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SULLIVAN’S MINIMAL MODELS AND HIGHER ORDER
WHITEHEAD PRODUCTS

PETER ANDREWS AND MARTIN ARKOWITZ

1. Introduction. The theory of minimal models, as developed by Sullivan
[6; 8; 16] gives a method of computing the rational homotopy groups of a
space X (that is, the homotopy groups of X tensored with the additive group
of rationals Q). One associates to X a free, differential, graded-commutative
algebra.# over Q, called the minimal model of X, from which one can read off
the rational homotopy groups of X. More importantly, the rational homotopy
type of X is determined by.#. Thus all rational homotopy invariants of X can
theoretically be derived from .#. It is indicated in the above works how to
obtain two important homotopy invariants from .#, namely, the rational
Hurewicz homomorphism and rational Whitehead products. It is stated
(without proof) in [16] that the quadratic term in the formula for the differen-
tial of the minimal algebra .# determines rational Whitehead products in X.
The main goal of this paper is to prove and generalize this latter result. We
show that the rth order homotopy operation, the rth order Whitehead product,
can be obtained from r-fold products in the decomposition of the differential of
the minimal algebra. (Higher order Whitehead products are discussed in
|8, pp. 183-184] in connection with minimal models. However, it is clear from
the context that iterated ordinary Whitehead products and not higher order
Whitehead products are being considered.) In point of fact, Sullivan’s theory
does not give the rational homotopy groups, the rational Hurewicz homo-
morphism, or rational Whitehead products, but rather the dual (in the vector
space sense) of these objects. Thus in our main result we determine the dual of
the rth order Whitehead product set from the minimal model.

The paper is organized as follows. In Sections 2 and 3 we present preliminary
material on higher order Whitehead products, localization, Postnikov systems,
linear algebra, and minimal models. In Section 3 we make explicit the pairing
between elements of the minimal algebra.# and elements of the homotopy of
X. We consider in Section 4 the universal rth order Whitehead product element
in the homotopy of the fat wedge of localized spheres. We give a complete
calculation of the pairing of this element with all the appropriate generators of
the minimal model of the fat wedge. This result enables us, in Section 5, to
determine the pairing of rth order Whitehead product elements in a rational
space with those elements of the minimal algebra whose differential decom-
poses into a sum of products with at least » factors. The paper concludes with
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several applications. We compute some higher order Whitehead products in
two stage Postnikov systems and we show that the vanishing of all Whitehead
products in a rational space implies the existence of an H-structure on that
space.

2. Preliminaries on higher order Whitehead products, localization
and linear algebra. All spaces in this paper will be 1-connected, pointed
spaces having the homotopy type of CW-complexes. Maps and homotopies
are to preserve base points. We shall not distinguish notationally between a
map and its homotopy class and between two spaces of the same homotopy
type. If f is a map, then f; denotes the induced homomorphism on homotopy
groups and fy(f*) the induced homomorphism on homology (cohomology)
groups. Notationally we suppress coefficients in homology and cohomology but
all homology will be with integer coefficients Z and all cohomology with rational
coefficients Q.

Let 44, Aq, ..., A, be any r spaces, r > 1. We define the following two sub-
spaces of the cartesian product 4; X 42 X ... X 4,:

(1) the wedge A1 V A2 V ... V A4, consisting of all r-tuples with at most
one coordinate not at the base point;

(2) the fat wedge T(A4, Ao, ..., 4,) consisting of all r-tuples with at least
one coordinate at the base point.

For homology elements w;, ¢ H, (4,), w. € H,,(4,), ..., w, € H, (4,)

(Z coefficients), we denote the homology cross product by
wy X we X ... Xw, € Hyyooqw, (A1 X Ag X ... X 4,) [7, p. 190].

For cohomology elements u; € H"1(Ay), us € H*2(A,), ..., u, € H**(4,) (Q
coefficients), the cohomology cross product is

uy X tbg X o oo Xu, € Hut-+4mr(4) X Ay X ... X 4,) [7, p. 215].

