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Abstract
The theory of utility is a well-known method of constructing insurance premiums (see e.g., Newton et al.
(1986) Actuarial Mathematics. Itasca, Illinois: The Society of Actuaries.). Furman and Zitikis ((2008) Insurance:
Mathematics and Economics, 42, 459–465.) proposed an alternative method using the mean value of a weighted
random variable. According to this approach, for various choices of weighting, popular premiums such as net pre-
mium, modified variance premium, Esscher premium, and Kamps premium are obtained. On the other hand, some
premiums cannot be obtained with this method, such as the premium of the exponential principle. In this paper, we
provide a complementary theory by introducing a family of unimodal weighted distributions for which the mode is
a premium principle.

1. Introduction
Let X ≥ 0 be a loss random variable with probability density function (pdf) f (x), cumulative dis-
tribution function (cdf) F(x) = P(X ≤ x), and tail function F(x) = 1 − F(x) = P(X > x). Moreover, let
E(X) = ∫ ∞

0
x f (x) dx = ∫ ∞

0
F(x) dx be the mean value and mX a mode of the distribution of X satisfying

the condition f ′(mX) = 0. The weighted premium principle introduced by Furman and Zitikis (2008) is
defined and denoted by:

Hw(X) = E[X w(X)]

E[w(X)]
, (1.1)

where w : [0, ∞) → [0, ∞) is a nondecreasing function such that 0 <E[w(X)] < ∞. One option to
obtain a weighted premium principle is to take the mean value of a weighted loss random variable
Xw with pdf:

fw(x) = w(x)

E[w(X)]
f (x), x > 0.

Since w is nondecreasing by assumption, it holds that Hw(X) =E(Xw) ≥E(X). We recall that, for
different choices of w, some well-known premiums follow directly. For example, we can get the net pre-
mium E(X) (when w(x) = c, c > 0 is a constant), the modified variance premium E(X) +Var(X)/E(X)
(when w(x) = x), the Esscher premium E(X eλX)/E(eλX) (when w(x) = eλx, λ > 0), and the Kamps
premium E[X (1 − e−λX)]/E[1 − e−λX] (when w(x) = 1 − e−λx, λ > 0); see Furman and Zitikis (2008).
Furthermore, for w(x) = g′(F(x)), we obtain a large class of premium principles based on distorted
expectation theory (when g : [0, 1] → [0, 1] is a continuous and differentiable function such as: (i) g
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is increasing and concave function, (ii) g(0) = 0 and g(1) = 1). On the other hand, there are premium
principles such as the exponential premium principle ln E(eλX)/λ, where λ > 0 and ‘ln’ means natu-
ral logarithm, which are not obtained for some function w. For more details on premium principles,
see Gerber (1979), Bühlmann (1980), Goovaerts et al. (1984), Newton et al. (1986), Gerber and Shiu
(1994), Denneberg (1994), Wang (1995, 1996, 2003), Kamps (1998), Denuit et al. (2006), Laeven and
Goovaerts (2008), Castaño-Martínez et al. (2020), and references therein.

The ordering is important in studying premium principles. Next, we recall two well-known stochastic
orders, which imply the mean ordering; see the classical books of Müller and Stoyan (2002), Shaked
and Shanthikumar (2007), and Belzunce et al. (2016). Let X and Y be two continuous random variables
with pdf’s fX(x) and fY(x), and tail functions FX(x) and FY(x), respectively. A random variable X is
said to be smaller than Y in the usual stochastic order, denoted by X ≤st Y , if FX(x) ≤ FY(x) for all x.
Moreover, X ≤st Y , if E[�(X)] ≤E[�(Y)] for all nondecreasing functions � such that the expectations
exist. Furthermore, we say that X is smaller than Y in the likelihood ratio order, denoted by X ≤lr Y , if
fY(x)/fX(x) is nondecreasing with respect to x. The connection between these stochastic orders is given
by the following diagram:

X ≤lr Y ⇒ X ≤st Y ⇒ E(X) ≤E(Y).

Calculating weighted premium principles, Furman and Zitikis (2008), applied the ordering X ≤lr Xw,
where w is a nondecreasing function, and introduced the premium given in (1.1) by using the mean of
Xw, that is, Hw(X) =E(Xw) ≥E(X). An important advantage of this method is that given the distribution
of risk X, one can determine the distribution of Xw, namely, an actuary has more information from just
the knowledge of premium principle E(Xw). A natural question here is: Can we use a different statistical
measure instead of mean value on the distribution of a weighted random variable to obtain a premium
principle?

