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SULLIVAN'S MINIMAL MODELS AND HIGHER ORDER 
WHITEHEAD PRODUCTS 

PETER ANDREWS AND MARTIN ARKOWITZ 

1. I n t r o d u c t i o n . The theory of minimal models, as developed by Sullivan 
[6; 8; 16] gives a method of computing the rational homotopy groups of a 
space X ( that is, the homotopy groups of X tensored with the addit ive group 
of rationals Q). One associates to X a free, differential, graded-commutat ive 
a l g e b r a , ^ over Q, called the minimal model of X, from which one can read off 
the rational homotopy groups of X. More important ly , the rational homotopy 
type of X is determined hy*Jt. Thus all rational homotopy invariants of X can 
theoretically be derived from ^é. I t is indicated in the above works how to 
obtain two impor tant homotopy invariants from *Jt', namely, the rational 
Hurewicz homomorphism and rational Whitehead products. I t is s tated 
(without proof) in [16] tha t the quadrat ic term in the formula for the differen­
tial of the minimal a l g e b r a ^ determines rational Whitehead products in X. 
The main goal of this paper is to prove and generalize this lat ter result. We 
show tha t the r th order homotopy operation, the r th order Whitehead product , 
can be obtained from r-fold products in the decomposition of the differential of 
the minimal algebra. (Higher order Whitehead products are discussed in 
[8, pp. 183-184] in connection with minimal models. However, it is clear from 
the context tha t i terated ordinary Whitehead products and not higher order 
Whitehead products are being considered.) In point of fact, Sullivan's theory 
does not give the rational homotopy groups, the rational Hurewicz homo­
morphism, or rational Whitehead products, but rather the dual (in the vector 
space sense) of these objects. Thus in our main result we determine the dual of 
the r th order Whitehead product set from the minimal model. 

The paper is organized as follows. In Sections 2 and 3 we present preliminary 
material on higher order Whitehead products, localization, Postnikov systems, 
linear algebra, and minimal models. In Section 3 we make explicit the pairing 
between elements of the minimal algebra*Jt and elements of the homotopy of 
X. We consider in Section 4 the universal r th order Whitehead product element 
in the homotopy of the fat wedge of localized spheres. We give a complete 
calculation of the pairing of this element with all the appropriate generators of 
the minimal model of the fat wedge. This result enables us, in Section 5, to 
determine the pairing of r th order Whitehead product elements in a rat ional 
space with those elements of the minimal algebra whose differential decom­
poses into a sum of products with a t least r factors. The paper concludes with 
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962 P. ANDREWS AND M. ARKOWITZ 

several applications. We compute some higher order Whi tehead products in 
two stage Postnikov systems and we show tha t the vanishing of all Whi tehead 
products in a rational space implies the existence of an i7-s t ructure on t ha t 
space. 

2. P r e l i m i n a r i e s o n h igher order W h i t e h e a d p r o d u c t s , l o c a l i z a t i o n 
a n d l inear a lgebra . All spaces in this paper will be 1-connected, pointed 
spaces having the homotopy type of CW-complexes. Maps and homotopies 
are to preserve base points. We shall not distinguish notat ional ly between a 
map and its homotopy class and between two spaces of the same homotopy 
type. If / is a map , t hen /# denotes the induced homomorphism on homotopy 
groups and /* ( /* ) the induced homomorphism on homology (cohomology) 
groups. Notat ional ly we suppress coefficients in homology and cohomology bu t 
all homology will be with integer coefficients Z and all cohomology with rational 
coefficients Q. 

Let Ai, A2, . . . , Ar be any r spaces, r > 1. We define the following two sub-
spaces of the cartesian product i i X ^ 2 X . . . X i r : 

(1) the wedge Ai V A2 V . . . V Ar consisting of all r-tuples with a t most 
one coordinate not a t the base point ; 

(2) the fat wedge T(AU A2, . . . , Ar) consisting of all r-tuples with a t least 
one coordinate a t the base point. 

For homology elements wx G Hni(Ai), w2 G Hn2 (A2), . . . , wr G Hnr(Ar) 
(Z coefficients), we denote the homology cross product by 

w1 X w2 X . . . X wr G Hni+...+nr(Ai X A2 X . . . X AT) [7, p. 190]. 

For cohomology elements ux G Hni(Ai), u2 G Hn*(A2), . . . , ur G HUr(Ar) (Q 
coefficients), the cohomology cross product is 

Ui X u2 X . . . X ur G Hn^---+nr{Al X A2 X . . . X AT) [7, p. 215]. 

Next let nu i = 1, 2, . . . , r be integers > 1 ( / > 1), N — n\ + n2 -\- . . . 
+ nr and Sni the w r sphere . Denote the product Sni X . . . X SUr by P', the 
wedge S*1 V . . . V SHr by W and the fat wedge T(Sn\ . . . , Sn') by V. If 
vt e Hni(S

ni) œ Z are generators, then n / X . - . X » / ^ HN(P') œ Z is a 
generator. Let j : Pf —+ (P', T') be the inclusion and d: TTN(P', T') —* irN-i(Tf) 
the boundary homomorphism in the homotopy sequence of the pair (P r , T'). 
Since the pair (Pf, T') is (N — l ) -connected, the Hurewicz homomorphism 
h: TTN(P', Tf) —>HN(P', Tr) is an isomorphism. Define the universal rth order 
Whitehead product element (of type wi, n2} . . . , nr) w' G ivN-i{Tf) by w' = 
dh^ùW X . . . Xvr'): 

HN(P')^UHN{P', T') <A- TAP', n -!L TN-X(X'). 

Now suppose X is a space and xt G irni(X), i = 1, 2, . . . , r, w, > 1 and 
r ^ 2. T h e elements xt define a map g' : W —> X. Following Porter [13], define 
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the (possibly empty) r th order Whitehead product set [xi, x2,. . . , xr] C 7^-1 (X) 
to be 

{/'#(w')|/ ': V -> X an extension of g'}. 

We next summarize some facts about localization [2; 9]. For a space X, let 
X$ denote the localization of X a t the empty set 0. Then X$ is also called the 
rationalization of X . In this paper localization shall always mean localization a t 
0. If W = SçT1 V . . . V V ' , r = r ( 5 0

n i , . . . , S*"') and P = 5 ^ X . . . 
X S$nr and W7, 2"' and P' are as above, then the localization maps ec Sni —» 
y * induce maps 

eiW-^W, e;T'-+T and ê : P ' - > P 

each of which is an extension of the previous one. Since e, g and ë localize 
homology, it follows [2, pp. 45-48] tha t each is a localization map. T h u s 
W = WV, r = 2V and P = P 0 ' . If e fa: ffB,(S*<) -+Hni(Sf*) and e#: T r ^ P ' ) 
—> 7rAr_i(r), then define vt (E Hni(S$ni) and ze; £ 7^-1 (P) by vt = eu(v/) and 
w = e%(wr). We call w the rational universal rth prder Whitehead product ele­
ment (of type Wi, W2, . . . , w r). 