Next let ny, 2 =1,2,...,rbe integers > 1 (r > 1), N = n; +ny + ...
+ #n, and S" the n;-sphere. Denote the product St X ... X S" by P’, the
wedge S"t V ... V S" by W’ and the fat wedge 7°(S™, ..., S"7) by T'. If

v, € H,,(S*) & Z are generators, then v;’ X ... X v, € Hy(P') ~Z is a
generator. Let j: P’ — (P’, T") be the inclusion and 9: 7y (P’, T') — wx_1(T")
the boundary homomorphism in the homotopy sequence of the pair (P’, T").
Since the pair (P’, 7”) is (N — 1)-connected, the Hurewicz homomorphism
h: wy(P', T") — Hy(P’, T7) is an isomorphism. Define the universal rth order
Whitehead product element (of type ni, ns, ..., n,) w € wy_1(T’) by @’ =
V(v X ... Xov/):

Hy(P) 25 Hy (P, ) L g2, 17 =2 (1),

Now suppose X is a space and x; € 7,,(X),72=1,2,...,r, n,> 1 and
r Z 2. The elements x; define a map ¢g’: W’ — X. Following Porter [13], define

https://doi.org/10.4153/CJM-1978-083-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-083-6

WHITEHEAD PRODUCTS 963

the (possibly empty) rth order Whitehead product set [x1, X2, . . . , x;] € 7wx_1(X)
to be

{f4@")|f": T" > X an extension of g'}.

We next summarize some facts about localization [2; 9]. For a space X, let
Xy denote the localization of X at the empty set #. Then Xy is also called the
rattonalization of X. In this paper localization shall always mean localization at
0. f W = St v ...V Sy, T =T(Sg", ..., S") and P = Sg"t X ...
X Sg"rand W’, T and P’ are as above, then the localization maps ¢,: S"+ —
Sp"¢ induce maps

&eW —->W, eT'—-T and e P — P

each of which is an extension of the previous one. Since €, ¢ and & localize
homology, it follows [2, pp. 45-48] that each is a localization map. Thus
W=Wy,T=Tyand P = Py. lfe,: H,,(S") — H,;(Sp") and ey: wxy_1(T")
— wy_1(T), then define v; € H,,(Sp") and w € 7y_1(T) by v; = €4 (v,) and
w = ¢;(w'). We call w the rational universal rth order Whitehead product ele-

ment (of type ny, n2, . .., n,).
By a rational space is meant the rationalization of some space. If X is a
rational space and x; € m,,(X),7 = 1,2,...,r, then, since W = Wy’, the map

¢': W' — X determined by the x; induces a unique map g: W — X such that
g¢ = g’. We have the following characterization of higher order Whitehead
products in X.

Lemma 2.1. If X is a rational space and x; € m,;(X), then the rth order
W hitehead product set [x1, X2, . . ., %,] © wy_1(X) 1s

{fy(@)| f: T — X an extension of g}
where w 1s the rational universal rth Whitehead product element.

The proof is an immediate consequence of elementary properties of localiza-
tion and hence omitted. Since only rational space will be considered in the
sequel, this characterization of Whitehead products will be used.

Next we turn to a few simple facts about Postnikov systems [15, Chapter 8].
For any space X let

‘_)Xn+l—_)Xn_)Xn—1__)-~-

denote the Postnikov tower of X, where X, is the nth Postnikov section of X.

In particular, we consider Postnikov towers for P = Sp"t X ... X Sp" and
T = T(Sg, ..., Sg"r). Since the inclusion map 7" — P isan (N — 2)-equiv-
alence, N = 3" n; we may assume 1xy_» = Py_o. If we denote (Sp"i)n_»
by L, then

PN_2 = (S@nl)N_z X ... X (Sﬂn’)N_z = Ll X ... X L,.
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Note that

K(Q,n;) = Sy if n; odd
L;=<K(Q,n;) ifn;evenand N —2 < 2n; — 1
Sp"i ifm;evenand N — 2 = 2n, — 1.

We now define basic homology classes in H,,(L;) and H,,(K(Q, n;)). Let
gi: Sp"i— (Sp")y—2 = L; be the (N — 2)-equivalence of the Postnikov
system of Sy"i and let

vi Ly = (Sp")v—2 = (Sg")ni = K(Q, m4)

be the composition of maps in the Postnikov tower. (If #; is odd, ¢; and » are
identity maps.)

Definition 2.3. The basic homology classes v, € H,;(L;) and b, €
H,,(K(Q, n,)) are

vi= qu@) and b; = ve(y),

where v, € H,,(Sy") has been defined above.
If g: P =Sp"i X ... X Sp*r— Py_o = L; X ... X L,is the (N — 2)-
equivalence of the Postnikov system of P, then clearly

24) g X ... Xv,)=791X...X~v, inHy(L; X ...XL,).

