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Abstract
The item count technique (ICT-MLE) regression model for survey list experiments depends on assumptions

about responses at the extremes (choosing no or all items on the list). Existing list experiment best

practices aim to minimize strategic misrepresentation in ways that virtually guarantee that a tiny number of

respondents appear in the extrema. Under such conditions both the “no liars” identification assumption and

the computational strategy used to estimate the ICT-MLE become difficult to sustain. I report the results of

MonteCarlo experiments examining the sensitivity of the ICT-MLEand simpledifference-in-meansestimators

to survey design choices and small amounts of non-strategic respondent error. I show that, compared to the

difference inmeans, the performance of the ICT-MLE depends on list design. Both estimators are sensitive to

measurement error, but the problems aremore severe for the ICT-MLE as a direct consequence of the no liars

assumption. These problems become extreme as the number of treatment-group respondents choosing all

the items on the list decreases. I document that such problems can arise in real-world applications, provide

guidance for applied work, and suggest directions for further research.

Keywords: survey experiments, survey design, measurement error, maximum likelihood, misreporting,

misspecification

With the advent of cheap and reliable Internet surveys, indirect questioningmethods for sensitive

topics are easier and cheaper to deploy than ever.1 The survey list experiment is among the most

commonly used of these tools. Along with increased interest in list experiments have come new

design procedures and statistical estimators for list experiment data (Corstange 2009; Imai 2011;

Blair and Imai 2012; Glynn 2013; Tian et al. 2017; Aronow et al. 2015; Liu et al. 2017). The item count

technique regression models, particularly the maximum likelihood estimator (ICT-MLE), is the

statistical innovation that has justifiably received the most attention (Imai 2011).2 This estimator

aims to tell us more about the relationships between covariates and the sensitive behavior than

traditional difference-in-means analysis (DiM). To achieve this the ICT-MLE leans on data in the

extremesof the responsedistribution for the treatmentgroup (answering0orgiving themaximum

number of items on the list). Consequently the ICT-MLE requires strong assumptions about the

truthfulness of respondents’ answers—Imai’s “no liars” identification assumption—in a situation

where we already doubt respondents’ willingness to reveal their status.

This paper interrogates this key assumption in conjunction with current list experiment design

best practices. I argue that following current list experiment design best practices aimed at

minimizing strategic misrepresentation implies that there will be a tiny number of responses

in the extremes of the response distribution. The small numbers involved combined with the

expectation that respondents want to avoid revealing their status on the sensitive item imply

Author’s note: See Ahlquist (2017) for the replication archive. Versions of this paperwere presented at the 2014 PolMeth and

Midwest Political Science Association meetings as well the UW-Madison Models and Data group and colloquia at UC San

Diego and the University of Washington Center for Statistics and the Social Sciences. I thank Graeme Blair, Scott Gehlbach,

Kosuke Imai, Simon Jackman, Tom Pepinsky, Margaret Roberts, Michael D. Ward, Yiqing Xu and, Alex Tahk for helpful

conversations.

1 See Blair, Imai, and Lyall (2014), Rosenfeld, Imai, and Shapiro (2015) for recent discussions and comparisons across several

methods of indirect questioning.

2 Imai (2011) also proposes nonlinear least squares estimator in addition to the MLE. The MLE has been the more widely

used in applied work and forms the basis for several extensions (e.g., Eady 2017). I defer evaluation of the NLS estimator

for future work.
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that these few responses are particularly likely to have resulted from non-strategicmeasurement

error, something completely ignored in the existing literature. The ICT-MLE, by construction, will

be sensitive to small samples and thereforemeasurement or respondent error, especially when it

appears in the extremes.

I recapitulate how assumptions regarding respondent accuracy are critical to the performance

of the ICT-MLE. The DiM estimator requires weaker assumptions for unbiasedness and is not

directly affected by the number of responses in the extremes. I present results from a series of

Monte Carlo experiments comparing the performance of ICT-MLE to simple difference-in-means

analysis. Unlike earlier Monte Carlo studies (Blair and Imai 2012), the simulations reported here

incorporatedesignbestpractices.When list designadvice is followed, the ICT-MLEperformspoorly

even in the absence of measurement error due to its reliance on a tiny number of responses

in the extremes. I then introduce non-strategic measurement error. These Monte Carlo results

lead to further conclusions: (1) while respondent error induces bias in both the difference-in-

means and ICT-ML estimators, the ICT-ML estimator is more sensitive, especially when this error

appears in the topof the responsedistribution; (2) theproblems respondent error inducesbecome

more severe as the number of truthful respondents in the extrema of the response distribution

among the treated declines. This can result from either low prevalence of the sensitive item in the

population or following survey design best practices. I then demonstrate that respondent error

and estimator bias aremore than just hypothetical concerns; they can arise at non-trivial levels in

real applications that pass existing statistical tests for strategic misrepresentation. I conclude by

highlightingpotential solutions thatwill notworkandsuggestingpossible strategies formitigating

these problems andmaking research design trade-offs.

1 Extracting Information from List Experiments
List experiments have costs relative to direct questioning: they are harder to administer, they are

a less efficient use of the sample, and they may be confusing or off-putting to some respondents.

A researcher would therefore resort to indirect questioning only when she has reason to believe

that:

(1) For the sensitive topic there are respondentswhodo notwant their answers to be traceable

to them individually, even if survey data are reported as anonymous and even if the only

person with any knowledge of the individual response is a survey enumerator.

(2) For the sensitive topic, at least some of the reticent respondents do harbor some latent

desire to answer truthfully and would do so given additional privacy protection.

However, list experiments do not automatically solve the problems that motivate their use.

Respondents in two situations remain compromised: (i) those in the treatment group who

would answer affirmatively to all of the baseline items and the sensitive item and (ii) those in

the treatment group who answer negatively to all the baseline items and the sensitive item.

These respondents are still forced to choose between either truthfully revealing their status

or strategically misrepresenting their answers. To the extent these situations are present and

respondents dissemble the list experiment is said to exhibit ceiling effects (i) and floor effects (ii).

Ceiling and floor effects canbe viewedas strategicmeasurement error inwhich some respondents

who should appear in the extreme categories chose not to report those privacy-leaking values.

1.1 Difference-in-means estimator
Simple differences inmeans is the traditional analysis tool for list experiments. Formally, suppose

wehave a randomsample ofN respondents fromsomepopulation. Samplemembers are indexed

by i . Respondents confront a standard design list experiment in which there are J control items.

