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1. Introduction. It has been shown by Diederichsen [2] that for integral 
representations of a finite group, the irreducible constituents in any complete 
reduction are not necessarily unique up to order and unimodular equivalence. 
In this same article, it is shown that for certain finite groups, such as the cyclic 
group of order 4, there are infinitely many classes of indecomposable representa­
tions under unimodular equivalence. 

A natural method for studying these problems of arithmetical representation 
theory would be the *>)3-adic approach, and as a first step in this direction, using 
the methods of Hensel and of Brauer and Nesbitt [1], we shall show that the 
theory of representations of finite groups, over a ring of *i)3-adic integers can 
always be brought back to the modular case, in so far as it is concerned with 
questions of unimodular equivalence, reduction, and decomposition. 

More particularly, we shall show that for any finite group, if ty is a generator 
of the maximal ideal in the ring of "Ç-adic integers considered, and if <Ç** is the 
highest power of $ dividing the order of the group, then unimodular equivalence 
may be considered modulo $ \ for any k > k0l while unimodular reduction and 
decomposition may be considered modulo $*, for any k > 2£0, without any loss 
of generality. 

As a corollary, we shall show that if $ does not divide the order of the group 
then all questions of unimodular equivalence, reduction and decomposition are 
completely equivalent to these same questions modulo $. 

2. Modular binding systems.1 Let O be a commutative ring with a 
1-element and let 21 be an ideal of D (possibly the null ideal). Let ^ be a hyper-
complex system over D and let T and A be two 31-modular representations of $ , 
by matrices with entries in £), of degrees ti\ and n2 respectively. 

We shall consider the 2I-modular representations of § , by matrices with 
entries in O, having F as a top constituent and A as the corresponding bottom 
constituent, i.e. 

m v-^fv ï - (T(x) A(*A 
(l) x~"^x)-\e(x) A(X)J 
where 6(x) = 0 (mod 21) for all x (E vf>. Since 3) is an 2l-modular representation 
of § , the following laws must hold: 

Received August 13, 1952. This research was done with the aid of a grant from the National 
Research Council of Canada. The author wishes to thank Professor H. Zassenhaus for suggest­
ing the problem and for his constant guidance. 

*For an account of the theory of ordinary binding systems, see [4, pp. 276-279; 2 , pp. 
364-374]. 
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T)(x + y) = £)(*) + S ( T ) (mod ») , 

£>(ae) = <£)(*) (mod 8) , 

S(x^) s3)(tf)S)Cy) (mod «) , 

for ail x, y Ç/ $> and all c 6 O. From these laws one deduces the following: 

A(x + y) = A (a) + A(y) (mod 21), 

(2) A(cx) = cA(x) ( m o d i ) , 

A(xy) = r(x)A(>0 + A(x)A(>0 (mod 31). 

Any system A = { A(x)} (x running through all the elements of §) of n\ X n2 

O-matrices obeying the laws (2) will be called an 3l-modular binding system 
determined by the representations T and A. Evidently, any such system deter­
mines an Sl-modular representation of § of the type (1) for any choice of 6, 
provided 6(x) = 0 (mod 21) for all x f § . Because of the linearity of the con­
gruences (2), it is easily verified that the set 33 (I \ A, 31) of all 2I-modular binding 
systems determined by T and A is an O-module under the following operations: 

( 3 ) l ( A + A')(*)} = {A(*) + A'(*)}. 

{(cA)(x)} = {cA(x)\, 

for all x e £>, all c Ç £>, and all A, A' € 33(I\ A, 31). 
Two Sï-mochilar representations of the type (1) 

®<(X) " Wx) A(x) ) ( i = 1,2), 

where di(x) = 0 (mod 31) for all x Ç § , are said to be "strongly" equivalent if 
there is a matrix 

('- 0-
where Ini and /rea are the unity of matrices of degrees nx and n2 respectively, 
and where T is any nx X ni D-matrix, such that 

for all x 6 $. Since 

P"1^1(x)P s £)2(x) (mod 21), 

—M) 
this implies that 

(4). A2(x) s Ax(x) + \T(x)T - TA(x)) (mod 3f), 

for all x c |>. 
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Conversely, if Ai and A2 are two 91-modular binding systems in 33(I\ A, 81), 
for which there exists an n\ X n2 D-matrix T such that the condition (4) is 
satisfied, then evidently, the 3ï-modular representations of the type (1), 351 and 
©2, determined by Ai and A2 respectively, are strongly equivalent and the 
transforming matrix is P as given above. 

