruction accuracy of a truncated set of recurrent patterns is
examined in figure 6, where we report the average reconstruction error as the number of
latent wavenumbers used is incrementally increased. This error is defined per snapshot as

ε̂j(l′) := ‖ωj − [D ◦ Ê l′](ωj)‖
‖ωj‖ , (3.7)

where

Ê l′(ω) :=
l′∑

l=−l′

⎛⎝ d(l)∑
k=1

P l
k(E (ω))

⎞⎠ , (3.8)

is the projection onto the first l′ > 0 latent wavenumbers. Note that now d(l) is computed
as the number of modes with (lr)k ≡ l for which |Λ| > 0.9.

The error reported in figure 6 ((3.7) averaged over the test set) monotonically drops as
the maximum latent wavenumber is increased, although note the loss in representation
from discarding wavenumbers with eigenvalues |Λ| < 0.9. For the flow configuration
considered here, it is really the first three non-zero latent subspaces that do most of
the ‘heavy lifting’, and they encode a huge variety of dynamical processes. The error
with l′ = 3 at Re = 400 is O(0.2), which still produces snapshots which are visually
hard to distinguish from the input (see earlier discussion of the error in § 2.2). It is also
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Figure 6. Test-set average error in reconstruction (3.7) as a function of increasing l. Dashed blue line is the
error using the full latent representation as reported in figure 2, dashed red line is the error when reconstruction
is performed using all eigenvectors of T̂α with eigenvalues |Λ| > 0.9. From left to right: (Re, m) = (40, 128),
(100, 512) and (400, 1024). Note that there are no patterns within l = 4 subspace at Re = 100 (see figure 5).

noteworthy that in all cases the l = 4 contribution is either extremely weak or absent
entirely. This is consistent with the poor resolution of l = 4 eigenvalues observed in the
eigenvalue spectra of figure 5. Although it is challenging to pin down the mechanism
behind this observation, we note that linear instability of the basic flow is upper bounded
by streamwise wavenumber k = 4 (see, e.g. Chandler & Kerswell 2013) and we have been
unable to find any simple invariant solutions which are contained in a quarter domain.

3.2. Recurrent patterns
To probe the influence of a particular latent wavenumber, we decode projections of
snapshots onto individual, or combinations of latent vectors within that l-subspace.
Despite the nonlinearity of the architecture, this linear analysis of the embeddings sheds
some insight into how vorticity fields are efficiently embedded and, as we show, forms the
basis for new methods to detect UPOs. Here we follow the methodology outlined in PBK21
and perform an SVD within each eigenspace to obtain a set of mutually orthornormal
modes, which are ordered by their contribution to the total variance within that particular
value of l over the test dataset, and which can be decoded in isolation to reveal an
associated flow pattern.

To perform the SVD within a particular latent subspace, we first project down the latent
space to the l-subspace as follows

P l(E (ω)) =
d(l)∑
k=1

P l
k(E (ω)) + c.c. (3.9)

Adding the complex conjugate is required when l /= 0. We then construct the projected
embedded data matrix and perform an SVD within that subspace:

El := [P l(E (ω1)) · · · P l(E (ωN))] = U lΣ lW H
l , (3.10)

where N is the number of snapshots in the dataset. The results of decoding various
combinations of latent projections within different subspaces are reported in figure 7.
Here we take a pair of snapshots at each Re ∈ {40, 100, 400}, compute the embedding
E (ω), project onto the individual eigenspaces with P l before decoding some combination
of projections, in some cases using only a subset of the left-singular vectors {uk

l }d(l)
k=1 to

decode the dominant components. The net result of all this is to replace the original basis
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{ξ (l)
k }d(l)

k=1 on the l-latent subspace with a better-designed basis {uk
l }d(l)

k=1 based on variance
within the latent (sub)space. Plots of the singular value distributions within each subspace
are included in Appendix B, from which the dimension d(l) of each eigenspace can also
be estimated.

For physically realistic outputs we always include the streamwise-invariant projection
onto l = 0 (see the discussion in PBK21), and in figure 7 we consider the combinations

ω̃ = D([(u1
l=0)

HP l=0(E (ω))u1
l=0] + [(u1

l=1)
HP l=1(E (ω))u1

l=1 + c.c.]), (3.11)

along with decodes of full eigenspaces

ω̃ = D(P0(E (ω)) + [P l(E (ω)) + c.c.]), (3.12)

for l = 1, 2, 3. In the former case (3.11) we project onto only the most energetic directions
within l = 0 and l = 1 before decoding. The most energetic l = 0 mode decodes by itself
to something resembling the basic laminar solution (not shown: eight bands of vorticity,
invariant under all symmetries). The addition of the most energetic l = 1 mode results in
something that at Re = 40 closely resembles the first non-trivial equilibrium to bifurcate
from the laminar solution at Re ≈ 10 (see, e.g. Chandler & Kerswell 2013, PBK21).
This is visible in the second row of snapshots in figure 7. Notably a similar structure is
found at both Re = 100 and Re = 400, though it is much less clear (particularly note the
high-wavenumber contamination at Re = 100). This coincides with a relative increase in
the energy of other singular vectors across the l = 1 subspace as Re increases (not shown).