The indicator Ti denotes whether i sees the list with just J items (Ti = 0) or sees the list

with J control items and the additional sensitive item. Let Ci1(t ), . . . ,Ci J (t ) denote i ’s latent
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response to each control item as a function of whether the respondent sees the J -item (Ti = 0)

or (J + 1)-item list (Ti = 1); Cij (t ) = 1 implies an affirmative latent response to control item

j under treatment condition t . Let Zi (1) denote i ’s latent response to the sensitive item under

the treatment condition and let Z ∗i denote i ’s truthful response to the sensitive item. Potential
outcomes,Yi (t ), are defined as

Yi (1) = Zi (1) +
J∑

j=1

Cij (1) (1)

Yi (0) =
J∑

j=1

Cij (0). (2)

Observed data are simplyYi (Ti ).

Thequantity of ultimate interest is thepopulationprevalenceof the sensitive item, i.e., Pr(Z ∗i =

1) ≡ πZ ∗ . Secondary quantities of interest may include parameters, θ, that describe Pr(Z
∗
i = 1 �

Xi ; θ). The difference-in-means estimator of πZ ∗ , henceforth DiM, is simply

τ̂ =
1

N1

N∑

i=1

TiYi − 1

N − N1

N∑

i=1

(1 −Ti )Yi (3)

where N1 is the number of respondents in the treatment condition.

It is straightforward to show that OLS regression of Y on T is equivalent to DiM estimation.

Importantly, we can also show that theDiMestimator is unbiased forπZ ∗ underweaker conditions

than those stated below. If we allow for measurement error, ei , such thatYi = Y ∗i + ei , then the

DiM estimator becomes

Y ∗i = α + τTi + εi

εi = ei + εi
(4)

where ε represents randomsampling variation inYi . From this expression, it is clear to see that τ̂ is

an unbiased estimator ofπZ ∗ so long as Cov(Ti , εi ) = 0. The randomassignment ofTi achieves this

so long as measurement error is uncorrelated withTi . The DiM estimator only requires two sums;

measurement error can occur anywhere in the sum so long as the error is expected to even out

across treatment and control groups. Furthermore, the amount of bias in τ̂ is directly determined

by the magnitude of ei and the extent to which it is correlated withTi .

1.2 The ICT-MLmodel
Glynn (2013) invokes stronger assumptions in order to characterize the joint distribution of

(Yi (0), Z
∗
i ) and identify “joint proportions.” Employing similar logic Imai (2011) goes on to develop

a maximum likelihood estimator for the joint distribution (Yi (0), Zi (t )). The ICT-MLE allows for

the inclusion of covariate information and produces individual-level predicted probabilities that

a respondent possesses the sensitive attribute. To achieve this the ICT-MLE relies on three

identification assumptions:

• Randomization:Ti ⊥ {Zi (1),Cij (1),Cij (0)} �i .

• No design effects:
∑J

j=1 Cij (0) =
∑J

j=1 Cij (1) �i .

• No liars: Z ∗i = Zi (1) �i .

Note that the no design effects and no liars assumptions jointly imply no measurement error

correlated with treatment at the individual level and that any measurement error that does exist

occurs only among the control items.

Define J (t , y ) as the set of respondents with values (Ti ,Yi ) = (t , y ). To derive the likelihood

Imai (2011) specified g (x, δ) = Pr(Zi (1) = 1 � Xi = x) and hz (y ; x,ψz) = Pr(Yi (0) = y � Xi =

x, Zi (1) = z ), where x represents a vector of covariates with parameters δ,ψz. The various
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combinations of g (·) and hz (·) define the components of the likelihood. The no liars assumption
directly determines which observations appear in various parts of the composite likelihood. For

example, g (x, δ)h1(J ; x,ψ 1) describes the contribution to the likelihood of a treatment-group

respondentwhoanswered “J+1.” Similarly, theJ (1, 0) respondents appear in theh0(0; x,ψ0)(1−
g (x, δ)) term of the likelihood. As a result the no liars assumption affects the composition of the

J (1, y ) for the remainder of the likelihood.
The computational strategy pursued in Blair and Imai (2010, 2012), Imai (2011), Imai, Park, and

Greene (2015) involves treating the Zi (1) as partially missing data and then deriving a complete

data likelihood that can be maximized via the EM algorithm. The “observed” Zi (1) are those

observations in J (1, 0) ∪ J (1, J + 1). The no liars assumptions require that we believe that these

observations contain no error.

1.3 Strategic and non-strategic respondent error
The no liars assumption is critical for our ability to extract more information from list experiment

data. Scholars using list experiments are sensitive to the assumption about truthfulness in

responses at the extremes, as our discussion of ceiling and floor effects shows. Survey design

best practices have long recognized the potential for list experiments to “leak” privacy due to

such strategic behavior. Ceiling effects imply a downward bias in π̂Z ∗ , regardless of the estimator.

With this in mind, Kuklinski, Cobb, and Gilens (1997) argue that an appropriately designed list

experiment will aggressively seek to minimize the number of respondents forced to choose

between answering truthfully and revealing their sensitive status. They recommend including an

itemon the control list common in thepopulation (to get off the floor) aswell as an item that is rare

(to avoid bumping into the ceiling). Glynn (2013) urges applied researchers to identify negatively

correlated control items with non-trivial population rates to achieve a list that avoids ceiling and

floor effects while also minimizing the variance of the difference-in-means estimator. Blair and

Imai (2012) reiterate all this advice.

Considerable effort has also gone into diagnosing and modeling possible strategic misrepre-

sentation. Chaudhuri and Christofides (2007), Blair and Imai (2012), Glynn (2013), Aronow et al.

(2015) develop diagnostic tests and modeling extensions for floor and ceiling effects. Kuha and

Jackson (2014) extend and improve the ICT-MLE algorithm and variance estimation. Eady (2017)

extends the ICT-MLE (relying on the same identifying assumptions) to explicitlymodelwho ismost

likely dissembling.

Without detracting from the work on ceiling/floor effects, it is worth highlighting that almost

all work aimed at testing and relaxing ICT assumptions has focused on strategic behavior by

respondents, ignoring the implications of arguably more common non-strategic measurement

error due to the usual problems of miscoding by administrators or enumerators as well

as respondents misunderstanding or rushing through surveys. The presence or absence of

ceiling/floor effects tells us nothing about whether non-strategic error is also a serious concern.

More importantly, existing model-based fixes for ceiling and floor effects treat respondent error

in an entirely asymmetric fashion: we worry that respondents strategically choose not to reveal

an extreme value, generating erroneous values in other parts of the response distribution; yet we

simultaneouslymaintain theassumption that all theobserved responses in theextremecategories

are error-free observations. Gingerich et al. (2016) go so far as to call this assumption “one-sided

lying.”