By a rational space is meant the rationalization of some space. If X is a 
rational space and xt (E wni(X), i = 1, 2, . . . , r, then, since W7 = WV, the m a p 
gf: Wf -^ X determined by the xt induces a unique map g: W —> X such tha t 
ge = g'. We have the following characterization of higher order Whitehead 
products in X. 

L E M M A 2.1. If X is a rational space and xt G Tni(X), then the rth order 
Whitehead product set [xi, x2, . . . , xr] Ç 7TJV_I(X) w 

{/# (w) \f: T -+ X an extension of g} 

where w is the rational universal rth Whitehead product element. 

The proof is an immediate consequence of elementary properties of localiza­
tion and hence omitted. Since only rational space will be considered in the 
sequel, this characterization of Whitehead products will be used. 

Next we turn to a few simple facts about Postnikov systems [15, Chapter 8]. 
For any space X let 

• • • —> Xn+i —+ Xn —> Xw_i —> . . . 

denote the Postnikov tower of X , where Xn is the nth Postnikov section of X. 
In particular, we consider Postnikov towers for P = Stf1 X . . . X S^r and 
T = T(S$ni, . . . , S<bnr). Since the inclusion map T —» P is an (N — 2)-equiv-
alence, N = ^ n u we may assume TN-2 = PN-2- If we denote (S$ni)N-2 
by Liy then 

PN-2 — (5,0Wl)Ar_2 X . . . X (S$nr)N-2 — L\ X . . . X £ r . 
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Note that 

(K(Q,nt) = 50
n i if nt odd 

Lt = \K(Q, n{) if nt even and N — 2 < 2ni — 1 
(s0

n»' if nt even and iV - 2 ^ 2w, - 1. 

We now define basic homology classes in Hni(Li) and Hni(K(Q, nt)). Let 
qt: Sç)ni —> (S$ni)N-2 = L* be the (iV — 2)-equivalence of the Postnikov 
system of S0

n* and let 

v: L, = W 0 * - 2 - > WO»,- = ^ ( ^ »t) 

be the composition of maps in the Postnikov tower. (If nt is odd, qt and v are 
identity maps.) 

Definition 2.3. The ôasic homology classes yt £ Hni(Li) and &< Ç 
Hni(K(Q,ni)) are 

7i = <7**00 and 6, = ^ ( Y O , 

where vt £ Hni(S<bni) has been defined above. 
If q: P = S®71* X . . . X Stf' -> P^-2 = Li X . . . X LT is the (N - 2)-

equivalence of the Postnikov system of P, then clearly 

(2.4) qt(vi X . . . X vr) = 7 l X . . . X yr in HN{LX X . . . X L r) . 

We obtain from the Postnikov towers of T and P a commutative diagram 

r„ inclusion 
7̂  

IN-i 

ir 

VN-\ 

rN-2 

- > p 

PN-2 

where lN-\ is the {N — 1)-equivalence of the Postnikov system of T and 
vN-i the fibre map of the Postnikov tower of T. Thus (q, lN-i) is a map of 
pairs (or rather a map of maps) 

(q,l„-i): (P, !T)->(7V_2, 7V_,). 

If 7v-i denotes the fibre of vN-\ with inclusion map iN-\\ FN-\ —> 7V-i and 
T: HN(TN-2) —> HN-i(FN-i) is the homology transgression [10, p. 284], then 
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the following diagram commutes (cf. [1, Remark 3.2]) 

HN(TN-2} 

> HN(P, T) • T . V - I ( 7 ' ) 

Lv-i i 

>HN(1 N_2,lN-l) 

i ( / V - i ) 

> TTAT-I ( ^ N 

> TTN-i(FN_i). 

Here /r"1 denotes the inverse of the Hurewicz isomorphism, d the homotopy 
boundary homomorphism and j the inclusion map into a pair. This diagram 
and (2.4) yield the following useful result. 

LEMMA 2.5. With the above notation, 

lN-U(w) = iN-Uh-lT(~n X . . . X ? r ) 

in the group TN-I(TN-I), where w is the rational universal r th order Whitehead 
product element and the yt are basic homology classes. 

W e conclude this section with some linear algebra. Let M(r} Q) denote the 
set of r X r matrices with entries from Q. 

Definition 2.6. For fixed positive integers ni, n%, . . . , nr, define a function 
K: M(r, Q) -* Q by 

K(A) = X) (— l)e(,r)ai«(i)«2^2) . . .am(T) 

where A = (atj) Ç M(r, Q), Sr is the permutat ion group on {1, 2, . . . , r} and 
(Cf. [5, p. 473]) 

eW = Z z2 nin<r(j). 
l£j<a-l(i) 

<r(j)>i 

If there are no summands in the lat ter sum, then let e(o-) = 0. 
These formulas appear complicated, but they describe a fairly simple idea. 

Suppose Wi, w2, . . . , wr are elements of a graded (ant i )commutat ive algebra 
with degree wt = nt. Use the matr ix A = (atj) to construct formal expressions 

pi = anwi + . . . + airwr, p2 = a2iWi + . . . + a2rwr, etc. 

Then K{A) gives the coefficient of the term WiW2 . . . wr in the product p\p2. . . 
pT. The ( — 1 )€(<r) introduces a ( — 1 ) m n whenever two adjacent elements of degree 
m and n are interchanged. Thus in the graded algebra, 

W1W2 . . .Wr = (— l)e(<T)Wa(i)W0 (2) W„(r). 
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When all the n / s are odd, then it is easily seen that K(A) is the determinant 
of A. When all the n / s are even, then K(A) is the permanent of A [11]. 

3. Background on minimal models. Unless otherwise stated all spaces 
will now be the rationalization of spaces of finite type. By a space of finite type 
we mean a 1-connected space of the homotopy type of a CW-complex with 
finitely generated homotopy groups in each dimension. We further assume that 
each space X comes with a fixed Postnikov system, that is, a Postnikov tower 

v vn+\ vn v 
. . . > A n + i > A w > A n _ i > . . . 

and compatible w-equivalences ln: X —> Xn. Each vn is a fibre map with fibre Fn 

an Eilenberg-MacLane space K{irn{X), n), 

(3.1) Fn—*Xn—*Xn-\. 

We recall some facts about minimal models [6; 8; 16]. The minimal model 
^ x of X is a free, commutative, differential, graded algebra (DGA) over Q 
with differential d a degree 1, decomposable homomorphism. The cohomology 
algebra H*(*s^x) is isomorphic to H*(X). The construction of ^éx can proceed 
inductively from the Postnikov system of X. One inductively defines free 
commutative DGAs ^Jtx{n) for all n ^ 1 and then sets ^éx — U» ^x(n). 
As an algebra 

(3.2) Jéx(n) =Jéx(n - 1) ® H*(Fn). 