The contribution of this work is to highlight the role of mode of a weighted risk in calculating pre-
mium principles. Our method is not only a complementary theory but also a generalization calculating
weighted premiums. A challenging problem here is the mode ordering for two unimodal distributions.
For this aim, we study how we can use the usual stochastic order to construct a family of unimodal
weighted distributions, into which we can order the modes in the strict sense (i.e., for two unimodal
random variables X and Y with modes mX and mY , we say that X <mode Y , if mX < mY).

This paper is organized as follows. In Section 2, we calculate the mean value premium principle by
using the mode of a weighted risk, and we provide some distributional properties. In Section 3, we give
a generalization of the mean value premium principle, which also generalizes the method of calculating
weighted premium principles proposed by Furman and Zitikis (2008). Furthermore, we give a gener-
alization of the exponential premium principle and we provide a two-side bound for it in terms of the
Esscher premium. In Section 4, we study the comparison of modes between two unimodal distributions,
by introducing the concept of mode ordering.

Throughout the paper, we give some examples to illustrate the theoretical results and discuss how
the mechanism of our method works. Furthermore, whenever we use an expectation, we are tacitly
assuming that it exists. Moreover, we use the terms nondecreasing and nonincreasing in a wide sense,
that is, a function g is nondecreasing (resp., nonincreasing) if g(x) ≤ g(y) (≥) for all x < y. We also use
the terms increasing and decreasing in a strict sense, that is, a function g is increasing (resp., decreasing)
if g(x) < g(y) (>) for all x < y.

2. Calculating the mean value premium principle from the mode of a unimodal weighted
distribution

Let X be a continuous nonnegative random variable with pdf f , distribution F, and tail F = 1 − F. Let
also w : [0, ∞) → [0, ∞) is a continuous, increasing, and convex function such that 0 <E[w(X)] < ∞.
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We consider the weighted random variable Xw̃ with mode mXw̃
= m̃w and pdf:

fw̃(x) = w̃(x)

E[w̃(X)]
f (x) = Fw(x) − F(x)

E(Xw) −E(X)
, x > 0, (2.1)

provided that E(Xw) >E(X) > 0. Here, the weight w̃(x) is

w̃(x) = Fw(x) − F(x)

f (x)
.

Furthermore, Xw̃ is unimodal, with mode m̃w = w−1(E[w(X)]). Therefore, the premium principle

Tw̃(X) := m̃w = w−1(E[w(X)]) (2.2)

is the well-known mean value principle; see for more details Goovaerts et al. (1984). Since, by
assumption, w(x) is convex, we have (by Jensen’s inequality) the property m̃w ≥E(X).

Remark 2.1.

(i) An interpretation of the density fw̃ in applied probability is the following. Let X and Y be two
nonnegative continuous random variables with X ≤st Y and E(X) <E(Y). Let also FX(x) and
FY(x) be the tail functions of X and Y , respectively. Then, by Theorem 4.1 of Di Crescenzo
(1999), there exists a suitable nonnegative random variable U such that

E[g(Y)] −E[g(X)] =E[g′(U)] [E(Y) −E(X)], (2.3)

provided that g is a measurable and differentiable function such that E[g(X)] and E[g(Y)] are
finite, and that its derivative g′ is measurable and Riemann-integrable. Here, the pdf of the
random variable U is

fU(x) = FY(x) − FX(x)

E(Y) −E(X)
.

Recalling that the mean value theorem states that if g is a function continuous in [x, y] and
differentiable in (x, y), then there exists a point u ∈ (x, y) such that

g(y) − g(x) = g′(u) (y − x),

formula (2.3) is a probabilistic analogue of the mean value theorem. Hence, applying this prob-
abilistic analogue of the mean value theorem between X and Xw (i.e., Xw plays the role of Y ), we
obtain the new random variable Xw̃ (i.e., Xw̃ plays the role of U) with pdf fw̃. For more details, see
Di Crescenzo (1999), Psarrakos (2022), and reference therein. It is worth mentioning that the
relation E(X) ≤E(Xw̃) ≤E(Xw) does not hold in general (see Proposition 4.1 in Di Crescenzo,
1999), which implies that the relation X ≤st Xw̃ ≤st Xw does not hold in general.