Decodes of full subspaces obtained via (3.12) are also reported below the snapshots
in figure 7. The project-and-decode operation (3.12) produces vorticity fields with a
fundamental horizontal length scale 2π/l. These projections should be contrasted to
projections onto individual Fourier modes (see the blue boxes in figure 7). As discussed
in § 3 they include a wide range of physical wavenumbers and as such retain coherent
structures from the original snapshot. This can be seen clearly the l = 2 projections at both
Re = 40 and Re = 100 in figure 7. When the flow is dominated by a pair of opposite-signed
vortices, the full l = 1 decode looks visually similar to the input snapshot at the lower
Re = 40, whereas for the higher values of Re = 100 and Re = 400 the result appear similar
to a low-pass filter applied in Fourier space. Notably the higher-dissipation events (leftmost
snapshot at Re = 40; right snapshot at Re = 100) do not exhibit this behaviour. In these
cases, the l = 1 pattern extracts some of the features in the input image, though there is a
much stronger response in l = 1 at Re = 100 compared with Re = 40 (discussed further
in § 3.3).

The l = 2 and l = 3 decodes of the higher-dissipation events at Re = 40 and Re = 100
are particularly interesting, since they highlight local vortical features that make up part
of larger, doubly or triply periodic pattern within the autoencoder; for example, note the
structure identified with the red box at Re = 40 which then forms the basis for the l = 2
recurrent pattern. The dynamical relevance of these patterns will be explored later when
we use them to find new, high-dissipation UPOs, which are visually very similar to the
l = 2 (and, at Re = 40, l = 3 too) decodes shown here.

3.3. High-dissipation events under increasing Re
The structure of the state space of vorticity fields can be explored further by dimensionality
reduction on latent Fourier projections. We first define a streamwise-shift invariant
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Re = 40

l = 1

l = 1

(k = 1)

kf = 1

kf = 2

kf = 3

l = 2

l = 3

Re = 100 Re = 400

Figure 7. Top: two sample vorticity snapshots each at Re = 40 (left), 100 (centre) and 400 (right). The
remaining rows show respectively: the decode of the most energetic modes within the l = 0 and l = 1 subspace
(3.11, the (k = 1) indicating that only the leading principal component is included in the l = 1 subspace)
followed by the full decodes of the l = 1, l = 2 and l = 3 projections (3.12) along with the projections onto
the first three physical Fourier modes kf ∈ {1, 2, 3} highlighted in blue boxes (note the zero Fourier mode is
always included). At Re = 40 the right snapshot is an example of a higher-dissipation event; the right snapshot
at Re = 100 is also high dissipation. Red box highlights a feature discussed in the text.
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Re = 40 Re = 100 Re = 400

Figure 8. Two-dimensional visualisations of the continuous-shift invariant observable (3.13) obtained using
the UMAP algorithm (McInnes, Healy & Melville 2018). The x- and y-axes here represent coordinates in the
reduced two-dimensional representation produced by UMAP, which are determined such that the mapped data
approximately preserves ‘closeness’ between nearby points in the original variables. From left to right are
the results for Re = 40 (m = 128 network), Re = 100 (m = 512 network) and Re = 400 (m = 1024 network).
Note the octagonal shape visible in all three examples represents the networks’ internal representation of the
discrete shift-reflect symmetry in the system. Data points are coloured by their dissipation values running from
the lowest (dark blue) to highest (yellow).

observable using the latent wavenumbers 0 ≤ l ≤ 3,

ψ(ω) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(u1
l=0)

HP0(E (ω))

(u2
0)

HP0(E (ω))
...

|(u1
1)

HP1(E (ω))|
...

|(ud(3)
3 )HP3(E (ω))|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.13)

where the absolute value for wavenumbers l > 0 removes any x-location dependence of
the features and u j

l is the jth left-singular vector from the matrix U l (defined in (3.10)).
We then input the streamwise-shift-independent latent observable (3.13) into the ‘UMAP’
algorithm (McInnes et al. 2018), which seeks a two-dimensional representation of the data
by (i) assuming there is some manifold on which the data are uniformly distributed and
(ii) attempting to preserve geodesic distances on the manifold in the Euclidean distances
between points in the mapped representation. Note we obtain similar results (not shown)
with the t-SNE algorithm (van der Maaten & Hinton 2008).

Low-dimensional visualisations produced by the combination of (3.13) and the UMAP
algorithm are reported in figure 8 for all three networks examined in detail. The data
represented in figure 8 are the full test dataset at each Re ∈ {40, 100, 400}, with an
embedding vector E (ω) computed for each vorticity field using the appropriate encoder
before the shift-invariant observable (3.13) is calculated. In each case there is a clear
octagonal shape in the data cloud, which is due to the shift-reflect symmetry present
in the full equations (2.1), i.e. each of the eight sectors of the octagon is, to a good
approximation, a shift-reflected copy of the others. This indicates that the flow still feels
the signature of the forcing even at the highest Re considered here, though the clarity of
the octagon perhaps decreases at higher Re. The imprint of the forcing on the dynamics
should be contrasted with the behaviour of the flow as Re → ∞ where the structures
found are independent of the specifics of the forcing term; see, e.g. the unimodal solutions
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considered in Kim & Okamoto (2015), Kim, Miyaji & Okamoto (2017) and the Euler
solutions described by Zhigunov & Grigoriev (2023). Increasing the Reynolds number
fundamentally alters the latent representations, which allows us to infer something about
the nature of the inertial manifold of the governing equations. At the lowest value of
Re = 40, there is a small detached high-dissipation octagon clearly visible in figure 8
(a similar structure was observed in PBK21 at Re = 40, but without the clean shift-reflect
embedding due to the poor performance of that autoencoder model). This detachment
suggests that high dissipation events at Re = 40 are distinct from the low-dissipation
dynamics, where snapshots tend to feature a large contribution from the latent Fourier
mode resembling the first non-trivial equilibrium which was discussed around figure 7
above.