The differential d oi^x{n) is defined on^x{n — 1) to be the (inductively) 
given one. On H*(Fn), d is determined by the cohomology transgression 

f: H^F^-^H^iX^) ^Hn^{Jéx{n - 1)) 

of the fibration (3.1). There are two important points to note here: 
(l)^x(n) is the subalgebra oî^x generated by all elements of degree ^ n; 
(2) <J(x(n) is the minimal algebra of Xn. 
Thus there is a sequence of algebra isomorphisms 

Xn:H*{Jtx(n))^H*{Xn) 

and they are related by the following commutative diagram 

H*(Jtx(n)) *L-+H*(Xn) 

H+^in-l^-^+H^X^). 

It is part of the general theory that there is a one-one correspondence be­
tween Postnikov towers of X 

. . . —> Xn+i —» Xn —> Xn-i —> . . . 
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and sequences of subalgebras 

. . . C^x(n - 1) C ^ z W C^x(n + 1) C . . . 

of the minimal algebra Jtx* Indeed, to specify a Postnikov system of X is it 
sufficient to give the minimal algebra ^ x and its sequence of minimal sub-
algebras <Jéx{n) generated by all elements of degree ^ n. Then the sub-
algebras ^éx{n) and the resulting Postnikov tower of X satisfy all the rela­
tions mentioned above. Furthermore, these considerations apply to mappings. 
In particular, a m a p / : X —> Y induces a DGA homomorphism (p\^Y —>^x-
F o r / induces a map of Postnikov towers fn: Xn —> Yn which inductively gives 
rise to homomorphisms cp(n): ̂ Y(n) —>^XM by (3.2). The isomorphisms 
Xn are compatible with <p(n) and/w. 

For any DGA S$ over Q with s/Q = Q, define the graded vector space of 
indécomposables I(s$) to be the quotient s//s/+ -J%f+, where s/+ denotes the 
elements of positive degree. Let a —-> à denote the quotient map s/ —> I(s/). 
We call In(<$/), the image of s/n under this map, the indécomposables of degree 
n. From the definition oi^x and (3.2), there is a natural isomorphism 

(3.4) «: I\Jtx) = I\J(x{n))^Hn(Fn). 

Moreover, a careful look at the construction yields the following commutative 
diagram [8, p. 163] 

H\Jtx(n),Jéx{n - l))-^-+Hn+l(^x(n - 1)) 

(3.5) In(JZx) = V i W ) Xn-l 

Hn(Fn)~ - * # * + ! ( * n _ l ) 

Here Ç^x(n), <y$x(n — 1)) is the relative cochain complex and 8 is the 
boundary homomorphism in the exact cohomology sequence. It can also be 
shown that for $ Ç ^x(n) of degree n 

(3.6) 50 = {d/3}„_i, 

where { }v denotes the cohomology class m<J?x(p) of a cocycle m<J?x(p). 
Diagram (3.5) now gives the relation 

(3.7) M Ê ) = x»-i({d0}n-,). 

We next define a basic pairing in the theory. 

Definition 3.8. Define the Sullivan pairing 

« , » : I"(^fx) ® Tm(X) - Q 
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as follows. Let y Ç In{Jlx) = In(^x(n)) and x £ Tm(X) and set 

// \\ _ <0 \in ^ m 

where ( , ): Hn(Fn) ® Hn(Fn) —> Q is the Kronecker pairing of cohomology 
and homology [7, p. 187]. 

A map of spaces induces a homomorphism of homotopy groups and of 
minimal models, and it can be shown that the Sullivan pairing is natural with 
respect to these homomorphisms. 

The existence of the Sullivan pairing implies that ln(<Jéx) is isomorphic to 
Horn (irn(X)j Q). Thus the theory of minimal models encompasses the theory 
of dual homotopy groups of rational spaces. The rest of this paper will show 
how to compute the operations dual to the rth order Whitehead product, 
r ^ 2. 

In the remainder of this section we examine the minimal models of localized 
spheres S$ni. We first introduce basic cohomology classes. 

Definition 3.9. A basic cohomology class bt £ Hni(K(Q, nt)) is defined by the 
condition that the Kronecker pairing (bu bt) = 1, where bt is the basic ho­
mology class (2.3). Now define a basic cohomology class yt (E Hni(Li) by 
yt = v*(bt), where v\ Lt = (S®ni)N-.2 —» (S&ni)ni = K(Q, n{) is the composi­
tion of Postnikov fibrations. 

It follows from the naturality of the Kronecker pairing that (7*, yt) = 1, 
where 7, is the basic homology class (2.3). 

We now determine the minimal model of S$ni which we denote by S^ t. 
We first note that S^ i(nt) is a free algebra on one generator at of dimension nt 

and d<Ti = 0. Indeed, the fibration (3.1) reduces to 

K(Q, nt) — • (S^)ni > (Se"')»,-! = * 

and we see by (3.2) that we may identify Sft(n<) with H*((SQHi)ni) = 
H*(K(Q, nf)), the free algebra generated by an element 0̂  in dimension nt. 
Thus there are identifications Hn<(K(Q} nt)) = Hn^(y t(nt)) = P^y^n^). 
The isomorphisms 

x„,: H"•'{y t(nt)) -» H"<(K(Q,nt)) and 
ut: I">(y t{ni)) -> H»<(K(Q, nt)) 

can be assumed to have the property 

(3 .10) Xm{vi)ni = bt = Ui(ài). 

If n< is odd, then Sf i{n\) — 5f i> If. Wi is even then S$ni can be represented as 
a two stage Postnikov system (3.1) 

K(Q, 2«, - 1) ->S«"< = ( V 0 h . - i -» (5B-')2,..-* = ( V ) , . -
= K(Q,nt). 

T h u s ^ ( is a free algebra generated by <ji d y "i and 6( 6 y ?n<~1 such that 
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ddi = 0 and dd{ = af. This describes the minimal model j ^ \ - of Sç? *'. We con­
clude by examining the Sullivan pairing in j / % 

LEMMA 3.11. If a{ £ y?
i
ni is the generator described above and et Ç Tni(Sûni) 

is the localization map, then ((au et)) = 1. 

Proof. ((attet)) = <O>*(<J*), / * ( ^ ) # ( ^ ) ) 

= (bu v*q_i*h(ei)) 

= (bu v+qi+em(vi)) 

= (bu v*qi*(Vi)) 

= (bu v*(yt)) 

= (bub,) 

= 1. 

4. T h e m i n i m a l m o d e l of t h e fat wedge . To compute Whitehead prod­
ucts from the minimal model, it will be necessary to know the minimal model 
of TN-i, the (TV — l ) s t Postnikov stage of the fat wedge T = T(S0ni,. . . ,S$nr). 
As was noted in § 2 we can choose Postnikov towers for the product P = 
S^ X . . . X Stf* and T such tha t Pn = (S0

ni)« X . . . X (Stf*)» for all n and 
Tn = Pn for n ^ TV - 2. In particular, P ^ _ 2 = 7V_2 = U X . . . X Lr (2.2). 