In short, the ICT-MLE relies on the assumption that we can treat observed survey responses in

the extremes of the treatment-group distribution as completely truthful. But this assumption flies

in the face of the concerns about respondent privacy and truthfulness that motivate the use of

indirect questioning in the first place. Moreover, the parts of the response distribution needed to

identify andestimate the ICT-MLmodel canbeprone to small sample sizes. Current list experiment

best practice involves taking steps to activelyminimize the number of respondents that appear in
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exactly the cells required to identify and estimate the ICT-MLE. Both design objectives and the

applied context for list experiments work against the no liars assumption. Existing Monte Carlo

evidence supporting the ICT-MLE does not incorporate either of these challenges.

1.4 Non-strategic error and consequences
It is uncontroversial to assert that measurement error is endemic in surveys. The real question

surrounds the type of error and consequences for various estimators. Let us consider some

hypothetical processes giving rise to non-strategic measurement error. One possibility is uniform

error: a process by which a respondent’s truthful response is replaced by a random uniform

draw from the possible answers available to her, which in turn depends on her treatment status.

Uniform error will be correlated with the treatment status in the list experiment for the same

reason thatweexpectheteroskedasticity in theDiMestimator: respondents in the treatmentgroup

have one more value (J + 1) in which to erroneously respond. We should therefore expect that

uniform error induces bias and inconsistency in the DiM estimator resulting in an overestimate of

πZ ∗ . The degree of bias will depend, obviously, on the rate of error. Perhaps less obviously the

longer the list the lower the correlation between treatment indicator and uniform respondent

error. As J → ∞ the bias problem disappears at the cost of increasing variance in the estimator.3

The ICT-MLEwill also be inconsistent under uniform error because the distributional assumptions

are incorrect. Uniform error will result in more values in higher categories, on average, under

treatment so the ICT-MLEwill also overestimateπZ ∗ . Uniformerror should be relatively innocuous

compared to other types of error, however, because only 2
J+1 of the erroneous responses in the

treatment group will be treated as true observed values of Z ∗ under the no liars assumption.
Many other error processes are obviously possible. For our purposes here we will focus on

“top-biased error,” a process by which the respondent’s truthful response is randomly replaced

with the maximum value available to her. I emphasize top-biased error not because there is any

reason to believe that it is prevalent in applied situations but rather because top-biased error is

likely to be the most problematic for both the DiM and ICT-ML estimators.4 It is correlated with

treatment, by construction, and this relationship will not weaken as the list length grows. Errors

in J (1, J + 1) will present serious problems for the ICT-MLE as the observed “J + 1” responses

are all treated as truthful. Top-biased error should lead to severe overprediction of πZ ∗ for both

estimators but I conjecture that the ICT-MLE will perform worse.

This simple discussion has two important implications that inform the Monte Carlo

experiments below. First, whatever problems non-strategic error induces will be exacerbated

as the number of responses in the extremes of the treatment-group distribution decreases. Very

small samples in these extreme cells can occur either because the population prevalence of the

sensitive item is loworbecause the survey iswell designedand few respondents actually fell in the

extremes of the distribution. Since error is correlated with treatment, a decline in the underlying

prevalence of the sensitive item implies that the observed difference between treatment and

control will be increasingly driven by measurement error. For the ICT-MLE, a lower underlying

frequencyof the sensitiveattribute implies therewill be fewer truthful responders in theJ (1, J+1)
set. In the limit this set is composed entirely of noise.

Second, the greater efficiency of the ICT-MLE under its assumptions, especially if covariate

information is brought to bear, will generate relatively tight standard errors around a biased

3 To see the intuition here, let ei0 ∼ U [0, J ] and ei1 ∼ U [0, J +1]be the discrete, uniformmeasurement error for the baseline

and treatment groups, respectively. We then getYi = α + τTi + ei1Ti + ei0(1 −Ti ) + εi . As J → ∞ E[e1 − e0] → 0 which
implies that Cov(Ti , ei )→ 0.

4 If we were to somehow correctly assume a particular error process then it might bemodeled. Correctly assuming an error

process seems very unlikely and any real population would almost surely exhibit a mixture of error processes, all invisible

to the researcher. Trying to address non-strategic error bymakingmore and stronger assumptions seems like a high-cost,

low-return strategy.
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Table 1. Expected number of respondents in J (1, J + 1) under the different list scenarios for N = 1, 000,
equal probability of treatment assignment, and no error.

Blair–Imai Designed

πZ ∗ J = 3 J = 4 J = 3 J = 4

High 38.9 11.5 4.7 4.0

Mid 16.8 5.0 2.0 1.7

Low 7.5 2.2 0.9 0.8

estimate ifmeasurement error is a problem. TheDiM estimatormay be biased but it is also noisier.

The ICT-MLE, on the other hand, will not generate inflated standard errors under its maintained

assumptions raising the risks of Type-I error. Again such problems will be exacerbated when

sample sizes in the extrema are small.

2 Monte Carlo Experiments

I conduct a series ofMonteCarlo experiments to better describe how theDiMand ICT-MLE respond

to list experiment design, sensitive item prevalence, and respondent error. The Monte Carlo

simulations represent a 3 × 2 × 2 × 2 design in which I vary the prevalence of the sensitive item

(low, medium, and high), the length of the list (J ∈ {3, 4}), the design of the control-item list, and

the presence of top-biased error. In supplementary materials I also vary the size of the sample.5

I investigate three different levels of prevalence for the sensitive item. Under each scenario a

“respondent,” i , possesses the sensitive attribute with probability given by

Pr(Z k
i = 1) = logit−1(b0 + bk1 xi ), k ∈ {L,M ,H }. (5)

The only covariate is X ∼ U [0, 1]. Following the Monte Carlo simulations in Blair and Imai (2012)

I fix b0 = 0 and bH1 = 1. I set bM
1 = −2 and bL1 = −4, implying that the underlying population

prevalences are πL
Z ∗ ≈ 0.12, πM

Z ∗ ≈ 0.27, and πH
Z ∗ ≈ 0.62.