We obtain from the Postnikov towers of 7" and P a commutative diagram

n inclusion P

I

L 4

T'ya q
Vn—1

Y *L’

1 ‘N—z = P:\'—z

where /y_1 is the (V — 1)-equivalence of the Postnikov system of 7" and
vy—1 the fibre map of the Postnikov tower of 7. Thus (¢, Iy_1) is a map of
pairs (or rather a map of maps)

<Qr lN-l): (Pr T) - (TN—2y TN——))-

If Fy_1 denotes the fibre of vy_; with inclusion map iy—1: Fy_1 — Tn—1 and
7: Hy(Ty—2) = Hy—1(Fy—1) is the homology transgression [10, p. 284], then
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the following diagram commutes (cf. [1, Remark 3.2])

i , -1 . d .
Hy(P)—2* > Ho(P, 1) — (P, 1) —2 >y (1)
Jx (q. In—1)x ((lv Iy_1)# Inv 14

j . . ht - o .
HN(TN-z)L’ Hy(T'y—s, YN»I)_I_—»WN<1N-21 Ty_1)—>mn_1(Tn-1)

1

Hyo(Fy) "y i (Fy).

Here #~! denotes the inverse of the Hurewicz isomorphism, 9 the homotopy
boundary homomorphism and j the inclusion map into a pair. This diagram
and (2.4) yield the following useful result.

LEMMA 2.5. With the above notation,
In—yp(w) = dy_yh™'r(yi X oo X y)

in the group wy_1(T'n_1), where w is the rational universal rth order Whitehead
product element and the v ; are basic homology classes.

We conclude this section with some linear algebra. Let M (r, Q) denote the
set of » X 7 matrices with entries from Q.

Definition 2.6. For fixed positive integers ni, n2, ..., n,, define a function
K: M(r,Q) = Q by

K(4) = Z (—I)C(V)fllv(l)a%m oo Qra()

g€Sr

where 4 = (ay;) € M(r, Q), S, is the permutation group on {1, 2, ..., r} and
(Cf. [5, p. 473))

T

o) =2 D minag.
i=1 1= j<o—1(4)
a(N>1i

If there are no summands in the latter sum, then let e(¢) = 0.

These formulas appear complicated, but they describe a fairly simple idea.
Suppose w;, we, . .., w, are elements of a graded (anti)commutative algebra
with degree w; = n,. Use the matrix A = (a;;) to construct formal expressions

p1=anwi + ...+ a, W, P2 =anw+ ...+ ayw, etc

Then K (4) gives the coefficient of the term wyws . . . w, in the product pip2 . . .
p:. The (—1)¢@ introduces a (—1)™ whenever two adjacent elements of degree
m and #n are interchanged. Thus in the graded algebra,

WiWe o v . W, = (—1)‘(0)‘10,,(1)71),(2) e Wo(r)-

https://doi.org/10.4153/CJM-1978-083-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-083-6

966 P. ANDREWS AND M. ARKOWITZ

When all the #;'s are odd, then it is easily seen that K (4) is the determinant
of A. When all the n,'s are even, then K(A4) is the permanent of 4 [11].

3. Background on minimal models. Unless otherwise stated all spaces
will now be the rationalization of spaces of finite type. By a space of finite type
we mean a l-connected space of the homotopy type of a CW-complex with
finitely generated homotopy groups in each dimension. We further assume that
each space X comes with a fixed Postnikov system, that is, a Postnikov tower

Vn41 Vn
e X T X I X —s

and compatible n-equivalences /,: X — X,. Each v, is a fibre map with fibre F,
an Eilenberg-NMacLane space K (m,(X), n),

6.1) E2x, 22X, .

We recall some facts about minimal models [6; 8; 16]. The minimal model
My of X is a free, commutative, differential, graded algebra (DGA) over Q
with differential d a degree 1, decomposable homomorphism. The cohomology
algebra H* (#y) is isomorphic to H*(X). The construction of 4 x can proceed
inductively from the Postnikov system of X. One inductively defines free
commutative DGAs M y(n) for all = 1 and then sets My = U, M x(n).
As an algebra

(32)  Mx(n) =Mx(n — 1) @ H*(F,).