Now l e t ^ # d e n o t e ^ # T and let Sf\ denote ^S(bm. Then, since ^#(TV — 2) is 
the minimal model of TN^J({N - 2) ttSf^N - 2) ® . . . ® yr(N - 2). 
Thus the algebra <J{{N — 2) has generators at in degree nt for alW = 1, . . . , r 
and generators /3Z in degree 2n t — 1 whenever nt is even and 2n{ — 1 ^ TV — 2. 
Fur thermore, da* = 0 and d/3* = ax

2. We can make the relationship between <J( 
and the 5^* more precise in the following way. Let pt: T -+ S$ni be the projec­
tion onto the ith factor. Then pt induces maps of Postnikov sections 

pi': 7V-2 = Li X . . • X Lr —> (S<bni)N-2 = £* and 
pt": Tni-*(S?<)ni = K(Qjni) 

which are also projections onto factors. The pt induce homomorphisms of 
minimal models 

w y , ^ , vl-.y^N - 2)->.J{(N - 2) and 

<Pi":yt(n{)^>^t(nt). 
We thus have commutat ive diagrams 

,Jé + 
<fi 

(4.1) Tv-i-^iS?*)»-* = Lt ^(N-2)+^-yt(N-2) 

>W'k = #(&»<) » i ) - < - ^ - ^ , ( « < ) 
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where lN-2 and g* are (N — 2)-equivalences and TT and v are compositions of 
Postnikov fibrations. I t easily follows t ha t 

(4.2) *>/'(,<) = « i . 

In calculating HN(<Jt(N — 2) ) , we consider three cases: 

(4.3) Case 1: r = 2 and n\ = n2 is even. 

In this case HN(J£{N - 2)) = Q © Q © Q and {aia2},v-2, { a i % - 2 and 

{û:2
2}iv-2 form a basis. 

(4.4) Case 2: r > 2, 2 max {ni, . . . , nT\ = N and max {wi, . . . , nT) is even. 

Le tw , = max jwi , . . . , wr}. T h e n i f ^ ( ^ ( 7 V - 2)) = Ç © ( ? a n d { a i . . . aT}N-2 

and {«/}#-2 form a basis. 

(4.5) Case 3: all other possibilities. 
In this case HN(Jt{N — 2)) = Q and {«i . . . ar}iv-2 is a basis. 

W e are now able to de termine^#( iV — 1) from ^#( iV — 2) using the induc­
tive construction by means of cohomology instead of Postnikov towers (see 
[6, p. 251] and [8, pp. 153-155]). Since HN~l{T) = Oand HN{T) = 0, to obtain 

<J%(N — 1) f r o m ^ ( i V — 2) it is only necessary to adjoint generators in di­
mension N — 1 to kill the cohomology group HN(^(N — 2)). In Case 1, 

<J£(N — l ) ^ - 1 will have three new generators: <5, ei and e2 with dô = a\ . . . 
ar, dei = ai2 and de2 = a2

2. In Case 2, ^(N — l)N~~l will have two new 
generators ô and et with dô — a\ . . . <xT and det = a2. In Case 3, ^{N — \}N~l 

will have only one new generator <5 with dô = a\ . . . aT. This defines ^(N — 1) 
in all cases. As we observed in § 3, this determines the Postn ikov section 
TN-\ of T. T h e results of § 2 hold for this Postnikov tower of T. 

Before proving the main result of this section we easily establish a lemma. 
Recall t ha t XN-2'- HniÇJf(N - 2)) ->Hni(TN„2) is the isomorphism defined 
in § 3 and p/*: Hni(Li) —> Hni(TN„2) is induced by the projection p/: TN-2 = 
U X . . . X Lr-*Lt. 

L E M M A 4.6. If at £ <J£(N — 2) is the generator of degree nt and yt £ Hni(L{) 
is the basic class, then 

XN-IWÎIN-I = p/*(yi)' 

Proof. XN-2{<Xi\N-2 = -**Xni{ai)m (by 3.3) 

= **x„.-£/'{*<}».- (by 4.2) 

where <pt" is the cohomogy homomorphism induced by <p{": S^i(nt) —>^#(w (). 

But 

TT*Xni<Pi"{cri}ni = ^*Pi"*XniUAni 

= Pi'*v*XnA<nU (by 4.1) 

= pt'*»*(fii) (by 3.10) 

= P/*(7i) (by 3.9). 

We now give the main results of this section. 

https://doi.org/10.4153/CJM-1978-083-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-083-6


WHITEHEAD PRODUCTS 971 

PROPOSITION 4.7. J / \ Ç <J£N~l is any element such that d\ = ai . . . ar and 

w Ç wN-i(T) is the rational universal Whitehead product element, then the 

Sullivan pairing 

«*,«/>> = ( - i r 
where A = 2 * < j « i % -

The sign ( — 1)A here and in subsequent propositions is a result of our con­
vention regarding the cohomology cross product. We follow Dold [7, Chapter 
7] who uses the s tandard sign-changing convention for interchanging graded 
objects. 

Proof. 

{(\,w)) = {o>(l),ht~NLltlN^t{w)) (by (3.8)) 

= < « ( X ) , T ( 7 I X . . . X T , ) > (by (2.5)) 

= <fco(X),Yi X . . . X 7r> 

= <x*-2{dAU-2, n X . . . X 7r> (by (3.7)) 

= (\N-i{oti • . . ar}N-i, 7i X . . . X yT) 

= (xN-i{oii\jv_2 • • • XN-2{aT}N-i, 7i X . . . X yT) 

= ^ / * ( 7 i ) • • • P/*(ir), 7i X . . . X 7. ) (by (4.6)) 

= <7i X . . . X 7n 7i X . . . X 7r) 

= ( - i r < T i , 7 i > . . . < ? r , 7 r > (by [7, 7.14]) 

= (-ir. 
In cases (4.3) and (4.4) it is possible to have a non-zero cohomology class 

{a,%_2 6 HN(JK(N-2)). 

PROPOSITION 4.8. I / X G ^#A r~1 is such that d\ = af, then ((X, w)) = 0. 

Proof. As in the proof of Proposition 4.7, 

((K W » = (xAT-2{^X}Ar-2, 71 X • • . X 7r> 

= (xN-2{oii2}N-2, 7 i X . . . X yr) 

= < ^ / * ( 7 i 2 ) , 7 l X . . . X 7 r > 

= <7<2,£z*'(7i X . . . X 7 . ) ) 
= 0. 

Note from the proof of Proposition 4.7 tha t we could have required the 
weaker hypothesis {d\}N-2 = {on . . . ar}N-2. A similar remark holds for 
Proposition 4.8. 