In manipulating the list design I investigate two different sets of list structures. The first set

of lists generates control items following protocols Blair and Imai (2012) borrow from Corstange

(2009). In these lists all control items are independent. In the second set—referred to as the

“designed” lists—I construct the control-item lists to conform to current recommendations for

avoiding strategic misrepresentation. There are high- and low-prevalence control items; in the

J = 4 list there is also negative correlation between two of the control items; further details are in

the supplementary materials and related R code.
For each of the 2000 Monte Carlo runs I generate a sample of N = 1, 000 “respondents.”6 With

equal probability I randomly assign each of the respondents to be in the treatment group or the

control group, denoted by binary variableTi . For each of the respondents we then calculate the

error-free observed outcome for k ∈ {L,M ,H }. This value represents the data we would hope

to observe in list experiments satisfying Imai’s three basic identification assumptions with no

measurement error but under different structures of the control lists and different population

frequencies for the sensitive item. Table 1 displays thenumberof respondentsweexpect to appear

in J (1, J + 1) under the two list constructions. Designed lists sharply reduce the number of

respondents in the top category relative to the Blair–Imai construction.

5 All data and code as well as the output and logs of the actual Monte Carlo simulations are available on the dataverse

repository associated with this article (Ahlquist 2017).

6 1,000 respondents is a common sample size for list experiments. Rosenfeld et al. (2015) use N = 1, 352 to evaluate list
experiments in their validation study. I also ran the same experiments with N = 2, 000. Increasing the sample size has no
material consequences for the conclusions generated here. Details are reported in the supplementary materials.
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I then introduce “top-biased” error by randomly selecting 3%of respondents. For each selected

respondent, ifTi = 0we replace y k
i with J . IfTi = 1wedo the same thingonlywith a J+1. Note that

whilemeasurement error induces a violation of the no liars assumption, it still leaves us with data

that satisfy the randomization and no design effects assumptions. Thus we can view this study as

examining the estimators’ sensitivity to violations of the no liars condition.

Within each Monte Carlo iteration we fit two models to both the data with and without error.

The first model is the ICT-MLE. Following Blair and Imai (2012) I estimate the default double-

binomial ICT-MLE and constrain h0(x,ψ0) = h1(x,ψ1) with X as covariate. The second is the DiM,

calculated as the OLS regression ofYk on the treatment indicator with no covariate. I calculate

heteroskedasticity-corrected standard errors for the OLS regression.

Beyond concerns with respondent error the Monte Carlo experiments here differ from existing

simulation studies of the ICT-MLE in two ways. First, Blair and Imai (2012), following Corstange

(2009), did not vary the prevalence of the sensitive item. They only considered what we are

calling the “high-prevalence” condition here. Second, the Blair–Imai study (again, following

Corstange (2009)) didnot incorporate list experimentdesignpracticesmeant tominimize strategic

misrepresentation. These two differences have consequences for the number of respondents in

the extreme cells of the distribution, explaining whymy error-free results differ from theirs.

I evaluate the simulations on the following dimensions:

• computational stability;

• bias, variance, and coverage in covariate parameter estimates among the ICT-MLE;

• bias, variance, and coverage in the population prevalence estimate for the sensitive item, from

the ICT-MLE and DiM.

2.1 Results

2.1.1 Computational stability
We first consider the computational stability of the ICT-MLE; the DiM estimator had no

computational difficulties. I define instability as the algorithm exiting with an error.7

Recall that the ICT-MLE uses the EM algorithm to maximize an observed-data likelihood,

treating responses to the sensitive item as partially missing. The observed Zi are derived from

the J (1, 0) and J (1, J + 1) responses. The lower the prevalence of the sensitive item the

correspondingly fewer observed cases of Zi = 1 and the less stable we expect the algorithm to

be. Moreover, inducing error into the system will inflate the number of cases in J (1, J + 1). We

therefore expect the ICT-MLE to be most unstable in the low prevalence, no-error condition with

the designed list.

Among the twelveBlair–Imai lists therewereno stability problems. In those scenarios themean

number ofJ (1, J +1) responses ranged from3.1 (in the J = 4, low-prevalence, no-error list) to 52.5

(in the J = 3, high-prevalence, error list). I only observe 3% of runs with J (1, J + 1) empty–all in

the J = 4, low-prevalence, no-error condition.

Figure 1 displays stability results for the twelve designed list experiments, where we see

different behavior. The ICT-MLE becomes increasingly fragile as the number of responses in

J (1, J + 1) declines. In the low-prevalence J = 4 condition the algorithm failed over 5% of

the time. This rate declines as the number of observations in J (1, J + 1) increases. The figure

also confirms that inducing error has a similar effect on the stability of the algorithm; error at

the top extreme, even at low levels, prevented computational failure almost entirely. This has

some problematic implications: when the list is designed to minimize strategic behavior and

respondents are answering truthfully, the algorithm is less stable; but when there is error the

estimator is more likely to return an answer, but one that can bemisleading (as we shall see).

7 This was typically due to computationally singular matrices during the M-step of EM.
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Figure 1. Percent of Monte Carlo runs in which the ICT-MLE exited with an error as a function of the mean

number of observations in J (1, J + 1). Text indicates the list condition, e.g., 3M refers to the J = 3 list with
mediumprevalence for the sensitive item.Bold-text itemsare from runswith 3% top-biasederror and jittered

for clarity.

2.1.2 Bias, variance, and coverage for regression parameters
I begin with the results for the regression parameter in part because a selling point of the ICT

regression framework is the ability to include covariates. But more importantly the results for

the regression parameter will help interpret ICT-MLE simulation results for population quantities.

Focusing on b1, Figure 2 displays bias (2(a)), root-mean-square error (RMSE; 2(b)), and coverage

results (2(c)) as returned under the Blair–Imai lists. Consistent with the results in Blair and Imai

(2012), the estimator is unbiased at high frequencies for the sensitive item, even with error

included. The J = 3 list is, as expected, lower variance than the J = 4 list. The ICT-MLE under

the J = 4 list starts to degrade at moderate levels of πZ ∗ even without error due to its sensitivity

to small changes in the number of responses in J (1, J + 1). In the low-prevalence condition with

no error the ICT-MLE is unstable, so I do not include bias and RMSE quantities in the plot for this

case.8

Adding the 3% error has the two anticipated effects. First, it stabilizes the ICT-MLE by creating

more (erroneous) observations in the J (1, J + 1) category, mitigating the rare events problem in

the low-prevalencecondition. Second, it inducesbiasatmoderateand, especially, low frequencies

for thesensitive item.The ICT-MLestimate forb1 is sensitive toviolationsof theno liarsassumption

even when the population prevalence is moderate and when the list is not specifically designed

to minimize strategic behavior. The bottom panel displays nominal 90% confidence interval

coverage, further confirming expectations. Not only does a small amount of error induce bias in

the ICT-MLE but it also raises the risk of erroneous inference.