The differential d of #x(n) is defined on.#x(n — 1) to be the (inductively)
given one. On H*(F,), d is determined by the cohomology transgression

#: H(F,) — H""\(X,-1) & H""' (M x(n — 1))

of the fibration (3.1). There are two important points to note here:
(1) Ay (n) is the subalgebra of 4y generated by all elements of degree < n;
(2) M« (n) is the minimal algebra of X,.
Thus there is a sequence of algebra isomorphisms

Xn: H*(Mx(n)) — H*(X,)
and they are related by the following commutative diagram

H*( My (n)) —X 5 H¥*(X,)

(3.3) IV"*

H*( My (n—1)) =2 H*(X ).

It is part of the general theory that there is a one-one correspondence be-
tween Postnikov towers of X

XX, X

https://doi.org/10.4153/CJM-1978-083-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-083-6

WHITEHEAD PRODUCTS 967

and sequences of subalgebras
oo CMly(n— 1) CMly(n) Clx(n+1) C...
of the minimal algebra . Indeed, to specify a Postnikov system of X is it

sufficient to give the minimal algebra .#x and its sequence of minimal sub-
algebras .#x(n) generated by all elements of degree < 7. Then the sub-
algebras #x(n) and the resulting Postnikov tower of X satisfy all the rela-
tions mentioned above. Furthermore, these considerations apply to mappings.
In particular, a map f: X — Y induces a DGA homomorphism ¢: Ay — # x.
For f induces a map of Postnikov towers f,: X, — ¥, which inductively gives
rise to homomorphisms ¢(n): A y(n) —.M+(n) by (3.2). The isomorphisms
X» are compatible with ¢ () and f,.

For any DGA &/ over Q with /° = (, define the graded vector space of
indecomposables I(Z) to be the quotient &7 //+ - &/+, where.2/* denotes the
elements of positive degree. Let « — @ denote the quotient map &/ — I ().
We call I*(27), the image of &/ under this map, the indecomposables of degree
n. From the definition of A4 and (3.2), there is a natural isomorphism

(34) w: I"(Mx) = I"(Mx (1)) —p H'(Fr).-

Moreover, a careful look at the construction yields the following commutative
diagram [8, p. 163]

HY Mo (n), M(n — 1)) —> H 1 (M (0 — 1))

(3.5) In(e./ﬁx) = I”(g///;,(n)) Xn—1
HY(F) i » H™(X, )

Here (M x(n), Mx(n — 1)) is the relative cochain complex and § is the
boundary homomorphism in the exact cohomology sequence. It can also be
shown that for 8 € My (n) of degree n

(3.6) 88 = {dB},—1,

where { |, denotes the cohomology class in .#y(p) of a cocycle in .#x(p).
Diagram (3.5) now gives the relation

B.7)  t0(B) = xp1({dB},-1).
We next define a basic pairing in the theory.
Definition 3.8. Define the Sullivan pairing
(N MMl x) @ mp(X) — Q
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as follows. Let y € I"(AMy) = I"(Mx(n)) and x € 7, (X) and set

0 ifn=m
{(v ) = {<w(y),hi;;ln#(x)> ifn = m.

where (, ): H*(F,) ® H,(F,) — Q is the Kronecker pairing of cohomology
and homology (7, p. 187].

A map of spaces induces a homomorphism of homotopy groups and of
minimal models, and it can be shown that the Sullivan pairing is natural with
respect to these homomorphisms.

The existence of the Sullivan pairing implies that I"*(# ) is isomorphic to
Hom (m,(X), Q). Thus the theory of minimal models encompasses the theory
of dual homotopy groups of rational spaces. The rest of this paper will show
how to compute the operations dual to the rth order Whitehead product,
r = 2.

In the remainder of this section we examine the minimal models of localized
spheres Sy"i. We first introduce basic cohomology classes.

Definition 3.9. A basic cohomology class;gi € H"(K(Q, n;)) is defined by the
condition that the Kronecker pairing (b, b;) = 1, where b, is the basic ho-
mology class (2.3). Now define a basic cohomology class 5, € H"i(L;) by
3= V*(I;,), where v: L; = (Sp")y—2— (Sp"),, = K(Q, n;) is the composi-
tion of Postnikov fibrations.

It follows from the naturality of the Kronecker pairing that {($,, v;) = 1,
where v, is the basic homology class (2.3).