(ii) The premium Tw̃(X) for w(x) = eλx gives the exponential premium ln E(eλX)/λ (λ > 0).
Furthermore, for w(x) = xa (a ≥ 1), Tw̃(X) yields the premium (E[Xa])1/a; see Goovaerts et al.
(1984, p. 123).

It is well known that if the mean is greater than the mode, then the distribution is positively skewed.
We recall that Pearson (1895) proposed (μ − m)/σ as a measure of skewness for a univariate distribution
with mean μ, mode m, and variance σ 2. Next, we compare the mode and the mean of Xw̃, under the
hypothesis that X ≤st Xw̃.

Proposition 2.1. If X ≤st Xw̃, then m̃w ≤E(Xw̃).

Proof. Let X ≤st Xw̃. Recalling that w is an increasing and convex function, we have

E[w(X)] ≤E[w(Xw̃)] ≤ w[E(Xw̃)],
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where the second inequality follows by Jensen’s inequality. Therefore,

w−1(E[w(X)]) ≤E(Xw̃),

or equivalently,

m̃w ≤E(Xw̃),

which completes the proof.

In the following theorem, for w(x) = x, we provide a characterization result for the case where Xw̃ =d

Xw, where =d means the equality in distribution. This condition gives that w̃(x) = w(x) is increasing in x.
Hence, (keeping in mind that likelihood order ≤lr implies the usual stochastic order ≤st) the assumption
X ≤st Xw̃ in Proposition 2.1 is satisfied.

Theorem 2.1. Consider the weighted risks Xw and Xw̃, where w(x) = x, x > 0. Then, Xw̃ =d Xw if and
only if X follows a Gamma distribution.

Proof. (⇒) Let Xw̃ =d Xw. Then, we have

fw̃(x) = fw(x),

for all x > 0, and using formula (2.1) we get

Fw(x) − F(x)
E(X2)
E(X)

−E(X)
= x

E(X)
f (x).

By differentiating and after some computation, we conclude that

f ′(x)

f (x)
= E(X) − x − Var(X)

E(X)

Var(X)
E(X)

x
.

An alternative representation of the latter expression is

f ′(x)

f (x)
= k − x − q′(x)

q(x)
,

where k =E(X) and q(x) = Var(X)
E(X)

x. Therefore, by Ruiz and Navarro (1994), X follows a Gamma
distribution.

(⇐) Suppose that X follows a Gamma(a, b) distribution with parameters a > 0, b > 0, and pdf

f (x) = ba

�(a)
xa−1 e−bx, x > 0, (2.4)

where �(a) = ∫ ∞
0

xa−1 e−x dx is the Gamma function, and tail

F(x) = �(a, bx)

�(a)
,

where �(a, x) = ∫ ∞
x

ya−1 e−y dy is the upper incomplete Gamma function. Then, Xw follows a
Gamma(a + 1, b) distribution. Recalling that

�(a + 1, x) = a �(a, x) + xa e−x,

formula (2.1) yields

fw̃(x) =
�(a+1,bx)
�(a+1)

− �(a,bx)
�(a)

a+1
b

− a
b

= ba+1

�(a + 1)
xa e−bx = fw(x),

and the result follows.
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Table 1. The values of E(X), E(Xw), E(Xw̃), and m̃w

of Gamma distribution in Example 2.1, for a = 3,
b = 2, and c = 1, 2, 3, 4.

c E(X) E(Xw) E(Xw̃) m̃w

1 1.5 2 2 1.5
2 1.5 2.5 2.25 1.73205
3 1.5 3 2.5 1.95743
4 1.5 3.5 2.75 2.17794

Figure 1. The pdf fw̃(x) given in Example 2.1 for a = 3, b = 2 and 0 ≤ x ≤ 7, when (i) c = 1 (left part),
and (ii) c = 2 (right part).

Example 2.1. Let X follows a Gamma(a, b) distribution with parameters a > 0, b > 0, and pdf f(x) given
in (2.4). The r-order moment of X is

E(Xr) = �(a + r)

br �(a)
.