Given the findings for the Blair–Imai list it should come as no surprise that stability and

performance under the designed list is poor. Table 2 summarizes the distributions of the b1

point estimates for each of the designed lists. Only in the high-prevalence situations did the

ICT-MLE produce a stable distribution of estimates and only for the J = 3 list was the estimate

8 ICT-MLE returned point estimates for bL1 between−25, 408 and 14.5 with amean−42 of for J = 4. This compares to a range
of [−2.6, 5] for the J = 3 high-prevalence, no-error case.
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Figure 2. Bias, RMSE, and 90% confidence interval coverage rates in b̂1 for the ICT-MLE applied to the Blair
& Imai style list experiments. Bias and RMSE for the J = 4, low-prevalence, no-error conditions are −38 and
903, respectively. These values are omitted from Figures 2(a) and 2(b) for clarity in presentation.

approximately unbiased. The distance between the median and mean for the remainder gives

some idea as to the instability of the estimates; this gap widens as the number of observations

in the J (1, J + 1) declines. With such instability, concerns about coverage seemmisplaced.

As with the Blair–Imai lists, the introduction of error has the perverse effect of stabilizing the

ICT-MLE for the designed lists as there are more observations in the extreme categories. Figure 3

Table 2. The distributions of point estimates for b1 from the ICT-MLE applied to the “designed” lists with no

error.

List 1st Qu. Median Mean 3rd Qu.

J = 3, high 0.4 1.2 1.2 1.9

J = 3, mid −7.5 −5.7 −28.5 −3.9
J = 3, low −14.0 −9.4 −218.6 −6.5
J = 4, high 0.7 3.1 4.0 6.2

J = 4, mid −8.4 −4.7 −523.9 −2.3
J = 4, low −17.5 −9.4 −622.1 −5.6
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Figure 3.Bias and 90%confidence interval coverage rates in b̂1 for the ICT-MLE applied to the “designed” list
experiments with 3% top-biased error, as a function of list length and the prevalence of the sensitive item.

displays bias (3(a)) and coverage rates (3(b)) for b̂1 from the designed list experiments with 3%

top-biased error. Unfortunately, the computational stabilization comes around biased estimates

of the regression parameter; bias is worst when the sensitive item is rare. Looking at panel 3(b) we

see that the ICT-MLE generates standard errors that are systematically too narrow, dramatically so

in the low-prevalence condition. But while problems are most severe when the sensitive item is

rare, they are not necessarily restricted to such situations. The results for the designed lists show

that the performance of the ICT-MLE depends on decisions about the construction of the control

list items.

2.1.3 Bias, variance, and coverage in population prevalence estimates
In examining the population prevalence estimates we compare DiM and ICT-MLE. Figures 4–6

present bias, RMSE, and 90% confidence interval coverage results, respectively, from the Blair

and Imai-based lists. The solid line represents the ICT-MLE estimations while the broken line is

the simple difference in means.

Figure 4. Bias in π̂Z ∗ for the ICT-MLE (solid) and DiM (broken line) applied to the Blair–Imai style list

experiments as a function of list length, the prevalence of the sensitive item, and presence of 3% top-biased

error.
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Figure 5. RMSE for π̂Z ∗ for the ICT-MLE (solid) and DiM (broken line) applied to the Blair–Imai style list

experiments as a function of list length, the prevalence of the sensitive item, and presence of 3% top-biased

error.

Mirroring the simulation results in Imai (2011), Figure 4 shows that the ICT-MLE and DiM are

both unbiased estimators of πZ ∗ when the population prevalence is high, even in the presence of

measurement error. We do, however, continue to see ICT-MLE instability in the J = 4 list under

no error, unsurprising given the regression parameter instability seen above. As the sensitive item

becomes rarewe see someapparent degradation in both estimators. But the introduction of small

amounts of error causes problems. As expected, both estimators become more biased but the

ICT-MLE suffers more at both the mid- and low-prevalence levels. At low prevalence the ICT-MLE

is overestimating the prevalence of the sensitive item by about 15 percentage points; the DiM

estimator’s bias is less than half as bad.

Similar conclusions obtain from the RMSE results in Figure 5. The ICT-MLE with J = 4 list

shows more variability when there is no error present. But the ICT-MLE is again more sensitive

to measurement error than the DiM estimator. Figure 6 shows concerns with CI coverage and

inference are again borne out when estimating population prevalence. With small amounts of

measurement error the ICT-MLE returns standard error estimates that are too narrow when the

Figure6.90%confidence interval coverage rates for π̂Z ∗ for the ICT-MLE (solid) andDiM (broken line) applied
to the Blair–Imai style list experiments as a function of list length, the prevalence of the sensitive item, and

presence of 3% top-biased error.
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Figure 7. The distribution of point estimates of πZ ∗ from the ICT-ML (black) and difference-in-means (gray)

estimators applied to the “designed” list experiments, as a function of list length (left v. right), the prevalence

of the sensitive item, and presence of 3% top-biased error (solid v. broken lines).

sensitive item occurs at both moderate and low frequencies. The DiM results also degrade but to

a far lesser extent.

Given the findings for the Blair–Imai lists, we should again expect poor performance under the

designed list. Figure 7 presents bias and variance results from the “designed” list experiments in

somewhat different format, reflecting the extreme variability in some of the ICT-MLE results. For

example, in the J = 4 high-prevalence lists without error (black broken lines) we observe πZ ∗

estimates across the entire [0, 1] interval. Even without error the ICT-MLE is giving biased and

variable results under the designed list in all cases. The DiM estimator is stable throughout and

unbiased at high prevalence both with and without error. At moderate prevalence we begin to

see error causing some overestimation under the DiM. At low prevalence we see some bias in the

DiM without error, worsening once error is introduced. For example, in the J = 4 low-prevalence

condition the DiM shows bias of about 0.05without error, worsening to 0.07with error. In all cases

the introduction of error increases the variability of the DiM, as we would expect.

Asbefore, addingerrorhas theperverseeffectof stabilizing the ICT-MLE, reducingbothbias and

variance in the low- and medium-prevalence cases for both J = 3 and J = 4. The consequences

of the fact that under the no-error condition the number of runs with few (or no) observations

in J (1, J + 1) pulled the ICT-MLE toward a population estimate of 0. Adding error reduces those

problems in thehigh- andmoderate-prevalencecases,with theapparent reduction inbias. But the

samemechanism has the opposite effect as low prevalence: a significant downward bias without

error becomes a significant upward bias with error. This ismost clear in the J = 4 conditionwhere

the ICT-MLE significantly underestimates πZ ∗ on average but, once error is introduced, we see a

significant overestimate.
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Figure 8. 90% confidence interval coverage rates for π̂Z ∗ from the ICT-ML (black) and difference-in-means

(gray) estimators applied to the “designed” list experiments, as a function of list length, the prevalence of

the sensitive item, and presence of 3% top-biased error (left v. right).