We now determine the minimal model of Sy*i which we denote by ¥ ..
We first note that . ;(n;) is a free algebra on one generator ¢; of dimension 7,
and do; = 0. Indeed, the fibration (3.1) reduces to

K(Qv ni) - (S(OM)M — (SOM)M‘I = *

and we see by (3.2) that we may identify ¥ ,(n.) with H*((S¢"),) =
H*(K(Q, n,)), the free algebra generated by an element ¢, in dimension 7.
Thus there are identifications H" (K (Q, n;)) = H"(¥ i(n;)) = I"i(¥ (n,)).
The isomorphisms

Xnit H (S i(ny)) — H"(K(Q, ny)) and

wi I"i(S (ny)) — H*(K(Q, ny))

can be assumed to have the property
(3.10) xufodn = by = wi(30).
If n,is odd, then ¥ ;(n;) = % If n;is even then Sg*¢ can be represented as
a two stage Postnikov system (3.1)

K(Q, 2"1 - 1) _)Sﬂni = (Sﬂni)Qni——l - (50"1)27“'42 = (S(Oni)ni

= K(Qr n()'

Thus ¥, is a free algebra generated by ¢; € . i and 6; € ¥ ;2"! such that
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do; = 0 and df; = 7,2 This describes the minimal model .¥; of Sy":. We con-
clude by examining the Sullivan pairing in .%,.

LemMa 3.11. If ¢; € £ i 1s the generator described above and e, € ,, (So"%)
15 the localization map, then ({5 e;)) = 1.
Proof. ({54, €:)) = (w:(5:), h(vg:)s(es))
= <51, vaquh(e:))
= <5i» V*Qmei*(vi/))
= <51v vaq s (V1))
bovalr)
= (by, by)
= 1.

4. The minimal model of the fat wedge. To compute Whitehead prod-
ucts from the minimal model, it will be necessary to know the minimal model
of T'y_1, the (N — 1)st Postnikov stage of the fat wedge 7" = T'(Sp™i,...,Sg"r).
As was noted in § 2 we can choose Postnikov towers for the product P =
Sp™t X ... X Sg*rand T such that P, = (Sy*1), X ... X (S§"r), for all # and
T, = P,forn = N — 2. In particular, Py_» = Ty_o = L; X ... X L, (2.2).

Now let# denote#  and let ¥ ; denote M syni. Then, since M (N — 2) is
the minimal model of Ty_s, #A(N — 2) X ¥ (N —2)Q ... ®.F, (N — 2).
Thus the algebra .# (N — 2) has generators a; in degree #; foralli =1,...,r
and generators 8, in degree 2n; — 1 whenevern;isevenand2n; — 1 < N — 2.
Furthermore, da; = 0 and d8; = «,2. We can make the relationship between .#
and the.%; more precise in the following way. Let p;: T — Sy*i be the projec-
tion onto the ith factor. Then p,; induces maps of Postnikov sections

Pi/: TN—2 = Ll X ... X Lr—) (Sﬂni)N—2 = Li aﬂd
P Toi = (S¢")n: = K(Q, n4)

which are also projections onto factors. The p, induce homomorphisms of
minimal models

e L oM o) L (N —2) > M(N —2) and
o' S i(ny) —’=///("t)

We thus have commutative diagrams

Py gy ML 7
Iy—» qq U I\
(4.1) ii o——/‘>(50 Gy = L, ///(N—‘Z)«i'/—yi(zv—
T g U U
YooY

1%
<
|

o = KQun) M) <L S )
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where Iy_» and ¢; are (N — 2)-equivalences and 7 and v are compositions of
Postnikov fibrations. It easily follows that

(4.2) ei'(04) = as
In calculating HY (# (N — 2)), we consider three cases:

(4.3) Case 1: r = 2 and n; = n, is even.
In this case HY(#(N —2)) = 0 ® 0 ® Q and {aiaz}y_2, {a1?}y_2 and
{as?} y_o form a basis.

(4.4) Case2: v > 2,2 max {n1, ..., n,} = Nand max{ny,...,n,} iseven.
Letn; = max{ny,...,n,}. Then HY(#(N — 2)) = Q ® Qand{a;. .. a,}y_2
and {a,*} y—o form a basis.

(4.5) Case 3: all other possibilities.
In this case HY (# (N — 2)) = Qand {e; . . . a,} y—2 is a basis.