Let also w(x) = xc, where c ≥ 1. Then, Xw follows a Gamma(a + c, b) with mean E(Xw) = a+c
b

.
Furthermore, we have

fw̃(x) =
�(a+c,bx)
�(a+c)

− �(a,bx)
�(a)

c
b

and

E(Xw̃) = E(X2
w) −E(X2)

2(E(Xw) −E(X))
=

�(a+c+2)
b2 �(a+c)

− �(a+2)
b2 �(a)

2( a+c
b

− a
b
)

= 2a + c + 1

2b
.

It is clear that for c = 1, we have E(Xw) =E(Xw̃) (see also Theorem 2.1), and for c > 1, we have E(Xw) >

E(Xw̃). Furthermore, the mode of Xw̃ (see (2.2)) is

m̃w =
(

�(a + c)

�(a)

)1/c 1

b
.

In Table 1, we give the values of E(X), E(Xw), E(Xw̃), and m̃w for a = 3, b = 2, and c = 1, 2, 3, 4.
Furthermore, in Figures 1 and 2, we drew the pdf fw̃(x), giving also the values of mode and mean of
Xw̃ (see the vertical lines).

Example 2.2. Suppose that X follows an Exponential(b) distribution with parameter b > 0, and pdf

f (x) = b e−bx, x > 0. (2.5)
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Figure 2. The pdf fw̃(x) given in Example 2.1 for a = 3, b = 2 and 0 ≤ x ≤ 7, when (i) c = 3 (left part),
and (ii) c = 4 (right part).

For b > λ > 0, let also w(x) = eλx. Then, Xw follows an Exponential(b − λ) distribution, and the pdf of
Xw̃ is

fw̃(x) = e−(b−λ)x − e−bx

1
b−λ

− 1
b

= b

λ
(b − λ) e−(b−λ)x(1 − e−λx), x > 0.

It is worth mentioning that Xw̃ belongs to a family of weighed exponential distribution introduced by
Gupta and Kundu (2009). We recall, see Gupta and Kundu (2009), that a nonnegative random variable
X is said to have a weighted exponential distribution, with the shape and scale parameters as α > 0 and
β > 0, respectively, if the PDF of X is

fX(x; α, β) = α + 1

α
λ e−βx(1 − e−αβx), x > 0.

Therefore, Xw̃ follows a weighed exponential distribution with parameters α = λ/(b − λ) and β = b − λ.
A probabilistic interpretation of the fw̃(x) is that Xw̃ =d X + Xw; see Di Crescenzo (1999); for further
interpretations and properties, see Gupta and Kundu (2009). The mode and the mean value of Xw̃ are

m̃w = 1

λ
ln E(eλ X) = 1

λ
ln

b

b − λ

and

E(Xw̃) =E(X) +E(Xw) = 1

b
+ 1

b − λ
.

One can also verify that the ratios
fw̃(x)

f (x)
= b − λ

λ
(eλx − 1)

and
fw̃(x)

fw(x)
= b

λ
(1 − e−λx)

are increasing functions. Hence, X ≤lr Xw ≤lr Xw̃. In Figure 3, we drew the pdf fw̃(x) for b = 2 and λ = 1,
giving also the values m̃w = 0.693147 and E(Xw̃) = 1.5.

Example 2.3. Suppose that X follows a Pareto(a, b) type I distribution with parameters a > 3 and b > 0,
pdf

f (x) = aba

xa+1
, x > b,
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Figure 3. The pdf fw̃(x) given in Example 2.2 for b = 2, λ = 1 and 0 ≤ x ≤ 5.

and r−order moment E(Xr) = abr/(a − r) for 0 < r < a. We also consider the weight function w(x) = xc,
for 1 ≤ c < a − 1. Then, Xw follows a Pareto(a − c, b) type I distribution, and the pdf of Xw̃ is

fw̃(x) =
ba−c

xa−c − ba

xa

(a−c)b
a−c−1

− ab
a−1

= a − 1

c

(a − c − 1) ba−c−1

xa−c

(
1 − bc

xc

)
, x > b.