If the condition (4) holds for the binding systems Ax and A2, they are said to 
be strongly equivalent. 

It is easily verified that the set 93o(T, A, 31) of all 3l-modular binding systems 
A G 93(T, A, 91), which are strongly equivalent to zero, i.e., for which there 
exists an n\ X n<2 O-matrix T such that 

(5) A(x) = T(x)T - TA(x) (mod 31), 

for all x f § , is an O-submodule of 93 (T, A, 31). Evidently, the statement 
A £ 93*1 ( r , A, 31) means that the representation 

where 0(x) == 0 (mod 31) for all x £ § , is fully reducible,2 modulo 91. 
From now on, we shall always suppose that § is the group algebra of some 

finite group © of order N, and we shall confine outselves to the 3I-modular 
representations of § which map the unity element of © onto the unity matrix, 
modulo 91. The fundamental theorem is the following: 

THEOREM 1. For any binding system A f 93 ( I \ A, 31), 

N- A e 93o(I\ A, 91). 

Proof, Let x and y be any two elements of © and let A be any binding system 
in 93(I\ A, SO. Then' 

A(xy) = T(x)A(y) + A(x)A(y) (mod 91), 

A(xy)A(y~1) = T(x) A(y)A(y~1) + A(x) (mod 31), 

and therefore 

A(x) = A Cry) A^xy)'1) • A(x) - V(x) • A(y) A(^_1) (mod 91). 

Now let y run through all the elements of © and sum : 

N* A Oc) s Yl Hxy) AdxyT1) • A(X) - v(x) • X) A(y) ^(y'1)-
V V 

2In this article we will use the expressions complete reduction and complete decomposition 
of a representation to denote a reduction of this representation into its irreducible constituents 
and a decomposition into its indecomposable components respectively. The term full reduction 
will be used to denote a reduction which can be transformed into a decomposition where the 
components are equivalent to the constituents of the given reduction. 
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Since, as y runs through all the elements of ©, xy also runs through all the 
elements of @, we may write 

N- A(x) = E A(2) A(z~l) • A(x) - T(x) • £ A(21) A (s -1). 
z z 

Setting T — — JZ A(s)A(2_1), we obtain 

A7- A (a) = r (x )T - TA(x) (mod §1) 

for all x (E ®. Since this last condition is a linear congruence, it will also hold 
for all the elements of § , so that 

N- A(x) = T(x)T - TA(x) (mod 21) 

for all x e . § , i.e. N- A Ç »o(I \ A, 2t). 

3. On the connections between ^5-adic integral and modular representations 
of a finite group. From now on, we will suppose that the ring £) considered 
in the preceding section is the ring of ^-adic integers of some ^-adic field3 K. 

Let $ be a generator of the maximal ideal of O and let $*° be the highest 
power of 3̂ dividing N. N is therefore a unit times 3̂*°. 

THEOREM 2. If V and A are two ordinary ty-adic integral representations of 
§ , then F and A are unimodularly equivalent if and only if they are unimodularly 
equivalent, modulo *$*, for any k > k0. 

Proof. If F and A are unimodularly equivalent, modulo $*, then they must 
be of the same degree {nx = n2 = n), and there must exist an n X n D-matrix 
T such that 
(6) T(pc)T- TA(x) =s 0 (mod $*) 

for ail x Ç § and | T\ ^ 0 (mod $) . We will now apply the theory of the preced­
ing section in the case that 21 is the null ideal (0), since V and A are ordinary 
s$-adic integral representations. Then congruence modulo 21 just means equality. 