We are now able to determine.# (N — 1) from .# (N — 2) using the induc-
tive construction by means of cohomology instead of Postnikov towers (see
[6, p. 251] and [8, pp. 153-155]). Since HY~1(T") = 0and HY(T") = 0, to obtain
M (N — 1) from 4 (N — 2) it is only necessary to adjoint generators in di-
mension N — 1 to kill the cohomology group HY (A (N — 2)). In Case 1,
M (N — 1)1 will have three new generators: 8, ¢; and e; with d6 = a; . . .
a, de; = ai? and des = ay? In Case 2, A (N — 1)¥1 will have two new
generators é and e; with dé = a; ... a,and de; = a2 In Case 3, A (N — 1)V-1
will have only one new generator § with dé = «; . . . @,. This defines A4 (N — 1)
in all cases. As we observed in § 3, this determines the Postnikov section
Tn—10f T. The results of § 2 hold for this Postnikov tower of 7.

Before proving the main result of this section we easily establish a lemma.
Recall that yy_o: H" (M (N — 2)) — H"i(T'y_,) is the isomorphism defined
in§ 3and p/*: H*i(L;) — H"i{(Ty_2) is induced by the projection p,/: Ty_qs =
Ll X ... XL,—?Li.

LEMMA 4.6. If ay € M (N — 2) is the generator of degree n, and 4, ¢ H*(L,)
1s the basic class, then
pi*(F4)-
Proof. xy—slaifn—2 = m*xudailn;  (by 3.3)
= %@/ {0} (by 4.2)

where &,/ is the cohomogy homomorphism induced by ¢,": . (n,) — M (n,).
But

Il

XN—-2{ai}N—2

T*Xni¢i”{°'z}ni = W*pt”*Xni{at}ni
= pi*vV*xniloidns (by 4.1)
= p/ (b)) (by 3.10)
= pi*(¥4) (by 3.9).

We now give the main results of this section.
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ProposITION 4.7, If N\ € MY~ is any element such that A\ = a; . . . a, and
w € wy—1(T) s the rational universal Whitehead product element, then the
Sullivan pairing

(N w)) = (—1)"
where N\ = 3 ic;nim;.

The sign (—1)" here and in subsequent propositions is a result of our con-
vention regarding the cohomology cross product. We follow Dold [7, Chapter
7] who uses the standard sign-changing convention for interchanging graded
objects.

Proof.
(N w)) = (@), hiytyly 1 #(w)) (by (3.8))
= (wR), 7(vy1 X ... X 7.)) (by (2.5))
= (FoA), 1 X ... X v,)
= <XN—2{d>\}N_2, Y1 X ... X ‘)’7> (by (37))

= (xv—alar. .. arfyo, 11 X oo o X yy)
= (xy—olarfy—s. .. xv—alady—a, v1 X oo X yy)
= /*G) 2 X X y,) (by (4.6))
=N X .. XFnm X .o X y)
= (=1)"@nv0) .- o) (by (7, 7.14])
= (=D~
In cases (4.3) and (4.4) it is possible to have a non-zero cohomology class
{altty_e € HY(A (N — 2)).

PROPOSITION 4.8. If N € MV~ 4s such that AN = a2, then ((\, w)) = 0.

Proof. As in the proof of Proposition 4.7,

(N, w)) = (xwv—afdN v—ey v1 X o0 X yy)
= (xwv—eladfys, v1 X ... X v;)
= @@, i X X y)
=& pa’(v1 X ... X 7))
= 0.

Note from the proof of Proposition 4.7 that we could have required the
weaker hypothesis {d\}y_2 = {a1 ... a,;}y—2. A similar remark holds for
Proposition 4.8.

5. The main theorem. Let %7 be a free, commutative DGA over Q and
let us fix an ordered set of generators {71, 72, . . ., 14, . . .} of & with dim »; <
dimg, £... £dimyg, £.... (We allow the set of generators to be finite or
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infinite.) We now define.#?(&/) to be the graded vector space generated by all
elements {n,n4 ... n5ls 2 pand 1 <4, <4y < ... = 4,}. This gives a de-
creasing sequence of graded vector spaces

A =FA) DFUL)D...D¥? () D....

We now consider the minimal algebra 4" of a rational space X. We assume
that A4 has an ordered set of generators {71, 72, ..., 74 ...} as above. Let
x; € my(X),j=1,2,...,r beany r homotopy elements, » = 2. Our main
result will deal with the following situation. The elements x; determine
x;: Spt — X with x;/¢; = x;. The x,/ give rise toa map g: W = Syt VvV ...
V Sg*r — X and we now assume that there exists an extension f: 7" — X of g.
Then f determines a homomorphism ¢: A — .# of minimal models. If 5, is a

generator of dimension £ N — 2 then ¢(5;) € #(N — 2) and so we can write

(5.1) o) = Z; dio;+ ay
=

where d; € Q and a; € A4 (N — 2) is a linear combination of terms each of
which is in % (A (N — 2)) or is a multiple of some generator 8,, of A (N — 2).