In contrast, the low-dimensional visualisation at Re = 100 in figure 8 shows no
detached bursting structure, but rather the high-dissipation events are included in the
single embedding ‘octagon’. The embeddings still contain the structure resembling the
non-trivial first equilibrium (although now much more weakly; see figure 7) and there
is then a continuous latent connection to any vorticity field regardless of the strength
of the dissipation. More concretely, consider the embedding of a vorticity field and an
equivalent, shift-reflected version, E (ω) and E (S mω) (1 ≤ m ≤ 7): it is possible to
reach the embedding E (S mω) from E (ω) without having to go through intermediate
shift-reflects, i.e. any shift-reflected copy can be smoothly reached by passing through the
middle of the octagon.

The lower-Re embeddings should be contrasted with the results at Re = 400, which
indicate an entirely different latent representation. The octagonal shape remains in figure 8,
but now with a large, central hole. It is now only possible to reach a shift-reflected
copy of the embedding of a vorticity field by traversing around the octagonal ring,
moving incrementally through shift-reflects. This reflects the fact that the representations
are now built around the continued presence of a large domain-filling vortex pair, and
coincides with the weakened appearance of the l = 1 structure resembling the non-trivial
equilibrium in the embeddings.

To further explore the changing nature of ‘high-dissipation’ events as Re increases, we
compute the following observable for individual trajectories in our test set:

βl(ω) :=
d(l)∑
k=1

|(uk
l )

HP l(E (ω))|, (3.14)

which is a measure of the total contribution of the latent subspace l and as before d(l)
is computed from the number of modes with |Λ| > 0.9 in each eigenspace. The size of
d(l) increases with Re, with d ∼ 10–20 at Re = 40, whereas d ∼ 30–40 at both Re = 100
and Re = 400. Plots of singular values within each eigenspace are reported in Appendix B
and allow for precise determination of d(l) at each Re. We compare the evolution of (3.14)
to the instantaneous dissipation rate in figure 9 for wavenumbers l ∈ {1, 2, 3}, where we
also indicate the mean value of each quantity over the entire test set for a meaningful
comparison.

For the trajectory at Re = 40 in figure 9 two high-dissipation events are observed (both
are substantially longer than typical excursions from the low-dissipation dynamics). In
both cases, the burst is associated with extreme values in latent wavenumbers l = 2
and l = 3 which are 2–3 standard deviations above the mean, as measured by (3.14).
Note also that this amplification coincides with a relatively low value of the amplitude
in l = 1. This indicates that, at Re = 40 at least, ‘high dissipation’ is nearly synonymous
with an increased amplitude of l = 2 and l = 3 latent Fourier modes, with a significant
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Figure 9. Visualisation of individual trajectories at (a) Re = 40, (b) Re = 100 and (c) Re = 400. Top panels
show dissipation rate normalised by the laminar value, whereas the lower panels show the quantity βl (3.14) for
l = 1 (black), l = 2 (red) and l = 3 (green). In all cases the dashed horizontal lines are the mean value of the
quantity (sample mean over the test set), whereas the shading identifies ±1.5 standard deviations.

drop in l = 1. This explains the detached high-dissipation octagon observed at Re = 40
in the UMAP projections (figure 8) where the dimensionality reduction was performed
on the vector ψ(ω) defined in (3.13), whose components are projections onto individual
latent Fourier modes.

Similarly, the high-dissipation event observed at t ∼ 50 for the Re = 100 trajectory in
figure 9 is also associated with a local spike in the l = 2 contribution, and a smaller jump in
l = 3. However, the burst also features larger-than-usual amplitude in β1. Bursting events
feature small-scale vortices (corresponding to l = 2 and l = 3 patterns), but locally, and
large-scale l = 1 structure continues to play a role. This effect is amplified further at Re =
400, where the high-dissipation values recorded at t ∼ 25 in figure 9 are now associated
with extreme values in the largest-scale patterns at l = 1.

The merging and subsequent disappearance of distinct high-dissipation events described
in figure 8 can be connected to small-scale UPOs and their movement away from the
attractor as Re increases. To explore these effects, we now use our embeddings to generate
UPO guesses in two ways, both by modifying the classical approach (Kawahara & Kida
2001; Viswanath 2007; Cvitanovic & Gibson 2010; Chandler & Kerswell 2013) and by
using individual latent wavenumbers to look for high-dissipation solutions.

4. Unstable periodic orbits

4.1. Recurrent flow analysis with latent variables at Re = 40
The classical method for searching for UPOs in a turbulent flow is to measure similarity
between vorticity fields on the same orbit, separated by T in time. If the vorticity field is
‘similar’ now to a point T in the past, this is taken to indicate that the flow has shadowed a
UPO for a full period ∼T . To find the UPO, the starting (past) vorticity field is input into a
Newton–Raphson algorithm, along with the guess for the period, T . This is ‘recurrent flow
analysis’ (Kawahara & Kida 2001; Viswanath 2007; Cvitanovic & Gibson 2010; Chandler
& Kerswell 2013), and the ‘similarity’ between snapshots is measured via a Euclidean
norm:

R(ω, T) := min
s

‖T sf T(ω) − ω‖
‖ω‖ , (4.1)
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where f T is the time-forward map of (2.1) and we perform a search over the continuous
symmetry (note we could also search over the discrete symmetries, but we do not consider
this here). Local minima in R(ω, T) ≤ Rthresh which fall below some threshold are selected
as viable guesses for UPOs which take the form of a triple (ω, T, s) (which includes a
guess for the shift s that minimises the right-hand side of (4.1)). In Kolmogorov flow a
relatively large threshold value is required to flag guesses (e.g. typically a value Rthresh =
0.3 has been selected by previous authors, though higher values have also been considered,
see Lucas & Kerswell 2014, 2015).