From (6), the matrices 

r(x)(i*) - ©A { x ) 

are integral for all x " £ § , and one can easily verify that the set of all these 
matrices is a binding system in 33 ( I \ A, (0)). (This is not necessarily true in the 
case that V and A are modular representations.) Then, by Theorem 1, 

tf{r(*)(|ï) - (!*) A(X)} e »,(r, A, (0)), 

i.e., there exists a n w X w D-matrix T' such that 

tf(r(*)(|i) - ( | E ) A ( X ) ) = Y(x)T - T'A(x) 

'For an exposition of the theory of fields with valuations, see [3, chap. X]. 
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for ail x Ç ©. But since N = u %k\ where u is a. unit of £), we may write 

r w ( ç i ) - \^L~) A(X) = r(x)r' - T"à(x) 

for all x (: $>, where T" = u~l T' is an ;/ X n £>matrix. Then 

r(*)(r - $*-*T") - (r - $*-*T") A(*) = o 
for all x f to and setting 2̂ * = T - fk~K T'\ we obtain 

T(x) T* - T*A(x) = 0 

for all x e § , and 2̂ * == r (mod $*-*•). Since k > 0, this implies that T* = T 
(mod $) , and therefore jr*j s | r j ^ 0 (mod $) , so that 7̂ * is unimodular. 
The converse is immediate. 

THEOREM 3. If 2D is an ordinary ty-adic integral representation of $ of degree 
u and if there is an n X n D-matrix Q such that 

for all x Ç § , and \Q\ ^ 0 (mod $) , so / t o T and A are modular constituents of 
3), modulo 9?*, of degrees nx and w2 respectively, then there is an n X n O-tnatrix M 
such that 

M-^(X)M = (r*^ ^ \ 
*(x)/ 

for all x £ § , and \j\f\ & 0 (mod $) , ^ e r e the ordinary constituents r* awi A*, 
of degrees ti\ and n2 respectively, are such that 

T*(x) s r (x) , , ^ 
A*(x) == A(x) 

/or a// x Ç § . 

Proof. Let 530 = Ç_1©Ç and assume that we have determined a finite 
sequence of n X n O-matrices 

and a finite sequence of natural numbers k — k, < k» < . . . < km, such thai 
for all i = 1 , 2 , . . . , w, 

(8) Q , S Ç,_, (mod $*'—*•), 

(9) -, = GT'a.c?, = (ji,,4 * ) . 

where the degrees of the F{ and the At are Wi and n2 respectively. We will show 
that one can always extend both these sequences by another term. 
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Since 3Dm is an ordinary ^-aciic integral representation of £>, 

®m(x + y) =S)m(*)+S)«Cy), 

$)n(cx) = £Î)m(x), 

for all x, y ^ § , and all c 6 D, and from this one can deduce that 

Om(x + y) = M"x) + *„(?). 

^m(xj) - Am(x)dm(y) + 0ro(*)r*Cy), 

for all x, y (E § a n d all £ £ C Therefore 0m is surely a binding system in 
$$(Am, rw , OP*")). Then by Theorem 1, there exists an n« X n\ D-matrix T 
such that 

Ndm(x) s Am(x) T - T Tm(x) (mod $*-), 

for all x Ç ^p. Then since A7 — «$*% where « is a unit, we may write 

(10) y*'6m(x) = Am(x) 5 - 5 rw(x) (mod $*"), 

where 5 = w~lT is an w2 X ni O-matrix. Let 

( 7- Ï 
and let 

Ç-+» - QmP ~ {$-*. Tm+i j J 

where Tm+i = r„, — $*»-*S. Then since P = In (mod "Ŝ̂™1 **̂> T w e have 

(11) 0,+i = Q„ (mod $*-"*•). 

Also, setting 

3Wi(«) = QSii$)o(*)Ç«+i = i5_1(Ç»13)o(x)Gm)P = rtk(*)P = 

/ r m (x ) - r"~*°A(x)5 A(x) \ 

y r " - * ° ( ^ m ( x ) - ( A m ( x ) 5 - 5 r m ( x ) ) ) - ^ 2 W " - * ' ) 5 A ( x ) 5 A m ( x ) + ^ - * » 5 A ( x ) y 

we see, from (10), that the lower left-hand entry of this matrix is divisible by 
ĵ2c*»-*.)) s o that we may write 

/ r m + i (x ) A(: 
(12) . . . 3 W ( « ) = \y*o.-*.)0m¥lix) Am+ n+l(x)J 
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for ail x £ ^), where 

Tm+1(x) = Tm(x) - Ç*"-*-A(x)5 

Am+1(x) = Am(x) + $*--*-5A(x) 

¥ 2 a m " * 0 , ^ i ( x ) = ^ ( f ^ W - (A.(x)5 - STm(x))) - ^m-ko)SA(x)S. 