LeMMA 5.2. dy; = (i, x,)).

Proof. If dim n; # n, then from (5.1) d;; = 0. But in this case ((f, x,)) = 0.
Therefore suppose that dim n; = n;. Let k;: S¢"i — 7" be the inclusion. Thus
we have a commutative diagram of maps of spaces and of resulting homo-
morphisms of minimal models

Sy ,_k_f+ T y]*—'(]ﬁ/ﬂ
\K f viole
X N

where «; and ¢; are induced by k; and x,’ respectively. It is clear that if «; and
B; are the generators of # (N — 2), then

_Jo ij _ {0 i
"j(ai) = {aj 1-=]- and Kj(Bi) = 9, i =
where ¢, and 6, are the generators of .¥;. We apply «; to (5.1) and obtain
ll’j(’?f) = Kj‘P(ﬂi) = dijUj + Kj((li)-

But a; consists of terms which are multiples of 3,, or are products of generators.
The only possible 8,, which is not annihilated by «; is 8;. However, this term
cannot occur in a, since dim 8; = 2n; — 1 # n; = dim n,. Thus «,(a,) is a
linear combination of products of generators of .%; and so

Vi) = dyj6;.
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Therefore

(i x5)) = (s 234 (€5)))
= <<¢J(T]'L)1 e]))
= d.;{(5;, ;)

=dy (by Lemma 3.11).
Before stating the main result we need one more definition. Recall that we
have fixed generators {n1, 2, . .., 7y, ...} of the minimal model 4 of X and
homotopy elements x; € m,;(X), 7 =1, ..., r. We now define a function

K: F7N) — Q as follows. Let a € % "(A) and write

a = E QirecirMay « - - Mir T B

1=i1=...Zir

where ¢;,...;, € Q and B € F (AN, Setting I = (43, ...,14,) with 1 < 4; <
. Zt,and 9; = 14 .. .14, we rewrite this as
o= Z gmr+ B.
I

We then define
(5.3) K(a) = ; q:K(4;)

where 4 ;is the r X r matrix in M (r, Q) whose (p, ¢)-entry is ({(74,, x,)) and
K: M(r, Q) — Q is the function given by Definition 2.6.

We now state the main theorem.

THEOREM 5.4. Let X be a rational space with homotopy elements x; € w,;(X),

j=1,...,r whose minimal algebra N has a fixed set of generators. Suppose
that the higher order Whitehead product set [x1, X2, . . ., x,] C 7wy_1(X) 15 non-
empty and that w € N is an element of degree N — 1 with du € F "(N). Then
for each x € [x1, %2, . . ., x,], the Sullivan pairing

(@, %)) = (=1)K (du)
where N = <, nm; and K is defined by (5.3).

Proof. The x; determine a map g: W = Sp"t V ... V Sy~ — X. By Lemma
2.1, there is an extension f: 7" = T(Sy"1, ..., Sp"") — X such that f;(w) = «x.
Then f induces a homomorphism ¢: A" —_# and

(B, %)) = (@ L)) = (o), w)).

This brings the computation back into.# and from Propositions 4.7 and 4.8
it will suffice to find d¢ (). We recall from § 4 that in constructing.# (N — 1)
from 4 (N — 2) new generators é (in all cases (4.3)~(4.5)), €; (in Cases 1 and
2 ((4.3) and (4.4)) with7 = 1in Case 1) and ¢, (in Case 1 (4.3)) of dimension

https://doi.org/10.4153/CJM-1978-083-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-083-6

974 P. ANDREWS AND M. ARKOWITZ

N — 1 were adjoined. Since ¢(u) € #(N — 1),

e(u) = ad + be; + cea + p

fora,b,c € Qandp € A (N — 2).InCase3,b = ¢ = 0, in Case 2,¢ = 0, and
in Case 1, 7 = 1. Thus

(lo(w), w)) = a(@, w)) + b (e, w)) + c{(e2, w))

since = 0. But dé = ajas . ..a, and de; = a2 It now follows from Proposi-
tions 4.7 and 4.8 that

<W, w>> = (—I)Aa

All that needs to be calculated then is a, the coefficient of ey . . . «, in the
expansion of deu = ¢du. By hypothesis, du € # (A#) and so we can write