5. T h e m a i n t h e o r e m . Let stf be a free, commutat ive DGA over Q and 
let us fix an ordered set of generators {171, 772, . . . , r)t, • • •} ols/ with dim 771 ^ 
dim 772 ^ . . . ^ dim 77, ^ . . . . (We allow the set of generators to be finite or 
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infinite.) W e now define^Fv(&tf) to be the graded vector space generated by all 

elements {vnV 12 • • - Vis\
s = P a n d 1 ^ H ^ ii ^ . • • Û is}- This gives a de­

creasing sequence of graded vector spaces 

We now consider the minimal algebra^ of a rational space X. We assume 
t h a t , / K has an ordered set of generators {771, 772, . . . , Vt, • • •} as above. Let 
Xj G Trnj(X), j = 1, 2, . . . , r, be any r homotopy elements, r ^ 2. Our main 
result will deal with the following situation. T h e elements Xj determine 
x/: Sç)nj —> X with Xj'ôj = x;-. The x / give rise to a map g: W = S$ni V . . . 
V 50Wr —> X and we now assume tha t there exists an ex tens ion / : T —» X of g. 
T h e n / determines a homomorphism <£>: JV —>^ of minimal models. If 77* is a 
generator of dimension f^ N — 2 then <p(r)i) G <Jt(N — 2) and so we can write 

T 

(5.1) <p(77<) = X) diJa3 + a* 

where dtj G Q and a* G ^(N — 2) is a linear combination of terms each of 
which i s i n ^ " 2 ( ^ ( i V — 2)) or is a multiple of some generator 0m of ^(N — 2). 

LEMMA 5.2. d^ = ((rjiy Xj)). 

Proof. If dim 77̂  9^ ndthen from (5.1) dfj = 0. B u t i n this case ((77*, x y ) ) = 0. 
Therefore suppose tha t dim 771 = rij. Let kj\ S$ni —» 7" be the inclusion. T h u s 
we have a commutat ive diagram of maps of spaces and of resulting homo-
morphisms of minimal models 

where KJ and xf/j are induced by kj and x/ respectively. I t is clear t ha t if at and 
13i are the generators oi<J£(N — 2), then 

where a j and dj are the generators of S^ j . We apply K;- to (5.1) and obtain 

^j(vi) = *j<p(Vi) = dij(jj + ^ ( a , ) . 

But di consists of terms which are multiples of /3m or are products of generators. 
The only possible fim which is not annihilated by Kj is fij. However, this term 
cannot occur in at since dim (3j = 2nj — 1 ^ nj = dim 771. T h u s /c7(af) is a 
linear combination of products of generators of S^j and so 
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Therefore 

= dijdâj, ej)) 

= dij (by Lemma 3.11). 

Before stat ing the main result we need one more definition. Recall t ha t we 
have fixed generators {771, 772, . . . , rjt, . . .} of the minimal model <yV of X and 
homotopy elements Xj G irnj(X), j = 1, . . . , r. We now define a function 
K: ^rÇY) - > Q as follows. Let a G J ^ ^ / K ) and write 

<* = Z ) qil...irVil • • • Î7ïr + £ 

where g^... , , G Q and p G J ^ + U ^ O . Setting I = (iu . . . , ir) with 1 ^ ii g 
. . . ^ ir and r?/ = r?u . . . r?fr, we rewrite this as 

We then define 

(5.3) K{a) = X) S / ^ / ) 

where 4̂ 7 is the r X r matrix in M(r, Q) whose (p, q)-entry is ((rjip1 xQ)) and 
K: M(r, Q) —> Q is the function given by Definition 2.6. 

We now state the main theorem. 

T H E O R E M 5.4. Let X be a rational space with homotopy elements Xj G wnj(X), 
j = 1, . . . , r, whose minimal algebra ^¥ has a fixed set of generators. Suppose 
that the higher order Whitehead product set [ ] Q TN-I(X) is non­
empty and that JU G ^V is an element of degree N — 1 with du G ^T(^Y). Then 
for each x G [xi, X21 • • • j Xr ], the Sullivan pairing 

<</Z,X»= ( - l ) ^ ( r f M ) 

where A = Y^i<j nini and K is defined by (5.3). 

Proof. The xt determine a map g: W = S$ni V . . . V SQ1' —> X. By Lemma 
2.1, there is an extens ion/ : T = T(S<&ni, . . . , 50Wr) —> X such tha t /#(w) = #. 
T h e n / induces a homomorphism (p:^V —>^#and 

« M , X » = «ji,Mw)))= «^ôô.w». 

This brings the computat ion back i n t o - # and from Propositions 4.7 and 4.8 
it will suffice to find dç(^x). We recall from § 4 tha t in constructing^#(7V — 1) 
from ^{N — 2) new generators 5 (in all cases (4 .3)-(4 .5)) , et (in Cases 1 and 
2 ((4.3) and (4.4)) with i = 1 in Case 1) and €2 (in Case 1 (4.3)) of dimension 
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N — 1 were adjoined. Since cp(n) £ ~#(iV — 1), 

<p(n) = ad + btt + ce2 + p 

for a, b, c £ Q and p £ ^(N — 2). In Case 3, b = c = 0, in Case 2, c = 0, and 
in Case 1, i = 1. Thus 

« 7 Ô Ô , w » = a « ô , w » + 6 « i i f w » + c««2, w » 

since p = 0. But dô = 0:10:2 . . . ar and de* = o:*2. I t now follows from Proposi­
tions 4.7 and 4.8 t ha t 

« ^ Ô Ô , w » = ( - l ) A a . 

All t ha t needs to be calculated then is a, the coefficient of aia2 . . . ar in the 
expansion of d<pn = <pd/x. By hypothesis, dix ^^'r(A/) and so we can write 

(5.5) du = ] £ g/7?/ + 0 

where J = (ii, . . . , i r ) with 1 ^ i\ ^ . . . ^ ir, V i — Vu • > - Vtr with dim 77̂  
+ . . . + dim Vir = iV, and 0 G J r r + 1 ( ^ ) . T h u s 

(5.6) <p(dv) = £ g/^(i7/) + ^ ( / 3 ) 

where <p(v 1) = <?(?7n) • • • <p(iir)
 a n d <p(P) £^~r+l(tJS). Because <p(/3) <E 

<^r+l(ytâ) it can give no contribution to the «10:2 . . . OLT term. We therefore 
examine more closely each term <p(rj T) = <p(rji) . . . <p(r]ir) in (5.6). Since for 
each ij £ / , dim 77̂  ^ N — 2, we can by (5.1) write 

r 

<p(lij) = X) dijmjamj + a*y 

with each a ty a linear combination of terms in <0^~2 ÇJ?) or of multiples of some 
Pm. T h u s we must determine the coefficient of aia2 . . . ar in 

pfoj) = pfoii) • • • vdir) = I T ( S dijmjamj + a<.) . 
; =1 \ w y = l / 

When this product is expanded out, any summand which contains an atj does 
not contr ibute to the coefficient of 0:10:2 . . . ar. Hence we must determine the 
coefficient of 0:102 . . . a r in the expansion of 

I l l X) dijmjamj) . 
j=i \mj=i I 

But this is jus t K(Aj), where AI is the r X r matr ix whose (p, ç ) -entry is 
dipQ (see Definition 2.6 and the ensuing discussion). T h u s the coefficient of 
o:io2. . . aT in (5.6) is J2i ÇIK(AJ) and so 

a = £ qiK(Aj). 
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But dipQ = ((fiip, xQ)) by Lemma 5.2. Therefore it follows from (5.5) and 
Definition 5.3 tha t 

a = K(dix). 

Hence 
« * , * » = ( - i r a = (-XTKidix). 

This completes the proof. 