If a near-recurrence does occur, a major shortcoming of the approach outlined above is
that there is no a priori reason to assume that a Euclidean distance in vorticity is the best
metric to measure distance between flow states in phase space which are not particularly
close on the inertial manifold, but which may still be observed in a shadowing event (see
the interesting discussion around it’s suitability to detect UPO shadowing in Krygier et al.
2021). At Re = 40 recurrent flow analysis can still be somewhat effective, and we show
here how the autoencoders can improve this UPO-guess generation method.

The central idea is that the features recorded in our autoencoders are likely to be
a much more effective observable for flagging similarity between snapshots than the
computational vector of the vorticity field itself. We therefore keep the main mechanics of
a recurrent flow analysis in place, but instead measure similarity in the shift-independent
observable ψ(ω) defined in (3.13). Our modified near-recurrence function reads

RE (ω, T) := ‖ψ( f T(ω)) − ψ(ω)‖
‖ψ(ω)‖ . (4.2)

Now no search over the continuous symmetry is required. The guess for the shift is
determined from the phase difference in the projection onto the dominant l = 1 mode
between the ‘start’ and ‘end’ snapshots via

s = Real

[
−i log

(
(u1

l=1)
HP l=1(E ( f T(ω)))

(u1
l=1)

HP l=1(E (ω))

)]
. (4.3)

To select an appropriate threshold on the latent near-recurrence measure (4.2) we
computed RE (ωj, Tj) for a large number of snapshot–period pairs {(ωj, Tj)} for which the
physical near-recurrence (4.1) was just below the threshold R(ωj, Tj) � 0.3. We found that
selecting a threshold value RE = 0.015 captured ∼80 % of the physical-space guesses and
fix this value throughout our analysis. The utility of the approach is that when applied to
turbulent data, RE then flags many more viable guesses that are missed altogether using
the standard approach.

The performance of the new latent observable is compared with the standard approach
in figure 10, where we report contours of the regular recurrence measure R and RE

over 500 advective time units. Following the protocol defined in Chandler & Kerswell
(2013), initial conditions ω(t) for which R(ω(t), T) < 0.3 are supplied as guesses to a
Newton–Krylov–Hookstep solver in an attempt to converge an exact UPO. Similarly,
guesses for which RE (ω(t), T) < 0.015 are also supplied to the same (physical space)
Newton solver.

The contour plots reported in figure 10 indicate that the flagging of near-recurrences
is often qualitatively similar between the two approaches. As expected, the latent
observable flags many of the same guesses as the standard approach, but it also identifies
near-recurrences which are not observed at all in the original vorticity-based approach,
even when the recurrence threshold is relaxed. In figure 10 we have also included contours
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Figure 10. Recurrent flow analysis comparison between the full vorticity field (4.1) and the latent observable
(4.2), for the same example time series. (a) Contours of recurrence measure R = 0.3 (blue) R = 0.45 (orange)
and R = 0.6 (black). Points where R ≤ 0.3 were supplied as initial guesses to a Newton solver. (b) Contours
of latent recurrence measure RE = 0.015 (blue), RE = 0.03 (orange) and RE = 0.045 (black). Points where
RE ≤ 0.015 were supplied as initial guesses to a Newton solver (selection of this threshold is discussed in the
text). In both cases red dots indicate a failed convergence, green dots a success. This plot shows that the search
using the latent observable (4.2) is much more successful than using the full vorticity field.

of R(ω, T) significantly above the threshold (as high as a relative error of 60 %). We can
see that the latent observable does indeed identify some UPOs that were missed because
they were just above the standard vorticity threshold, for example note the convergences
around t ∼ 2200, but also identifies near-recurrences which would not have been identified
at all with the previous approach (note the success with T ∼ 20 at t ∼ 2230).

We applied both standard and ‘latent’ recurrent flow analysis over a single trajectory of
length 0 ≤ t ≤ 8000, with a maximum period in the search of Tmax = 50. The standard
approach resulted in 232 guesses, of which 73 UPOs were converged, with 20 unique
solutions: a success rate of ∼26 % in terms of raw convergences. In contrast, the latent
Fourier approach produced a much larger number of 1340 guesses, of which 543 converged
to UPOs, with 67 unique solutions. In the latter case, there is a much higher convergence
rate of ∼40 %, which indicates that the threshold on RE could perhaps be relaxed further.
What is striking is that the number of unique solutions far exceeds what has been found by
the previous approach; note that the 67 unique UPOs far exceeds the ∼50 solutions found
in recurrent flow analysis of 105 time units of data by Chandler & Kerswell (2013), despite
our relatively short interval of 8000 advective time units.