Setting km+i = 2(£w. — feo) = 2fen, — 2fe0 > 2&TO — &m = &w we obtain the desired 
result. 

Then, by induction, there is an infinite sequence of n X n ©-matrices 

Ql = \ "' i»)' Qï = vr-*- T, iJ' Qs = v#-*° T, ij' • • • 
and an infinite sequence of natural numbers & = & 1 < f e 2 < & 3 < . . . such that 
for all i = 1,2, 3, . . . , 

(13) 0 , = Qi-i (mod $*'--*•) 

and 

(14) *>,(*) - GT ôWO, - (ffit(x) * $ ) 
for all x ^ § , where the Tt and the A* are of degree n\ and n2 respectively. 
From (13), we see that the sequence {Qi} converges, and that if we set 

Q* = lim Qi. 
i->co 

then Q* is of the form 

(15) Q* = ($-*. r» j J 

and therefore unimodular. Furthermore, if we set 

©*(*) = Qr^oMQ* = (lim QI1) 3)o(*)((lim Qt) 

= lim QT^oix) Qi = Km £),(*), 
i-$co i ~»oo 

we see, from (14), that £)* is of the form 

de) © (*) - ^ A * w ; 
for all # £ § , where 

T*(x) = lim Ti(x), ' A*(x) = lim At(x). 

Also, 

W a r t - 0*~^n(x)0* - (T{X) + ^~k'A^T* A ^ ^ 
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so that 
F*(x) = T(x), à*(x) = A(x) (mod ^*"*°). 

for all x (E 6J. Setting M = QQ* we obtain the desired result. One can of course 
extend the preceding theorem, by induction, to the case of an arbitrary number 
of constituents. 

It is to be noted that the conditions k > ko in Theorem 2 and k > 2k0 in 
Theorem 3 are not necessarily the best possible, and it is possible that refinements 
of these conditions could be found. 

COROLLARY 1. If 35 is an ordinary ty-adic integral representation of *£>, then 
for all complete reductions of 35, the irreducible constituents are unique up to order 
and unimodular equivalence if and only if for all complete reductions of 35, modulo 
*$*, where k > 2k0t the irreducible constituents are unique up to order and unimodular 
equivalence, modulo ^k~k\ 

Proof, (a) Assume that for all complete reductions of 35, the irreducible 
constituents are unique up to order and unimodular equivalence. Let 

be two complete reductions of 35, modulo tyk. By Theorem 3, there exist two 
complete reductions of 35 into ordinary irreducible constituents 

Ar / ' \ ••• A ' s 

such that 

(mod $*-*•), 
r«(*) = A«(») (t = 1, 2, . . . , r) 
rj(«) =- Aî(*) (J = 1,2 s) 

for all x € § . Since for ordinary ^-adic integral representations, the number of 
irreducible constituents in any complete reduction is invariant [2, pp. 359-360], 
r = s. Then from the assumption, there is some arrangement ku £2, - - . , kr of 
the numbers 1, 2, . . . , r, such that 

A*, ~ A', (t = 1 , 2 , . . . , r). 

Therefore for this arrangement of the indices, 

Ttl ~ I", (mod $*"*•) (t = 1, 2, . . . , r). 

(b) Assume that for all complete reductions of SD (mod '$*) the irreducible 
constituents are unique up to order and unimodular equivalence, modulo 
$*-*•. Let 

/Ai A * \ 

*>~l ' - A , s - i - A ; 
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be two complete reductions of 3) into ordinary irreducible constituents. Then by 
Theorem 3, 

must be complete reductions of 2) into irreducible constituents, modulo $*, 
and from the assumption, there is some arrangement ki, ko, . . . , kr of the 
indices 1, 2, . . . , r, such that 

Aki ~ A; (mod $*-*•) (i = 1 , 2 , . . . , r). 

But since Aki and A'* are ordinary ^-adic integral representations, and k — ko > 
ko, by Theorem 2, 

A * ~ A ; (i= 1,2, . . . , r ) . 