For completeness, Figure 8 displays coverage rates for nominal 90% confidence intervals for

π̂Z ∗ . Bothwith andwithout error theDiM estimator is stable andperforming exactly as it did under

the Blair–Imai lists. The ICT-MLE is unstable and has potential to yieldmisleading estimates under

the designed lists regardless of whether we include error.

The Monte Carlo simulations demonstrate that the performance of the ICT-MLE is sensitive

to the design of the underlying control-item lists in ways that the DiM estimator is not. Both

estimators are sensitive to rare sensitive items and error, but the ICT-MLEmore so.

3 An Example

To demonstrate that this problem of small samples in the extremes, respondent error, and

estimator bias is more than theoretical, I rely on the list experiments reported in Ahlquist, Mayer,

and Jackman (2014), henceforth AMJ. AMJ use a YouGov Internet panel to ask questions about

voter impersonation in the 2012 US election. AMJ find no evidence for substantial rates of voter

impersonation but there are some anomalies. First, the DiM estimates and ICT-MLE estimates

differ noticeably, with the ICT-MLE showing point estimates substantially larger than those using

the simple mean comparison procedure. Second, some of the respondents (about 2.5% of the

treatment sample, twelve individuals) in the voter impersonation question claimed themaximum

number of items (five). If we maintain the no liars assumption then these twelve respondents are

admitting to voter impersonation (in addition to a variety of other things). One could therefore

construe this 2.5% as a lower bound estimate for the rate of voter impersonation. If this estimate

were true then the survey implies that at least five million people cast fraudulent ballots in the

2012 election—a shocking number inconsistent with all other work on this topic.

Examining the broader survey behavior of the respondents who claimed themaximum of five,

AMJ find additional reasons to treat these responses as suspect. For example, most of those

choosing themaximum value in the list experiments, whether in the treatment or control groups,

appeared to be rushing to complete the survey as fast as possible. To further investigate this

conjecture of respondent error AMJ fielded a second set of list experiments in September 2013

with a new YouGov sample and N = 3, 000, three times the size of the original sample. Using the

test proposed by Blair and Imai (2012) there was no evidence leading to the rejection of the null

hypothesis of no design effect for any of these questions.
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Figure 9. Evidence of problems with the ICT-MLE across three list experiments. Bars are 95% CIs for the DiM

estimates and ±2SEs for the ICT estimates.

In addition to replicating the original list experiment questions AMJ fielded two more list

experiments as calibration exercises. The first new question offered subjects the opportunity to

admit to something believed to occur with (near?)zero probability: abduction by extraterrestrials.

The second of the new list experiments asks respondents about a common behavior that is illegal

in most states: sending or reading text messages while driving. AMJ found two previous large

surveys on the subject of texting and driving. Madden and Rainie (2010) find that 27%of US adults

have sent or read a text message while driving while Naumann (2011) estimates that about 31% of

U.S. drivers aged 18–64 had sent an SMSwhile driving in the last 30 days. Both surveys used direct

questioning techniques. The details of these lists experiments are described in supplementary

materials. Both are J = 4 lists and both attempt to include both high- and low-frequencies as well

as plausibly negatively correlated items on the control list.

Figure 9 displays population prevalence estimates for all three list experiments as calculated

using both DiM and ICT regression.9 Several things are immediately apparent. First, the list

experiment examining a relatively common behavior recovers rates of texting while driving in line

with previous estimates. The ICT and DiM estimates are close to one another and the uncertainty

around the ICT estimates is substantially narrower, reflecting the efficiency improvement in the

ICT-MLE, bought with distributional assumptions and the incorporation of covariate information.

But when we turn to the low-prevalence questions (impersonation and abduction) there are

massive differences between the ICT-MLE and DiM estimates. The DiM estimates for both voter

impersonation and alien abduction are close to zero, consistent with both prior expectations

and the earlier survey wave. The ICT estimates are shockingly large and have relatively narrow

standard errors, raising the prospect of erroneous inference were they to be taken at face value.

AMJ then go on to look at proportion of respondents in the treatment groups claiming the

maximum possible number of items, i.e., the sets J (1, 5). Table 3 displays their findings. The

9 ICT models use the double-binomial maximum likelihood estimator and ignore survey weights reported in the original

paper. In fitting the ICT regressions we included age, race, and gender as covariates. Models passed tests for ceiling and

floor effects.
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Table 3. The proportion of respondents selecting the most extreme value is stable across survey waves and

questions. Source: Ahlquist et al. (2014).

Wave % treated choosing “5” Treated N

Voter impersonation Dec. 2012 2.5% 486

Voter impersonation Sept. 2013 2.7% 1,528

Alien abduction Sept. 2013 2.4% 1,528

Texting while driving Sept. 2013 3.3% 1,472

proportion of people answering the maximum is remarkably stable, around 2–3%, even for

sensitive behaviors that are far more common in the population (texting while driving). The

rate of 2.4% is especially remarkable for the alien abduction question. Maintaining the no liars

assumption in that context corresponds to believing that all of these 36 respondents were

abducted by aliens (and returned to answer the survey) and served on a jury andwere audited by

the IRS and had a flight canceled and received telemarketing calls. All in the same (unlucky) year.

The rate of IRS auditing in FY2013was0.96% (Internal RevenueService 2015),which implies thatat

least 60% of the respondents in J (1, 5) for the alien abduction question are probably erroneous
responses. Moreover, of those answering “5” for alien abduction, 24% (9/37) also answered “5”

for voter impersonation.

All this leads to two conclusions. First, there is non-negligible respondent error in these data,

as we would expect with any real-world survey. The respondents answering “5” in the treatment

conditions are both small in number and composed almost entirely of error. Second, in this

situation the ICT-MLE overestimates the prevalence of two sensitive attributes, both ofwhich have

low (0?) population prevalence.

4 Implications andWorking Toward Solutions
TheMonte Carlo simulations show that ICT-MLE ismore sensitive to list design than the DiM, even

in the absence of error. Unsurprisingly the addition of error can cause problems for both the DiM

and ICT-MLE. The DiM, which does not require the no liars assumption, is the more robust in all

cases. These findings leadus to consider—and reject—somepossible solutions to theproblemand

then to consider when non-strategic error ismore likely to arise. We concludewith some advice to

applied researchers considering list experiments.