The periodic orbits found using the latent recurrent flow analysis are shown in figure 11
in the form of two-dimensional projections onto a production-dissipation-rate diagram
which also includes the turbulent PDF. Similar to the majority of structures found
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Figure 11. Top: all periodic orbits found via latent Fourier-based recurrent flow analysis at Re = 40, visualised
in terms of their production and dissipation rates (red lines). The laminar dissipation value Dl = Re/(2n2).
Background grey contours are the turbulent PDF (contour levels spaced logarithmically with a minimum
value 10−6), whereas the blue line identifies the longest UPO found with T = 49.091, for which we show four
snapshots of spanwise vorticity equally spaced every T/5 in the lower four panels of the figure. The starting
point for the visualisation of the vorticity is identified with a white square in the production/dissipation plot,
whereas contour levels for the vorticity run from −10 ≤ ω ≤ 10.

previously via recurrent flow analysis (see, in particular, Chandler & Kerswell 2013; Lucas
& Kerswell 2014), all the UPOs found are relatively low dissipation. Thus, although latent
recurrent flow analysis does provide access to large numbers of new solutions that a
standard recurrent flow analysis has not been able to return, it is still constrained by the fact
that the more unstable structures are not flagged in this approach at all. We now discuss a
new method to use latent Fourier analysis to isolate smaller-scale solutions which play a
substantial role in the high-dissipation dynamics, and which is effective at both Re = 40
and Re = 100.

4.2. Bursting periodic orbits
In PBK21 we used projections onto the l = 2 latent Fourier modes to find large
numbers of equilibria and travelling waves which bore some resemblance to snapshots
of high-dissipation events at Re = 40. The quality of the networks constructed here allows
us to go much further and find large numbers of high-dissipation UPOs. Our method is
also effective at Re = 100, though the structures we isolate there play a slightly different
role in the dynamics.

We have seen that the latent observable (3.13) can substantially improve the performance
of recurrent flow analysis, though as described previously the new UPOs identified in this
way are largely ‘low dissipation’ (all have roughly D/Dl � 0.15). An alternative approach
is motivated by the time series in figure 9 which show a correlation of high-dissipation
events with projections onto l = 2 and l = 3 latent recurrent patterns. These projections
indicate the role of smaller-scale structure in the bursts and we therefore search for
UPOs with a smaller fundamental horizontal length scale by generating guesses from
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Figure 12. (a) Production/dissipation PDF of a long turbulent trajectory (contour levels spaced logarithmically
with a minimum value 10−6), with all 61 bursting periodic orbits found from l = 2 projections at Re = 40
(dotted lines). Four periodic orbits are highlighted in colour. Blue: T = 3.962 (note the very small loop can’t
be seen clearly in the visualisation on the left); green: T = 2.606; orange: T = 2.895 and red: T = 7.452.
(b) Spanwise vorticity at points equispaced in time for the four highlighted UPOs, with �t = T/4 and starting
at the point indicated by the relevant marker in the left panel.

latent Fourier projections onto modes with l ≥ 2. Although the guesses may often be
symmetric under half- or third-domain horizontal shifts, the same is often not true for
the converged UPOs we find (i.e. the analysis could not have been performed in full in a
smaller horizontal domain).

We first generate guesses for these small-scale, high-dissipation UPOs by decoding
the projection onto either l = 2 or l = 3 only (inclusion of the l = 0 subspace is always
required for a physically realistic output; see the discussion in PBK21):

ωg = D(P0(E (ω)) + [P l(E (ω)) + c.c.]). (4.4)

We create UPO guesses by evaluating (4.4) on snapshots ω for which the quantity (3.14)
was greater than two standard deviations above the mean. We uniformly set the initial
guess for the period to T = 5 at Re = 40 and T = 2.5 at Re = 100, values motivated by
the typical duration of a ‘bursting’ event: recurrent flow analysis does not yield guesses
in this regime, hence the lack of high-dissipation solutions documented in the literature.
The initial guess for the shift was set to zero throughout, s = 0. Although more systematic
approaches to generating guesses for T and s may be possible, we found that these choices
resulted in a significant success rate without optimisation (e.g. l = 2 guesses at Re = 40
converged 25 % of the time, with an 11 % success rate for l = 3).

The results of the bursting search at Re = 40 with l = 2 are summarised in figure 12,
where we display all UPOs identified using (4.4) in a production-dissipation plot. We find
61 unique UPOs, all of which are ‘high dissipation’ and have not been returned by any
previous search method (for context, the search using recurrent flow analysis by Chandler
& Kerswell 2013, over 105 time units resulted in 51 unique low dissipation UPOs).

The 61 l = 2 UPOs found at Re = 40 involve various flow structures and can be split into
groups with common vortex dynamics – some of these are highlighted in the panels on the
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Figure 13. (a) Production/dissipation PDF of a long turbulent trajectory (contour levels spaced logarithmically
with a minimum value 10−6), with all 43 bursting periodic orbits found from l = 3 projections at Re = 40
(dotted lines). The laminar dissipation value Dl = Re/(2n2). Four periodic orbits are highlighted in colour:
blue T = 5.521; orange T = 5.548; red T = 2.636 (note the very small loop cannot be seen clearly in the
visualisation on the left); and green T = 3.456. (b) Spanwise vorticity at points equispaced in time for the four
highlighted UPOs, with �t = T/4 and starting at the point indicated by the relevant marker in the left panel.

right of figure 12. The examples shown in the figure include near-static vortex crystals with
small motion of an isolated vortex, a strong band of negative vorticity that rapidly advects
the weaker structures around it, co-rotating pairs of vortices and also the emergence of
opposite-signed, co-travelling vortex pairs or dipole structures (see first panel in the final
example in figure 12). We note that while the initial guesses are, to a good approximation,
symmetric under half-domain shifts, the same is not true for most of the converged UPOs.
Of the 61 solutions reported in figure 12, 45 are not two copies of a solution in an Lx/2
domain, though their variation over lengthscales > Lx/2 tends to be weak. This highlights
the role of small-scale vortical structures in the burst and the relevance of smaller-scale
UPOs in describing these events.