Keeping in mind the definition of weighed exponential distributions in the Example 2.2, an alternative
representation of fw̃(x) is

fw̃(x) =
c

a−c−1
+ 1

c
a−c−1

(a − c − 1) ba−c−1

xa−c

[
1 −

(
b

x

) c
a−c−1 (a−c−1)]

, x > b,

and hence, in a similar way as Gupta and Kundu (2009), we can say that Xw̃ follows a weighed Pareto
type I distribution with parameters c/(a − c − 1) and a − c − 1. The mode and the mean of Xw̃ are

m̃w = [E(Xc)]1/c =
(

a

a − c

)1/c

b

and

E(Xw̃) = (a − 1) (a − c − 1)

(a − 2) (a − c − 2)
b,

respectively. Furthermore, the ratios
fw̃(x)

f (x)
= (a − c − 1) (a − 1)

acba+1
(ba−c xa+1 − ba x)

and
fw̃(x)

fw(x)
= (a − c − 1) (a − 1)

(a − c)cba−c+1
(ba−c x − ba x−c+1)
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Figure 4. The pdf fw̃(x) given in Example 2.3 for a = 5, b = 1, c = 2 and 0 ≤ x ≤ 7.

are increasing functions. Hence, X ≤lr Xw ≤lr Xw̃. In Figure 4, we drew the pdf fw̃(x) for a = 5, b = 2 and
c = 2, giving also the values m̃w = √

5/3 and mean of E(Xw̃) = 8/3.

3. A generalization
By using a generalization of (2.2), we obtain a large class of weighted premiums, which includes
the weighted premiums proposed by Furman and Zitikis (2008). In fact, let w : [0, ∞) → [0, ∞)
and v : [0, ∞) → [0, ∞) two continuous functions such that 0 <E[w(X)] < ∞ and 0 <E[v(X)] < ∞.
Furthermore, assume that w is increasing, v is nondecreasing and ξ (x) = w(x)/v(x) is increasing and
convex function. Let also consider a nonnegative weighted random variable Xw̃v of X with pdf

fw̃v(x) = w̃v(x)

E[w̃v(X)]
f (x) = Fw(x) − Fv(x)

E(Xw) −E(Xv)
,

provided that E(Xw) >E(Xv) > 0. Here, the weight w̃v(x) is

w̃v(x) = Fw(x) − Fv(x)

f (x)
.

The mode of Xw̃v follows by solving the equation
w(x)

E[w(X)]
= v(x)

E[v(X)]
,

or equivalently,

ξ (x) = E[w(X)]

E[v(X)]
. (3.1)

Since the function ξ (x) = w(x)/v(x) is increasing (by assumption), the solution of Equation (3.1) is
unique. Denote by mXw̃v = m̃ξ the unique mode of Xw̃v. Then the generalized mode premium is defined
by:

Tξ̃ (X) := m̃ξ = ξ−1

(
E[w(X)]

E[v(X)]

)
. (3.2)
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Proposition 3.1. Under the assumptions given above for the functions w(x), v(x) and ξ (x) = w(x)/v(x),
it holds that m̃ξ ≥E(X).

Proof. Since ξ (x) is increasing and v(x) is nondecreasing, we have
E[w(X)]

E[v(X)]
= E[ξ (X) v(X)]

E[v(X)]
≥E[ξ (X)]. (3.3)

Furthermore, recalling that ξ (x) is convex, applying Jensen’s inequality, it follows

E[ξ (X)] ≥ ξ (E(X)). (3.4)

By (3.3) and (3.4), we get
E[w(X)]

E[v(X)]
≥ ξ (E(X)),

and keeping in mind that ξ (x) is increasing, we obtain

ξ−1

(
E[w(X)]

E[v(X)]

)
≥E(X),

which completes the proof.

Remark 3.1.

(i) For v(x) = a, where a is a positive constant, we have m̃ξ = m̃w.
(ii) For w(x) = x v(x), we have that m̃ξ is the unique solution of the equation:

x v(x)

E[X v(X)]
= v(x)

E[v(X)]
.

Therefore,

m̃ξ = E[X v(X)]

E[v(X)]
;

for more details, see Furman and Zitikis (2008).
(iii) For w(x) = eλ x v(x), we have that m̃ξ is the unique solution of the equation:

eλ x v(x)

E[eλ X v(X)]
= v(x)

E[v(X)]
.

Therefore, we obtain the premium:

m̃ξ = 1

λ
ln

E[eλ X v(X)]

E[v(X)]
, (3.5)

which is a generalization of the exponential premium principle. In the following section, we
study further this generalization for v(x) = eγ x (where λ > γ > 0).

(iv) An analogous interpretation as the one given in Remark 2.1 for the density fw̃v is the following.
Applying a probabilistic analogue of the mean value theorem between Xv and Xw, we obtain the
new random variable Xw̃v with pdf fw̃v.