COROLLARY 2. 7/^3 does not divide N, and if 3) is* an ordinary ty-adic integral 
representation of § , then for all complete reductions of 3), the irreducible constituents 
are unique up to order and unimodular equivalence. 

Proof. This is a direct consequence of Corollary 1, since in this case ko — 0 
and we may take k = k — ko — 1, representations, modulo *$, being representa­
tions over a field, the irreducible constituents in all complete reductions are 
unique up to order and unimodular equivalence, modulo $. 

THEOREM 4. If 35 is an ordinary ty-adic integral representation of £>, and if 

S ~ 3 ) o = ( r
A ) 

is a unimodular decomposition of 3), modulo tyk, where k > 2k{), then there is a 
decomposition of 3), into ordinary ^-adic integral components 

2 ) ~ 2 ) # = ( r #
A * ) 

such that 

T*(x) s r(x), A*(x) s A(x) (mod Ç*""**), 

/or all x Ç § . 

Proof. Let 

Then, by Theorem 3, there is a reduction of 3) into ordinary ^-adic integral 
constituents 
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such that • 
r*(s) s r (x) , A*(x) s A(x) (mod Ç*"**), 

for all x G £>. By an interchange of rows and columns, which amounts to a 
unimodular transformation, one can always obtain 

By a second application of Theorem 3, one obtains the desired result. 

COROLLARY. If 35 is an ordinary ty-adic integral representation of § , then for 
all complete decompositions of 3), the indecomposable components are unique up to 
order and unimodular equivalence if and only if for all complete decompositions of 
35, modulo $*, where k > 2&0, the indecomposable components are unique up to 
order and unimodular equivalence, modulo $*-*<>. 

The method of proof for this corollary is essentially the same as for Corollary 
1 of Theorem 3. 

THEOREM 5. If ty does not divide TV, then all ^-modular representations of § 
are fully reducible, for any k > 0. 

Proof, Let © be a ^-modular representation of § , and let 

be a reduction of 3), modulo $*. A is a modular binding system in 33 ( I \ A, ($*)). 
By Theorem 1, there is an n\ X n^ Q-matrix T such that 

TVA(x) = T(x) T - T A(x) (mod $*) 

for all x £ § . Since $ does not divide TV, TV is a ^-adic unit, so that 

A(x) = T(x) 5 - 5 A(x) (mod $*) 

for all x f § , where 5 = N~lT is an wi X n2 O-matrix, i.e., 

A(x) = F(x ) 5 - 5 Â(x) 

Transforming 35o by 

one obtains 

This last theorem is evidently also true in the case of ^-adic integral repre­
sentations of S&. 

In conclusion, we shall give a counter-example to show that in the case that 
$ divides TV, the irreducible constituents in all complete reductions of a $-adic 
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integral representation of § , are not necessarily unique up to order and uni-
modular equivalence. This counter-example is the same as that considered by 
Diederichsen [2, pp. 373-374] in the case of an arbitrary principal ideal ring. 

Consider the group of all symmetries of the square, whose generators obeys 
the following conditions: 

a = b" — {ah) 1. 

The two representations 

and 
{.-G-'M,')} 

are irreducible and rationally equivalent. The module of all integral matrices 
which commute with these two representations, has only one generator, namely 

- ( - ! ! ) <|7" 2) 

and it is easily seen that any matrix commuting with these representations, 
modulo any power of 2, say 2*, must be congruent to a multiple of this generator, 
modulo 2*, and consequently must have a determinant which is divisible by 2. 
Therefore, modulo any power of 2, these two representations are not unimodu-
larly equivalent. 

Now consider the two following representations: 

SDi 

1 / / 1 1 
1 

1 
- 1 1 

1 1 
1 

and 

$ 2 

/ - 1 
1 

\ 1 
- 1 

/ - I 

- 1 
. 

These two representations are unimodularly equivalent, for £7351 = T)$U, where 

U = 

and none of their irreducible constituents are unimodularly equivalent, modulo 
any power of 2, by the above discussion. 

2 1 1 - 1 
- 1 2 1 1 

2 - 3 - 1 - 2 
3 3 2 - 1 
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