The search using projections onto l = 3 was almost as prolific, and resulted in 43
high-dissipation periodic orbits, of which 20 were not symmetric under shifts by Lx/3,
which are summarised in figure 13. Although these smaller-scale vortical structures play a
role in the high-dissipation events, as evidenced by the strong l = 3 projections in figure 9,
they tend to occur alongside other larger-scale features, typically associated with patterns
dominated by l = 2. The production/dissipation rate projections of the l = 3 UPOs
reported in figure 13 are consistent with this: they almost all sit at much higher-dissipation
values than those ever observed in a turbulent simulation, simply because they tend to
feature very large numbers of high-amplitude vortices. These UPOs are clearly not visited
regularly in our simulations but nevertheless might play a role in rare extreme dissipation
events. In larger domains, they may also appear locally alongside lower dissipation states
in the rest of the domain but this cannot be confirmed without doing simulations there,
which is beyond the scope of this paper.

This multiscale, spatiotemporal ‘tiling’ of turbulence by smaller-scale UPOs hinted
at here has been explored recently by Gudorf & Cvitanovic (2019) and Gudorf (2020)
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Figure 14. (a) Production/dissipation PDF of a long turbulent trajectory (contour levels spaced logarithmically
with a minimum value 10−6), with all 45 bursting periodic orbits found from combined l = 2, l = 3 projections
at Re = 40 (dotted lines). The laminar dissipation value Dl = Re/(2n2). Four periodic orbits are highlighted
in colour: blue T = 5.571; orange T = 7.642; red T = 4.216; and green T = 7.231. (b) Spanwise vorticity at
points equispaced in time for the four highlighted UPOs, with �t = T/4 and starting at the point indicated by
the relevant marker in the left panel.

in the context of simpler dynamical systems (the Kuramoto–Sivashinsky equation), and
further support for this picture is provided within the l = 3 solutions explicitly shown
in figure 13 themselves. In particular, the third solution (highlighted by the red square)
is itself multiscale: in the top half of the domain there is large l = 1 dipole structure,
whereas the lower half of the domain is made up of a triply periodic (three copies of
the same pattern) train of vortices. The l = 1 dipole propagates from the right to left,
whereas the train of vortices moves in the other direction, the advection being driven
primarily by a pair of opposite-signed, high-amplitude vortex sheets. Visually, the result
looks like the superposition of a pair of counter-propagating travelling waves, with some
small time-dependent motion in the vortex sheets.

The time series examined in figure 9 indicated that bursts at Re = 40 tend to be
associated with both l = 2 and l = 3 together. We therefore performed an additional search
using a combination of both subspaces together, with guesses generated via

ωg = D(P0(E (ω)) + [P2(E (ω)) + P3(E (ω)) + c.c.]), (4.5)

when both β2(ω) and β3(ω) (3.14) were more than two standard deviations above the mean.
This further search revealed another 45 solutions (of which only three were symmetric
under half-domain shifts). These solutions are summarised in figure 14, and tend to
overlap the high-dissipation region of the turbulent PDF more than the l = 2 and l = 3
guesses alone. Altogether, the combination of latent recurrent flow analysis and the hunt
for bursting solutions has produced >200 unique UPOs.

A similar search was conducted at Re = 100, resulting in 12 unique high-dissipation
UPOs from latent wavenumber l = 2 and one from an l = 2 and l = 3 combination
(no solutions were found using the l = 3 projections). Two-dimensional projections of
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Figure 15. (a) Production/dissipation PDF of a long turbulent trajectory (contour levels spaced logarithmically
with a minimum value 10−6), with all 13 bursting periodic orbits found from l = 2 projections at Re = 100
(dotted lines). The laminar dissipation value Dl = Re/(2n2). Four periodic orbits are highlighted in colour:
blue T = 1.062; green T = 1.684; orange T = 2.901; and red T = 4.499. (b) Spanwise vorticity at points
equispaced in time for the four highlighted UPOs, with �t = T/5 and starting at the point indicated by the
relevant marker in the left panel.

all 13 of these UPOs are shown in figure 15 overlayed on the turbulent PDF. A larger
proportion of these solutions (9 of the 13) retain symmetry under half-domain shifts. The
most striking departure from the equivalent results at Re = 40 is that all the converged
UPOs have moved away from the (projection of) the attractor: the dissipation values for
the UPOs are much higher than those typically observed on a turbulent orbit; the same
behaviour as observed with l = 3 at Re = 40. The reason for is also the same: we rarely
observe dominant l = 2 structure in realistic turbulent snapshots at Re = 100; for instance,
note in figure 9 the continuing importance of the l = 1 structures in the high-dissipation
events. Instead, the increased importance of l = 2 modes coincides with the appearance of
smaller-scale, spatially localised flow structures.