4.1 Strategies that will not work
If the ICT distributional assumptions are correct then both the difference-in-means and the

ICT estimators are consistent, but the ICT estimator, as a maximum likelihood estimator, is

the more efficient. If the ICT distributional assumptions are not met then ICT estimator is no

longer consistent while the difference-in-means estimator is. This represents a special case of the

Wu–Hausman test. Unfortunately, the Monte Carlo results show that, depending on the structure

of the list and the prevalence of the sensitive item, the ICT-MLE may not generate unbiased

estimates of either the quantity of interest or the variance around that estimate. As a result a

Hausman specification test will not yield useful findings.

The simulations and the example above show that small samples in themaximumvalues of the

treatment distribution is serious problem for the ICT-MLE. It stands to reason that larger overall

samples might mitigate this problem. But, for a fixed list experiment design and sampling frame,

the expected number of responses in the top of the distribution will only grow linearly in N . Our

designed Monte Carlo with J = 3 and high prevalence still averaged only 4.5 respondents in the

top category of the treatment distribution. We would need a sample at least four times as large

to begin to achieve some stability, and this is before any consideration of respondent error. The

secondwave of AMJ list experiments usedN = 3, 000 and still ran in to problems. Their experience
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suggests that non-strategic respondent error happens at a relatively constant rate, something not

solved by increasing N .

More generally ICT-MLE faces a conceptual difficulty: we turn to list experiments when we are

worried that people do not want to reveal their status; yet the ICT-MLE requires that we view

anyone who does end up reporting a privacy-leaking value as a truthful revelation. Moreover, we

actively try to ensure that nobody is put in a position whereby they are forced to choose between

dissembling and reveling their status; yet ICT-MLE estimation is based on these few respondents.

Increasing the overall sample size in the hopes of ramping up the size ofJ (1, J +1) fails to resolve

this conflict.

4.2 Some advice
The findings presented thus far show that both small sample sizes in the extremes and

non-strategic respondent error are problematic for list experiments but especially the ICT-ML

estimator.Wedonot yet have tools for determining the levels, rates, and structure of non-strategic

respondent error and developing such tools seems unlikely. But we can offer some advice that

builds on existing recommendations and tools.

4.2.1 Research and survey design
List experiments are weak tools for precise estimation of rare events and behaviors. Contrary

to conclusions in Kiewiet de Jonge and Nickerson (2013), which rely on real surveys and not

controlled Monte Carlo studies, survey list experiments are poor tools for reliably estimating

small values of πZ ∗ . This is not surprising: mass surveys are notoriously weak at establishing

the prevalence of rare attributes evenwhen direct questioning is reasonable. List experiments are

even less effective in that regard, but the likely bias in the list experiment analysis tools, especially

ICT-MLE, provides an additional reason for caution. The DiM estimator (which preformed

adequately in the Kiewiet de Jonge and Nickerson (2013) studies) should be the initial point of

departure.

Some would argue that list experiments (or even mass surveys) should be avoided entirely if

we have prior beliefs that the sensitive attribute is rare. This is a step too far. If we already knew

the true population prevalencewewould not need to run a survey. If the attribute of interest were

easy to talk aboutwe could bemore confident in our priors andwould not feel the need to employ

indirect questioning. Realistically, as in AMJ, there will be attributes of interest that are arguably

worth investigating with list experiments that turn out too rare in the population for the survey to

detect. Applied researchers must recognize that available tools are fragile in such situations.

Small samples in the extremes are particularly likely when we follow existing survey design

advice forminimizing strategicmisrepresentation andwhen the list is longer. There appears to be

something of a trade-off: design a list experiment that will likely allow for more responses in the

extremes and consider the ICT-MLE but risk more strategic misrepresentation or design a survey

to minimize the chances strategic misrepresentation but rely on simpler analysis tools. Whether

the first choice is attractivewill depend on the underlying prevalence of the sensitive item and the

researcher’s confidence in her ability to model ceiling and floor effects, something we have not

investigated here. Unfortunately these are ex ante decisions affecting survey design.

Echoing advice from several quarters, ask direct and indirect versions of the question whenever

possible. 10 Several versions of combined direct and indirect questioning are possible, but asking

respondents both the direct and indirect versions of the question yield the most information.

Using this design, Aronow et al. (2015) exploit comparisons between list experiments and

direct questioning to develop a placebo test that jointly tests all three of Imai’s identification

10 Eady (2017) and Gingerich et al. (2016) develop tools that rely on asking both direct and indirect questions to extract more

information aboutwhodissembles andwhether the additional variance of indirect questioning isworth the cost. Both sets

of tools rely on the no liars assumption and their sensitivity to non-strategic error is an area for future work.
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assumptions. This test’s importance is amplifiedgiven thedifficultyof characterizingnon-strategic

error. The comparisonbetween thosewhoanswered truthfully in thedirect question and reported

a value of J + 1 might give some information about “compliers” which could then be used to

generate a more precise lower bound on πZ ∗ . Comparing those who answer negatively to the

direct question but J + 1 in the list experiment enables us to put an approximate lower bound

on the rates of non-strategic error. But, again, such numbers are likely to be quite small in an

experiment designed to protect privacy.

Ask calibration questions if possible.Both AMJ andKiewiet de Jonge andNickerson (2013)make

good use of ancillary list experiment questions that have treatment items of either low or high

prevalence in order to bound error rates and respondent performance. Asking such questions is

costly, however, andmaynot beworthwhile in certain contexts. But they appear to be auseful tool

for examining how the sample at hand is actually reacting to indirect questioning.

Considermultipleorother indirect questionmodes.Rosenfeldetal. (2015) conduct anexhaustive

validation study of the three major types of indirect survey questions (list, endorsement, and

randomized response). Consistent with results here they also find that the list experiment

(analyzed with a Bayesian extension of the ICT-MLE approach) produces population prevalence

estimates that are biased (relative to the known truth and other question modes), yet still better

than direct questioning. Which question mode is most appropriate in a particular situation is not

obvious and a multiple-method, triangulation strategy may be worth pursuing, although, again,

the costs in terms of time, cognitive demands on respondents, technical administration, and

efficient use of the sample are all non-trivial.

4.2.2 Survey implementation
Adjust survey administration to minimize non-strategic error. Administration techniques should

endeavor to make sure respondents are paying attention. Phone- and in-person enumerators

can be trained to slow down or confirm responses to list experiment or other more complicated

question forms. They can also make subjective judgments about respondents’ levels of

engagement in the survey. We can imagine several design strategies for electronically

administered surveys to slow users down and induce them to pay more attention. For example,

survey interfaces could randomly move the text and responses to different points around the

screen so as to force users to at least minimally adjust. Confirmation stages for certain responses

could be introduced. Silly questions can be included to see if respondents are paying attention.