3.1. A generalization of exponential premium principle
For λ > γ > 0, we consider the functions w(x) = eλ x and v(x) = eγ x, and hence, ξ (x) = e(λ−γ )x. By (3.2)
(or (3.5)), it follows that

m̃ξ = 1

λ − γ
[ln E(eλ X) − ln E(eγ X)], (3.6)
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where m̃ξ is the (unique) mode of Xw̃v with pdf

fw̃v(x) =
∫ ∞

x
eλ y

E(eλ X )
f (y) dy − ∫ ∞

x
eγ y

E(eγ X )
f (y) dy

E(X eλ X )
E(eλ X )

− E(X eγ X )
E(eγ X )

.

Theorem 3.1. The mode m̃ξ of Xw̃v given in (3.6) satisfies the following properties:

(i) A two-side bound is

E[X eγ X]

E[eγ X]
≤ m̃ξ ≤ E[X eλ X]

E[eλ X]
. (3.7)

(ii) It holds that
dm̃ξ

dγ
≥ 0 and

dm̃ξ

dλ
≥ 0.

(iii) For γ → 0 and γ → λ, we have

lim
γ→0

m̃ξ = 1

λ
ln E[eλ X] and lim

γ→λ
m̃ξ = E[X eλ X]

E[eλ X]
,

respectively.

Proof.

(i) We have

m̃ξ = 1

λ − γ
[ln E(eλ X) − ln E(eγ X)]

= λ

λ − γ

1

λ

∫ λ

0

E(X es X)

E(es X)
ds − γ

λ − γ

1

γ

∫ γ

0

E(X es X)

E(es X)
ds

= 1

λ − γ

∫ λ

γ

E(X es X)

E(es X)
ds.

Since, E(X es X )
E(es X )

is nondecreasing in s, the two-side bound in (3.7) for m̃ξ follows.
(ii) After some computation, we get

dm̃ξ

dγ
= 1

λ − γ

[
m̃ξ − E[X eγ X]

E[eγ X]

]
and

dm̃ξ

dλ
= 1

λ − γ

[
E[X eλ X]

E[eλ X]
− m̃ξ

]
.

Therefore, by using formula (3.7), the result of part (ii) follows.
(iii) The result follows directly.

Example 3.1. Suppose that X follows an exponential distribution with parameter b > 0 and pdf f(x)
given in (2.5). Consider the following options for the weights w(x) and v(x), when b > λ > γ > 0:

(i) w1(x) = x v1(x) and v1(x) = eγ x,
(ii) w2(x) = x v2(x) and v2(x) = eλ x,
(iii) w3(x) = eλ x and v3(x) = eγ x.
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Table 2. For i = 1, 2, 3, the distribution of Xwi , Xvi , X̃i =d Xw̃ivi and the mode m̃i

of X̃i.

Weighted risk Distribution m̃i, i = 1, 2, 3
Xw1 Gamma(2, b − γ )
Xv1 Exponential(b − γ )
X̃1 Gamma(2, b − γ ) m̃1 = 1

b−γ

Xw2 Gamma(2, b − λ)
Xv2 Exponential(b − λ)
X̃2 Gamma(2, b − λ) m̃2 = 1

b−λ

Xw3 Exponential(b − λ)
Xv3 Exponential(b − γ )
X̃3 Weighted Exponential( λ−γ

b−λ
, b − λ) m̃3 = 1

λ−γ
ln b−γ

b−λ

Figure 5. The pdf f̃1(x) = fw̃1v1 (x) (left part – dashed line), f̃2(x) = fw̃2v2 (x) (center part - dotted line), and
f̃3(x) = fw̃3v3 (x) (right part – solid line) given in Example 3.1 for b = 2, λ = 1, γ = 0.5, and 0 ≤ x ≤ 5.

For each i = 1, 2, 3, we also consider the random variable X̃i =d Xw̃ivi with pdf f̃i(x) = fw̃ivi (x) and its
mode m̃i, respectively. In Table 2, for i = 1, 2, 3, we determine the distribution of the above random risk
trough its pdf:

fwi (x) = wi(x)

E[wi(X)]
f (x), fvi (x) = vi(x)

E[vi(X)]
f (x) and f̃i(x) = Fwi (x) − Fvi (x)

E(Xwi ) −E(Xvi )
.