The snapshots from some of the Re = 100 UPOs shown in figure 15(a) all feature
structures that are observed locally in turbulent snapshots, but all have a fundamental
streamwise wavelength (or at least nearly) of λ = π. In contrast to the Re = 40 structures
reported in figure 12, the vortices in the Re = 100 UPOs tend to be larger in scale, some
occupying ∼1/4 of the full domain, whereas the lower-Re solutions still show the signature
of the forcing in the vorticity equations. The dipoles seen at Re = 40 are also largely absent
in the Re = 100 UPOs, which tend to be quasi-static crystals, or feature co-rotating pairs of
vortices. The highest-dissipation state features a large band of vorticity which advects the
other structures and is visually similar to the highest-dissipation structure seen at Re = 40
in figure 12, though whether these are states from the same solution branch has not been
explored.
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Figure 16. Snapshots of vorticity spaced every T/5 for the l = 1 UPO found at Re = 400. The period is
T = 0.4826, and there is a small shift s = 0.0174.

4.3. Condensate UPO at Re = 400
At the highest Reynolds number, Re = 400, even the high-dissipation events are dominated
by l = 1 patterns (see figure 9), consistent with the flow spending much of its time in a
state dominated by a pair of opposite signed, large-scale vortices. We therefore do not
attempt to find small-scale UPOs here, but instead take random snapshots and project onto
l = 1 (as described in 4.4) as initial guesses in the Newton solver. As expected, the success
rate of this approach is very low, though we do find one UPO many times. This structure
is shown in figure 16 and consists of a large, near-stationary pair of vortices with an
undulating vortex sheet between them. This structure is reminiscent of the ‘unimodal’ state
discussed in Kim & Okamoto (2010) who speculated that regardless of the forcing, such a
universal solution always exists at high enough Re in two dimensions. It is also, of course,
consistent with the inverse cascade theory of two-dimensional turbulence (e.g. Kraichnan
& Montgomery 1980). The universal nature of the flow state suggests that it is converging
to an Euler solution as Re → ∞. This would mean, for example, that the single-vortex-pair
state becomes unpinned to the discrete translational symmetry in y of the forcing function
and so could drift around in both directions, i.e. there could be travelling wave states.
This type of solution has been seen recently in Zhigunov & Grigoriev (2023) albeit at
much higher Re (= 105) and a smaller-wavelength forcing which oscillates in both spatial
directions.

5. Conclusion

In this study we have built deep convolutional autoencoders to construct low-dimensional
representations of Kolmogorov flow for a range of Reynolds numbers, 40 ≤ Re ≤ 400.
Our architecture and training protocol were motivated by both (i) a continuous symmetry
in the flow and (ii) a desire to maintain accuracy in the embedding even at high-dissipation
values. The resulting models were able to accurately reconstruct the original vorticity
fields over all dissipation rates, even at the highest Re = 400. We then applied latent
Fourier analysis to our trained networks to demonstrate that the learned embeddings are
based on a set of patterns associated with a small number of latent wavenumbers.

The latent representations of the turbulence were examined with dimensionality
reduction techniques to reveal a single class of high-dissipation event at Re = 40, which
is sufficiently different from the low-dissipation dynamics such that it appears ‘detached’
in low-dimensional visualisations. The Re = 40 bursts coincide with a much-weakened
projection onto the latent wavenumber l = 1 and the emergence of small-scale vortices
associated with l = 2 and l = 3. At Re = 100, the same approach revealed that the high-
and low-dissipation dynamics are no longer distinct and can be smoothly interpolated
between in the latent space. High-dissipation bursts have a length scale commensurate
with the domain size and show amplification in projections onto all l ∈ {1, 2, 3}.
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Finally, the highest Re = 400 is completely dominated by a domain filling vortex pair,
even during high dissipation bursts.

We then used the latent representations of turbulent trajectories to generate guesses for
UPOs, initially by improving on a traditional recurrent flow analysis as Re = 40, but also
by using individual latent wavenumbers to generate guesses for high-dissipation solutions.
We found very large numbers of high-dissipation periodic orbits at Re = 40 using both
l = 2 and l = 3 (and their combination together) patterns as starting guesses. With the
inclusion of l = 2 the solutions appear to be close to high dissipation events in the full
turbulence, whereas l = 3 alone produced UPOs which are clearly off-attractor. This was
also found with the high-dissipation, doubly periodic UPOs converged at Re = 100, and is
consistent with the bursting events there showing evidence of large-scale structure (l = 1)
in the latent projections. The outstanding question for future work is whether these UPOs
still play some role in the dynamics, either as extremely rare excursions or perhaps realised
locally in the flow in larger domains alongside other structures.

The results emphasise the utility of low-order representations learned using large neural
networks in understanding complex spatiotemporal dynamics. A decomposition into latent
Fourier modes is not only a useful interpretability tool for exactly what the learnt basis
represents, but is also a powerful technique for isolating small-scale exact solutions which
capture dynamical events observed locally in the full turbulence. With this picture, the
challenge now is to find solutions which are themselves multiscale, or to understand the
‘rules’ by which smaller-scale UPOs can coexist alongside larger-scale events.
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Appendix A. Network architecture and training

The changes in architecture relative to the simple feed-forward networks constructed in
Page et al. (2021) can be summarised as follows.

(i) Replacing single convolutional layers with ‘dense blocks’ (Huang et al. 2017).
(ii) Placing batch normalisation layers between convolutions (Ioffe & Szegedy 2015).