Forcing respondents to pay attention may or may not increase truthfulness but it will likely

increase the number of non-truthful responses that are amenable tomodeling as ceiling and floor

effects relative to the less tractable non-strategic error situation. All these interventions have costs

and best practices in this area that have yet to be developed.

Given that some error is unavoidable, wewould like to convert any systematic (e.g. top-) biases

in these errors into something less damaging. If error is due to respondents repeatedly clicking

or answering in the same way in an effort to rush through the survey then some immediate

solutions present themselves. In an electronic interface the survey designer can randomize the

order in which the possible responses are presented. For example, radio buttons for the eligible

responsescanbeshuffled randomlyormovedaround thescreen.Otheroptions includepull-down

menus where the ordering of the values can be randomized across questions or requiring the

respondent to type in a numerical value, returning an error if the person typed in a number that

is not admissible. When a respondent is not paying attention these strategies have the virtue of

converting what might be dangerous top- or bottom-biased error into something looking more

like uniform error.

Track and examine respondents’ broader behavior in the survey. Tracking respondent behavior

throughout the survey can be useful in determining the scale and type of respondent error.

Obviously this is easier and more accurate in computer-mediated modes where some useful

John S. Ahlquist � Political Analysis 50

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
7.

31
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2017.31


metrics include total time spent on the survey, how long they spent on particular pages or

questions, and whether they logged out and then completed the survey later. The behavior of

respondents at the extremes of the list experiment distribution should be of particular concern to

researchers thinking of employing the ICT-MLE. Are these respondents spending less time on the

list experiment page than other respondents? Are they answering nearby questions in a similar

way? Is there straight-line behavior in other parts of the survey? If so is it systematically skewed in

a particular direction?

All the forgoing items give further weight to the standard dictum that careful pretesting is a

must. Pretesting control list items seems particularly worthwhile since we often do not know

whetherparticular itemsarenegatively correlated, etc. Pretestingallowsa researcher to formulate

expectations about the number of observations that might appear in J (1, J + 1) and adjust the

list or the analysis strategy accordingly.

4.2.3 Diagnostics and analysis
Examine the number of responses in the extremes of the treatment-group distribution. Independent

of any concerns with respondent error the Monte Carlos reported here show that the ICT-MLE

performspoorlywhen thenumberof responses in themaximumcategory falls belowabout20–25.

If small samples in the extremes appear in a particular application then the ICT-MLE is a poor

choice of analysis tool, especially if DiM analysis suggests that the sensitive item is rare.

Compare ICT-MLE and DiM estimates. Simple and transparent difference-in-means analysis

should be the place to start. If covariates are not a concern in a particular application then

ICT-MLE becomes even less attractive as an analysis tool. If ICT-MLE is used its results should

be compared to those from DiM. If the underlying prevalence of the sensitive item is shown to

be low and/or the two estimates diverge sharply this should be viewed as evidence that there is

likely significant respondent error in the data. In interpreting this error analysts should obviously

conduct the diagnostics for ceiling and floor effects described in Blair and Imai (2012) and Glynn

(2013). Conditional on results from ceiling and floor analysis, large divergence between DiM and

ICT-MLE, especially whenDiM returns a null result, should be viewed as an indication that ICT-MLE

results may not be reliable.

Care should be taken in using the ICT-MLE output as a covariate. The big selling point of the

ICT-MLE is its ability to generate individual-level predictions that a particular respondent has

the sensitive attribute. This individual-level ability is bought by invoking the individual-level no

liars assumption. Imai et al. (2015) have taken the next logical step, building both two-stage and

full likelihood models in which individual-level propensities to possess the sensitive attribute

(estimated from ICT-MLE) are then used as predictors for another behavior of interest. For

example, suppose a researcher runs a list experiment designed to ask respondents about racial

attitudes toward African-Americans. ICT-MLE will yield estimates of each respondents level of

anti-Black sentiment. The researcher might then want to use that quantity as a regressor in a

model that predicts levels of support for President Obama.

The sensitivity of the ICT-MLE to list design and measurement error may make this strategy

problematic in actual applied situations. Even small levels of respondent error can induce bias as

well as overconfidence in results. Building this bias into a second stagemodel, whether estimated

sequentially or jointly, seems hazardous. While formal Monte Carlo work incorporating list design

andmeasurement error for this specific enterprise remains to bedone the results here should give

pause.

5 Conclusion

This paper considered the role of list design and the dangers of non-strategic measurement

error (as opposed to strategic misrepresentation) for the analysis of survey list experiments.
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We interrogated the individual-level “no liars” assumption needed to identify the ICT-MLE and

underpinning its numerous extensions. This assumption requires that all responses in the

extremesof the treatment-groupdistributionbeviewedas truthful revelationsof the respondent’s

status on the sensitive item. The conventional difference-in-means estimator does not require the

individual-level no liars assumption for unbiased estimation of population prevalence.

I argued that the no liars assumption is contrary to the applied researcher’s rationale for using a

list experiment, namely that respondents are reticent about truthfully revealing their status on the

sensitive item;privacy-leaking responses shouldbe treated skeptically, not credulously.Moreover,

reducing the risk of strategic misrepresentation entails minimizing the number of respondents

appearing in the extremes of the response distribution—exactly the cells that the ICT-MLE relies

on for identification and estimation. These small samples are particularly prone to be the result

of simple, non-strategic error.

Based on a series of Monte Carlo experiments I found that ICT-MLE is sensitive to list design

regardless of error, unlike the DiM. Inducing non-strategic error creates problems for both

estimators, but the ICT-MLE is more sensitive. Even small deviations from the no liars assumption

can induce bias and other problems in the ICT-MLE. The extent of these problems depend

on the structure of the control list and the underlying frequency of the sensitive item. The

difference-in-means estimator, while not impervious to respondent error, is computationally

stable and less prone to generate erroneous inference when survey responses are measured with

error.

Based on these findings I offered some preliminary advice for applied researchers. The extent

to which non-strategic error causes problems for either of Imai et al. (2015)’s two-stage or full

likelihood models is an open question for future research. Similarly, technical and survey mode

interventions designed to mitigate measurement error problems in list experiments and other

forms of indirect questioning remain to be developed and tested rigorously.

Supplementarymaterial

For supplementary material accompanying this paper, please visit https://doi.org/10.1017/

pan.2017.31.
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