We conclude this section with some remarks on the theorem. First of all, 
the function K: ^"T(jV) —» Q depends on the choice of elements Xj £ 7rwi(X) 
and on the choice of generators of the minimal algebra o/K When a different 
Whitehead product set is being considered, a different function K will be 
needed. Secondly, the theorem gives a calculation of a higher Whitehead prod­
uct x by showing how x is paired with indécomposables /Z of degree N — 1. 
The right hand side of the equality in Theorem 5.4 is computable once one 
knows d/x as a sum of products of generators and how these generators pair 
with the homotopy elements xt to form the matrices Aj. The rational number 
K(djji) is then a linear combination of the K(AI)1 and the determination of the 
lat ter is a straightforward operation in linear algebra. We will illustrate this 
method in the next section by computing higher order Whitehead products of 
rational spaces from a knowledge of the minimal algebra. Finally, we comment 
on the hypothesis tha t d\x Ç J^ r(«/K). I t is sometimes possible to compute 
((jl, x)) when d\x Q^~r(jV). However, if one could compute ((/I, x)) for all 
possible /z, then x would be uniquely determined and hence [xi, . . . , xr] = {x}. 
We can give an example of a space one of whose Whitehead product sets has 
a non-trivial indeterminacy. Thus there is no formula for ((/I, x)) in terms of 
dix and Xi, . . . , xT in the case dfx g ^r(jV). 

In conclusion we observe tha t the hypotheses of Theorem 5.4 are always 
satisfied when r = 2. This is because for any JJL ÇzjVN~l, d\x £ J r 2 ( t yf / ) , since 
the differential d is decomposable. Fur thermore, ordinary Whitehead products 
[xi, x2] always exist (and are unique). Therefore the equality in Theorem 5.4 
holds without any restriction in the case r = 2. Thus we have proved Sullivan's 
result in [16, Theorem B] which asserts tha t (dual) Whi tehead products are 
described by the quadrat ic terms of the ^-images of generators of the minimal 
model. The formation of this result as hinted in [6, p. 250] can also be obtained. 
We do this in the next section. 

6. App l i ca t ions . In this section we give several applications of the main 
theorem. We first explicitly s ta te and prove Sullivan's result for ordinary 
Whitehead products which is indicated in [6, p. 250]. After tha t we establish 
some general results on the existence, uniqueness and vanishing of higher order 
Whitehead products. Then we make some computat ions of higher order Whi te­
head products in two stage Postnikov systems. We conclude the section with 
some results on higher order Whitehead products and iJ-spaces. 
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Let F be a graded vector space over Q which is finite dimensional in each 

degree. Denote the symmetr ic product of F with itself by F A V, and the full 

symmetr ic algebra on VbyS(V) [5, Chapter 3, § 6]. We define an isomorphism 

$ : Horn (V, Q) A Horn (V, Q) -> Horn (V A V, Q) 
by 

$ ( / A g)(v A w) = 
(-l)Pqf(v)g(w) + g(v)f(w) ii{p,q} = {m,n\ 

10 otherwise, 

w h e r e / £ Horn (Vm, Q), g G Horn (Vn, Q), v g F p , and w g F5 . I t is understood 
that /(z;) = 0 when m ^ p. \{J/ denotes the minimal algebra of a space X, then 
the Sullivan pairing induces an isomorphism 

¥ : / ( / ) - ^ H o m (ir*(X), Q). 

S i n c e ^ i s free, it is isomorphic, as an algebra, with S ( / M O ) and ^'2(A/)/^'z{jV) 

is isomorphic, as a graded vector space, with / M O A / M O - Let d: I(^V) —> 
/ M O A / M O be the degree 1 homomorphism defined by the composition 

J MO ̂ J^MO/^ 'MO « /MO A /MO, 
where df (X) = TT(^X) with T T I ^ M O ^ J ^ MO/«^"3 M O the quot ient map . 

T H E O R E M 6.1 [6]. The following diagram commutes: 

d 
/MO- -> /MO A /MO 

^ A ^ 

* Horn (vr*(X), Ç) A Horn (x*(X), Ç) 

WP 

$ 

Horn ( ^ ( X ) , Ç ) - 1 — v H o m ( ^ ( X ) A ^ ( Z ) , Ç ) , 

wAere W P : 7T* (X) A 7r* (X) —• 7T* (X) is the degree —I homomorphism defined by 
WP(x A y) = [x, 3/] awd W P * is i/s sector s£ace dzmZ. 

Proof. From the definition of $ it is easy to check tha t 

$ ( * A ^ ) d ( X ) ( x A y) = (-l)PQK(d\), 

where X £ .y^**- 1 , x G TT P (X) , and y Ç T T , ( X ) . By Theorem 5.4 the 1 a t t e r term 
is precisely ((X, [x, y])) = (WP* o ^ ) ( X ) ( x A y). 

Since ^ and $ are isomorphisms, Theorem 6.1 implies t ha t the dual Whi te ­
head product homomorphism WP* can be identified with d. Note t h a t d is 
completely determined by the quadra t ic terms in the d formula in JV. 
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We next give some general results on higher order Whitehead products which 
are both useful in the sequel and interesting in themselves. We begin by observ­
ing tha t in Theorem 5.4 the r homotopy elements x3- G wnj(X) were arbitrari ly 
chosen. Thus it was necessary to assume the higher order Whitehead product 
set non-empty. However, if one chooses the homotopy elements dual to the 
generators of the minimal model, then one can prove certain Whitehead pro­
duct sets are non-empty. We do this next. 

Let X be a rational space with minimal model JV. Assume tha t 771, 772, . . . , 
771, . . . is an ordered set of algebra generators iovJV with deg rjt = fit such t ha t 
n\ ^ ti2 ^ . . . ^ nt ^ . . . . Let Zj £ Tnj(X), j = 1, 2, . . . , / , . . . be dual to 
the generators. T h a t is, ((rju Zj)) — hih the Kronecker delta. 

LEMMA 6.2. Suppose for all i ^ k, dr)t £ ^r{jV). Let a = q_tl...ir 6 Q be the 
coefficient of 7]tl . . . rjir in the expansion of dr]k, where 1 ^ i\ ^ . . . ^ iT and 
N = ntl + . . . + nir = nk -\- 1. Then the Whitehead product set [zilt . . . , zir] ÇI 
irN-i(X) is non-empty. Furthermore, if y £ [ztl, . . . , zir] and we rewrite rjtl . . . 
r)ir as rjj^1 . . . r]js

ts with t% > 0 and 1 ^ ji < . . . < j s , then 

((v*,y)) = ( -1VW. . . /J , 
where A = Y.a<* nianih. 