(iii) Using pure convolutions throughout without switching to fully connected blocks.
(iv) Using ‘GELU’ activation functions throughout the network (Hendrycks & Gimpel

2016), apart from the final (output) layer where tanh is preferred.

Dense blocks (Huang et al. 2017, 2019) are groups of convolutional layers where the
output of each convolution operation is concatenated with its input, so the number of
feature maps after the convolution and concatenation is the sum of the feature maps in the
input upstream and those of the convolutional layer. Thus, if the input to the convolution
is an ‘image’ u, which has shape (Nx, Ny, Nc1), where Nc1 is the number of channels,
and the convolution operation produces an ‘image’ v with shape (Nx, Ny, Nc2), then
after concatenation we have an image of shape (Nx, Ny, Nc1 + Nc2). We apply ‘periodic’
padding to our images so that the discrete convolutions produce output with the same shape
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as the input. Our dense blocks always consist of three convolutional layers, where each
convolutional layer adds 32 channels to the output. Thus, if the input to the dense block
has shape (Nx, Ny, Nc), the output has shape (Nx, Ny, Nc + 3 × 32). After the dense block
we apply another convolutional operation to reduce the number of channels, typically to
32 (exact architecture is summarised below).

The ‘GELU’ activation function (Hendrycks & Gimpel 2016) was designed to overcome
some known problems with the more widely used ‘ReLU’ activation function, particularly
the occurrence of dead neurons within an architecture which are common in deep
networks. This is done by removing the hard zero for negative inputs to the activation.
The GELU activation is defined as

GELU(x) := xΦ(x), (A1)

where Φ(x) = P(X ≤ x), with X ∼ N(0, 1) is the cumulative distribution function for
the standard normal distribution. The alternative activation tanh(x) is used at the final
output layer for a symmetric output that can match the normalised input to the network
ω(x, y)/ωnorm ∈ [−1, 1].

Our encoding architecture then consists of a repeated sequence of (i) convolution,
(ii) dense block, (iii) max pooling, until the final encoding layer where an additional
convolution is used to produce an ‘image’ of shape (4, 8, M), where 1 ≤ M ≤ 32 is a
specified number of feature maps. The final streamwise dimension (4) is selected in
an attempt to minimise the maximum latent wavenumber required (i.e. to compress the
input into large-scale patterns), whereas we retain eight cells in the vertical to match the
shift-reflect symmetry in the system.

Overall, the network operations in the encoder can be summarised as follows:

ω → PC(8 × 8, 64) → DB(8 × 8) → MP(2, 2)

→ PC(4 × 4, 32) → DB(4 × 4) → MP(2, 2)

→ PC(4 × 4, 32) → DB(4 × 4) → MP(2, 2)

→ PC(2 × 2, 32) → DB(2 × 2) → MP(2, 2)

→ PC(2 × 2, 32) → DB(2 × 2) → MP(2, 1)

→ PC(2 × 2, 32) → DB(2 × 2) → PC(2 × 2, M) ≡ E (ω), (A2)

where the terms in brackets represent the size of the convolutional filters, followed by the
number of feature maps, ‘PC’ standards for a ‘periodic convolution’ (periodic padding on
the image), ‘DB’ for the dense block described above and ‘MP’ stands for ‘max pooling’
with the cell size given in brackets. The input vorticity is a single-channel image of size
128 × 128. The structure of the decoder is essentially the encoder described previously,
reversed (upsampling layers replace max pooling, and the final output layer has a single
feature map).

We tried many iterations of the architecture, including using fully connected layers near
the encoding E and using pure feed-forward networks. Generally dropping either the pure
fully convolutional aspects or removing the dense blocks reduced performance, with an
increase of roughly an order of magnitude in the loss function.

When training we found the results to be highly sensitive to the learning rate in the Adam
optimiser (Kingma & Ba 2015). Values of η ∈ {10−5, 10−4, 3 × 10−4, 5 × 10−4, 10−3}
were tried and η = 5 × 10−4 was universally the best performing choice across all values
of Re and encoding dimensions.

We trained each network for 500 epochs, training three identical architectures for most
Re and m and selecting the best performing (in terms of training loss). A batch size of 64
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Figure 17. Singular values associated with each latent wavenumber 0 ≤ l ≤ 3 (left to right) for each
network–Re pair considered in detail. From top to bottom: (Re, m) = (40, 128); (Re, m) = (100, 512),
(Re, m) = (400, 1024).

was used throughout. Overfitting was observed in around 1/3 of cases, and we used early
stopping based on the validation loss to extract the ‘best’ weights from within the training
process.

Appendix B. Singular values within latent subspaces

We include here in figure 17 the singular values within each latent eigenspace 0 ≤ l ≤ 3
for the network–Re pairs considered in detail in this paper. These figures also indicate the
approximate size of each degenerate eigenspace via the maximum value of the index n on
each horizontal axis.
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orbits form the backbone of turbulent pipe flow. J. Fluid Mech. 833, 274–301.

CHANDLER, G.J. & KERSWELL, R.R. 2013 Invariant recurrent solutions embedded in a turbulent
two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554–595.

CROWLEY, C.J., PUGHE-SANFORD, J.L., TOLER, W., KRYGIER, M.C., GRIGORIEV, R.O. & SCHATZ,
M.F. 2022 Turbulence tracks recurrent solutions. Proc. Natl Acad. Sci. 119, e2120665119.
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