We note that

f̃3(x) = Fw3 (x) − Fv3 (x)

E(Xw3 ) −E(Xv3 )
= b − γ

λ − γ
(b − λ) e−(b−λ)x[1 − e−(λ−γ )x], x > 0,

and hence, X̃3 follows a Weighted Exponential( λ−γ

b−λ
, b − λ); see Example 2.2. Furthermore, we have

X̃1 =d Xw1 , X̃2 =d Xw2 , and X̃3 =d Xw3 + Xv3 . For i = 1, 2, 3, in Table 2, we also provide the mode of X̃i,

m̃1 = E(X eγ X)

E(eγ X)
= 1

b − γ
, m̃2 = E(X eλX)

E(eλX)
= 1

b − λ

and

m̃3 = 1

λ − γ
[ln E(eλ X) − ln E(eγ X)] = 1

λ − γ
ln

b − γ

b − λ
.

In Figures 5 and 6, we drew the pdf f̃i(x) = fw̃ivi (x), for i = 1, 2, 3, b = 2, λ = 1, and γ = 0.5. We
observe that m̃1 = 0.66667 (the lower bound in (3.7)), m̃2 = 1 (the upper bound in (3.7)), and m̃3 =
0.81093 (the exact value of the generalized exponential premium).
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Figure 6. The pdf f̃i(x) = fw̃ivi (x) given in Example 3.1 for i = 1 (dashed line), i = 2 (dotted line), i = 3
(solid line), b = 2, λ = 1, γ = 0.5, and 0 ≤ x ≤ 2.

4. Mode ordering for a class of unimodal weighted distributions
Let X and Y be two continuous nonnegative random variables with pdf’s fX and fY , distributions FX and
FY , and tails FX = 1 − FX and FY = 1 − FY , respectively. We assume that X ≤st Y and E(X) <E(Y). Let
us also assume that X and Y are unimodal with mode mX and mY , respectively.

Definition 4.1. We say that the mode of X is smaller than the mode of Y, denoted by X <mode Y ,
if mX < mY .

Next, we present a class of unimodal weighted distributions for which the mode is the mean value
premium principle.

Definition 4.2. Let Xw be a weighted random variable of X, where w : [0, ∞) → [0, ∞) is a continuous
and increasing function such that 0 <E[w(X)] < ∞ and E(X) <E(Xw). Consider also the nonnegative
weight function

w̃(x) = FXw (x) − FX(x)

fX(x)
.

We say that Xw̃ ∈Aw(FX) if the pdf of Xw̃ is

fXw̃
(x) = w̃(x)

E[w̃(X)]
fX(x) = FXw (x) − FX(x)

E(Xw) −E(X)
.

The mode mXw̃
= w−1(E[w(X)]) of Xw̃ ∈Aw(F) is unique. Let also Yw̃ ∈Aw(FY), that is, the pdf of Yw̃

is

fYw̃
(x) = w̃(x)

E[w̃(Y)]
fY(x) = FYw (x) − FY(x)

E(Yw) −E(Y)
,

where

w̃(x) = FYw (x) − FY(x)

fY(x)
.

In the following proposition, we prove (under some assumptions) that Xw̃ <mode Yw̃.
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Proposition 4.1. Let X and Y be two continuous nonnegative random variables with distributions FX

and FY , respectively. Let also X ≤st Y , and w be a continuous and increasing function such that 0 <

E[w(X)] <E[w(Y)]. If Xw̃ ∈Aw(FX) and Yw̃ ∈Aw(FY), then mXw̃
< mYw̃

.

Proof. By assumptions, we have E[w(X)] <E[w(Y)]. Hence, w−1(E[w(X)]) < w−1(E[w(Y)]), which
completes the proof.

Remark 4.1. The mode order can be also applied when the nonnegative continuous function w(x) is
decreasing such that E(X) >E(Xw). In this case, we say that Xw̃ ∈Aw(F) if the pdf of Xw̃ is

fXw̃
(x) = w̃(x)

E[w̃(X)]
fX(x) = FX(x) − FXw (x)

E(X) −E(Xw)
,

where

w̃(x) = FX(x) − FXw (x)

fX(x)
.

By using similar arguments as in the proof of Proposition 4.1, we can obtain that if Xw̃ ∈Aw(FX) and
Yw̃ ∈Aw(FY), then mXw̃

> mYw̃
.
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