Proof. By Theorem 6.1 we need only consider the case when r > 2. To show 
the set non-empty, it suffices by [13, p. 127] to prove the following: If zkl, . . . , 
zks is a proper subsequence of zil} . . . , zir, then [zkl1 . . . , zks] = {0}. We do this 
by induction on s. Let s = 2 and let 77 * be any generator of dimension nkl + nk2 

— 1. Then deg 77 t < deg rjk. Thus i < k and so ^ G J^fc /K) . Since 2 = s < r, 
it follows from Theorem 5.4 tha t {{r\u fei> zk2])) = 0- Thus [zkl, zk2] = 0. Now 
let 5 < r and assume the result for s — 1. By inductive assumption, [zkl, . . . , 
zks] ^ 0. We let x G [zkl, . . . , ^ J and show x = 0. If 77* is a generator of^K of 
dimension wfcl + . . . + nks — 1, then as before dr\ t £ ^'rÇÀ/). Since r > s, 
((vu x)) = 0 by Theorem 5.4. This shows x = 0 and completes the induction. 
Therefore [ztl, . . . , zir] 9^ 0. 

Now with d ^ G J ^ C / K ) and y £ [s Î U . . . , ZyJ, we have 

«̂ *, y» = (-ir£(d, t). 
We write ^ as a linear combination of products of r or more generators. I t is 
not hard to show tha t each term with r factors which occurs in drjk other than 
qrjù*1 . . . r)js

ts gives rise to a matrix (as in (5.3)), such tha t K of it is zero. The 
Vjitl • • • V j s t s term in drjk yields a matrix A of the form 

Ax 
A* 0 

A = 
0 

As 
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where A t is a tt X tt matrix with 1 in each entry. We consider two cases: (i) 
Some nu is odd and tt > 1. Then rjjk

ti = 0 and so q = 0. (ii) All other cases. 
In (ii) it easily follows from Definition 2.6 that K(A) = til . . . tsl. Thus in 
either case K(drjk) = qt\\ . . . ts\. This completes the proof of Lemma 6.2. 

Before giving a consequence of this lemma we need a simple definition. 

Definition 6.3. We say all Whitehead products of order r vanish in X if for any 
r elements Xj G irnj(X),j = 1, 2, . . . , r, [xi, . . . , xr] = {0}. We say all White­
head products vanish in X if all Whitehead products of order r vanish in X for 
all r ^ 2. 

PROPOSITION 6.4. Let X be a rational space whose minimal model JV has a fixed 
set of generators. Then all Whitehead products of order less that s vanish in X if 
and only if d\i G J^6' (JV) for every element /x ofJV. 

Proof. Suppose all Whitehead products of order less than 5 vanish. If suffices 
to show drji G ^~*(JV) for every generator r)t oiJV. Suppose this is not the case, 
and let y]k be the first generator such that drjk G ^"{JV). Thus drjt G ^S{J/) if 
i < k. Let r be the largest integer such that drjk G ^T(JV). Therefore 2 ^ r < s. 
Hence we have drj L G ^~T(jV) for all i ^ k. Choose a term qr}{l ... rjir in the 
expansion of drjk with q ^ 0 and 1 ^ i\ ^ . . . ^ iT. By hypothesis [zn, . . . , zir] 
= {0}, and so Lemma 6.2 implies 

0 = « i f c , 0 » = (-lYql 

for some non-zero integer /. Thus q = 0, which is a contradiction. Therefore 
dVk£^s(^). 

We now prove the opposite implication. Let Xj G irnj(X),j = 1, . . . , r, be r 
elements with r < s. By induction we may assume all Whitehead products of 
order < r vanish. Therefore by [13, p. 127] there is an element x G [xi, . . . , xr] 
C TI>_I(X) . By Theorem 5.4, for any /x G J/N~\ 

<</x,X» = ( - l ) ^ ( ^ ) = 0 

since rf/x G ^8{JV) and s > r. Thus x = 0. This completes the proof. 

As a consequence we obtain the following corollary which, though it may be 
known, we have not found in the literature. It answers a question in Porter's 
thesis [12, p. 51] for rational spaces. 

COROLLARY 6.5. Let X be a rational space in which all Whitehead products of 
order < 5 vanish. Then any sth order Whitehead product set in X is non-empty 
and consists of a single element. 

Proof. Let x3- G Tnj(X) be any 5 homotopy elements, j = 1, . . . , s. As before 
the set [xi, . . . , xs] is non-empty since lower order Whitehead products vanish. 
Now let x, y G [xi, . . . , x J and let /* be any element oiJVN~l, N = J2 rij. Be­
cause d\x G J^~5(yK) by Proposition 6.4, we have by Theorem 5.4 that 

«M,x» = ( - l ) ^ ( ^ ) = « /z ,?» . 
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Since this is true for all /x Ç jVN~l, x = y. Thus [xi, . . . , x J consists of a single 
element. 

We now turn to calculating some higher order Whitehead products in two 
stage Postnikov systems. These propositions are included more to illustrate the 
computational possibilities of Theorem 5.4 than to present the most general 
results. 

Supposed is rational space with 7Ti(X) = Owheni < nandn <i < kn — 1. 
LetjV be the minimal algebra of X. Denote the generators oijV(kn — 1) in 
dimension n by «i, a2, . . . , ar and the generators in dimension kn — 1 by /?i, 
02, . . . , fit- Let *i, s2, . . . , xr G Tn(X) and 3>i, 3/2, . • . , y% 6 7r*n_ip0 be dual 
homotopy elements. Then da\ = 0, i = 1, . . . , r and d/3;- = pj(ai, . . . , a r) , 
j = 1, . . . , /, where each pj is a homogeneous polynomial of degree k in r 
variables with rational coefficients. It follows from Corollary 6.5 that all kt\\ 
order Whitehead product sets in irkn_i(X) are non-empty and consist of a 
single element. 

Our first computation concerns a kt\\ order Whitehead product where all the 
homotopy elements are the same (Cf. [1, § 4]). 

PROPOSITION 6.6. Let x £ irn{X) and let y be the kt\\ order Whitehead product 
element [x, 

(i) If n is odd, then y = 0. 
(ii) If n is even, then 

t 

y = k\ Yl Pj(((âh * » , <<«2, x » , . . . , «a r , x)))yj. 
3=1 

Proof. Since /3i, . . . , fit form a basis for J*7*-1 (e/|
/) dual to y^ . . . , yu y — 

X^=i ((Pj, y))jj- Hence it suffices to compute the rational numbers {{fij, y)). 
Let pj(ai, . . . , ar) = Yli <liaii where / = (ii, . . . , ik) is a multi-index with 
1 ^ ij <; . . . ^ 4 ^ r, a / = a n . . . ailc, gj £ Q. The matrix .4/ corresponding 
to the term a 7 in pj(ai, . . . , a r) will have £#th entry ((â ip, x » , p = 1, . . . , k. 
Thus all the columns of each Aj will be equal. When n is odd, K(Aj) = det 
(^4/) = 0, and so 

((Pj,y)) = ±K(pj(ah . . . ,«,)) = £ 2/^(^4/) = 0 

for all 7. When w is even, 

K(AZ) = J2 ((àti,x))...((âik,x)) 
creSk 

= kl((âiltx)) . . . ((âik,x)). 

Thus, in this case, 

((Pjty)) = K(pj(al,...,ar)) 

I 

= klPjidâuX)),..., « » „ * » ) . 

This completes the proof of the proposition. 
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Let X be the same space as described above, bu t now consider the kt\\ order 

Whi tehead Product element 

h ti ts 

where xjl is repeated t\ t imes, xJ2 is repeated t2 t imes, etc. We assume 1 ^ j i < 

. . . < 7s, each tt > 0 and t\ + h + . . . + ts = k. Let a, be the coefficient of 

o^i'1 . . . ajs
ts in pj(au . . . , a r ) , where d/^ = ^ ( a i , . . . ,ar). 

PROPOSITION 6.7. With the above hypotheses, 

(i) if n is odd and tt > 1 for some i, then the Whitehead product element y = 0; 

(ii) otherwise the Whitehead product element 

t 

y = ±t1\t2l. . . ts\ X) a>jyj-

(jHfee sign ù — if n and k(k — l ) / 2 are odd, awd + in all other cases.) 

Proof. As in the proof of Proposition 6.6 we need only compute the rational 

numbers ((fUj, y)). The result now follows from Lemma 6.2. 

I t is an easy consequence of the proof t ha t a similar result holds for any kih 
order Whi tehead product of the dual generators in irn(X). I t should also follow 
from "an t i - commuta t iv i ty" of higher order Whi tehead products . 

We can apply Proposition 6.6 to the localization of complex and qua te rn-
ionic projective spaces, CP$(m — 1) and HP$(m — 1). T h e minimal model of 
CP$(m — 1) is generated by elements a in dimension 2 and /3 in dimension 
2m — 1, with da = 0 and dfi = am. Then if x £ Tr2{CP${m — 1)) is dual to â 
and y £ -K 2m-\(CP ${m — 1)) is dual to /3, Proposition 6.6 implies t ha t the mth 
order Whi tehead product [x, . . . , x] = m\y. Th i s agrees with a similar result of 
Porter [14] for CP(m - 1). 

Likewise, it follows tha t in HP$(m — 1) there are homotopy elements 
x £ ir^HPftim — 1)) and y £ Tr±m-\(HP$(m — 1)) with the mth order Whi te ­
head product [x, . . . , x] = m\y. For HP(m — 1) however, Barry has shown 
[4, p. 24] t ha t if x' £ ir^(HP(m — 1)) is a generator, then the mth order 
Whi tehead product [x', . . . , x'] is the empty set. He does show [4, p. 17] t ha t 
there is an integer s for which [sx', . . . , sx'] is non-empty and equals smm ! 
t imes the Hopf map plus an element of finite order. This agrees with the 
calculation of [sx, . . . , sx] in TvAm-i(HP$(m — 1)) using Proposition 6.6. This 
gives an example of a space F and homotopy elements xt £ irni(F), i — 1, . . . , 
r, for which [xi, . . . , xr] ÇZ 7TAr_i(F) is empty , bu t [e#(xi), . . . , e#(xr)] £ 
7TAT_I(F0) is non-empty. 

For the remainder of the paper we shall have occasion to consider both 
topological spaces of finite type (see the beginning of § 3) and their rationaliza­
tions. We shall consistently denote a space of finite type by F and the localiza­
tion of such a space by X. 
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The computat ions of Whitehead products, like those in Propositions 6.6 and 
6.7, for the rationalization of a space can yield information about Whi tehead 
products in the space itself. As an illustrative example, we mention the follow­
ing proposition. 

PROPOSITION 6.8. Let Y be a space with minimal model JV {with a fixed set of 
generators). Suppose x\, . . . , xr are homotopy elements in 7r*(F) such that 
[xi , . . . , xr] ^ 0. If there is an element A in JV with d\ £ &~r {jV) and K(d\) ^ 0, 
then all elements of[xi,. . . , xr] have infinite order. 

We conclude this section with some results on JiT-spaces and higher order 
Whitehead products. 

PROPOSITION 6.9. / / X is a rational space, then X is an H-space if and only if 
all Whitehead products vanish in X. 

Proof. I t is proved in [13, p. 126] tha t all Whitehead products vanish in an 
if-space. T h u s we prove the reverse implication. Suppose all Whi tehead prod­
ucts vanish in X. We show the differential d of the minimal model JV of X is 
zero. For every element JU OÎJV, Proposition 6.4 implies tha t d\x £ ^S{^V) for 
all 5 ^ 1. T h u s dix = 0. We finish the proof by showing tha t d = 0 implies tha t 
X is an 77-space. We have tha t H*(X) = H*(jV) = ^V, a free algebra. Hence 
H*(X) has the cohomology of an appropriate product of Eilenberg-AIacLane 
spaces K(Q, n). From this it easily follows tha t there is a map of X into this 
product which induces an isomorphism of cohomology groups. Consequently 
this map is a homotopy equivalence. Therefore X is an iJ-space. This completes 
the proof. 

We conclude the paper by proving an analogue of Proposition 6.9 for topo­
logical spaces. The following is a generalization of [3, Satz] from spaces of the 
homotopy type of finite CW-complexes to spaces of finite type. 

PROPOSITION 6.10. Let Y be a space of finite type. Then F# is an H-space if and 
only if every element in every higher order Whitehead product set in Y has finite 
order. 

Proof. I t suffices by Proposition 6.9 to establish the equivalence of the follow­
ing two assertions: 

(i) All Whitehead products in Y$ vanish. 
(ii) Every element in every higher order Whitehead product set in Y has 

finite order. 
(i) => (ii): Let e: Y —> Y$ be the localization map and let x Ç [xi, . . . , xT] 

C wN-i(Y). Then 

e#(x) G [>#(*]), • • • , e#(xr)] C 7rAr_i(F0), 

and so e#(x) = 0. Thus x is in the kernel of e#, and hence x has finite order. 
(ii) ==> (i) : We assume (ii) and prove by induction on r t ha t every Whitehead 

product of order r in F# vanishes. For r = 2, consider [xi, x2] G TN-I(YQ). 
Then MiXt = e#(zt) for integers Mt and elements zt in the homotopy groups 
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of F. Thus 

M1M2[xi1x2] = [MiXi, M2x2] = [e#(z1)Je#(z2)] = e#[zuz2]. 

But [zi, z2] has finite order and hence so does [xi, x2]. Therefore [xi, x2] = 0. 
Now assume that (i) holds for all Whitehead products of order < r. Let x Ç 
[xi, . . . , xr] C 7^-1 (7$) be an rth order Whitehead product element. Then 
MtXi = e#{zi) for integers Mt and homotopy elements s*. Unfortunately the 
set [21, . . . , zr] C 7TJV-I(F) may be empty. However, since all Whitehead 
products in Y have finite order, a result of [3, § 3b] asserts that there exists an 
integer M such that 0 G [Mzu . . . , Mzr]. Hence 

0 = e#(0) G fo(MZi), . . . , et(Mzr)] = [MM&u • • • , MMrxr]. 

But x G [xi, . . . , x r], and so it easily follows that MrM\ . . . Mrx is also in 
[MMiXu . . . , Milf rx r]. By Corollary 6.5, MrMx. . . Mrx = 0. Therefore x = 0, 
and hence [xi, . . . , xr] = {0J. This ends the inductive argument, establishes 
(i), and completes the proof. 
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