(6.5) du= 2 qm;+8

I

where I = (41,...,4,)withl <4, £... Z 1,7, = 74 ...1; with dim gy,
+ ...+ dimy, = N, and B € F +1(A). Thus

(5.6) e@u) = 2, q0(r) + o(B)

I

where o(n;) = ¢(my) ... ¢(ny,) and ¢(8) € F 41 (M). Because ¢(B) €
F () it can give no contribution to the ajas ... a, term. We therefore
examine more closely each term ¢(n;) = ¢(n;) ... ¢(n;,) in (5.6). Since for
eachi; € I,dimy,;; £ N — 2, we can by (5.1) write

T

80(771'1') = Z dijmjamj + ay
mj=1

with each a,; a linear combination of terms in. % 2(#) or of multiples of some

Bm. Thus we must determine the coefficient of ajas . . . «, in

T

etnr) =eMmy)...olmq) = H ( _=ldi/m;‘0‘mj + ati) .

j=1

When this product is expanded out, any summand which contains an a,,; does
not contribute to the coefficient of ajas . . . «,. Hence we must determine the
coefficient of ajas . . . @, in the expansion of

r

IT ( il dtjmja,,,j) )

j=1 \mj=

But this is just K(A4;), where 4; is the r X r matrix whose (p, ¢)-entry is
dy,, (see Definition 2.6 and the ensuing discussion). Thus the coefficient of
aias . ..o, in (5.6) is > ; ¢;K(A;) and so

a= Z :K(4)).

1
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But d,,, = ((#:, x,)) by Lemma 5.2. Therefore it follows from (5.5) and
Definition 5.3 that

a = K(dp).
Hence B

{m %)) = (=1)% = (=1)"K(dw).
This completes the proof.

We conclude this section with some remarks on the theorem. First of all,
the function K: % "(A4') — Q depends on the choice of elements x; € m,;(X)
and on the choice of generators of the minimal algebra /. When a different
Whitehead product set is being considered, a different function K will be
needed. Secondly, the theorem gives a calculation of a higher Whitehead prod-
uct x by showing how x is paired with indecomposables @ of degree N — 1.
The right hand side of the equality in Theorem 5.4 is computable once one
knows du as a sum of products of generators and how these generators pair
with the homotopy elements x; to form the matrices 4;. The rational number
K (dp) is then a linear combination of the K (4;), and the determination of the
latter is a straightforward operation in linear algebra. We will illustrate this
method in the next section by computing higher order Whitehead products of
rational spaces from a knowledge of the minimal algebra. Finally, we comment
on the hypothesis that du € # "(A). It is sometimes possible to compute
((&, x)) when du ¢ F7(AN). However, if one could compute ({g, x)) for all
possible g, then x would be uniquely determined and hence [xy, . . ., x,] = {x}.
We can give an example of a space one of whose Whitehead product sets has
a non-trivial indeterminacy. Thus there is no formula for ({(g, x)) in terms of
dp and x4, . . ., %, in the case du ¢ F "(N).

In conclusion we observe that the hypotheses of Theorem 5.4 are always
satisfied when r = 2. This is because for any u € /¥=1, du € F2(AN), since
the differential d is decomposable. Furthermore, ordinary Whitehead products
[x1, x2] always exist (and are unique). Therefore the equality in Theorem 5.4
holds without any restriction in the case » = 2. Thus we have proved Sullivan’s
result in [16, Theorem B] which asserts that (dual) Whitehead products are
described by the quadratic terms of the d-images of generators of the minimal
model. The formation of this result as hinted in [6, p. 250] can also be obtained.
We do this in the next section.

6. Applications. In this section we give several applications of the main
theorem. We first explicitly state and prove Sullivan’s result for ordinary
Whitehead products which is indicated in [6, p. 250]. After that we establish
some general results on the existence, uniqueness and vanishing of higher order
Whitehead products. Then we make some computations of higher order White-
head products in two stage Postnikov systems. We conclude the section with
some results on higher order Whitehead products and H-spaces.

https://doi.org/10.4153/CJM-1978-083-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-083-6

976 P. ANDREWS AND M. ARKOWITZ

Let V be a graded vector space over Q which is finite dimensional in each
degree. Denote the symmetric product of V with itself by V' A V, and the full
symmetric algebra on ¥ by S(V) [5, Chapter 3, § 6]. We define an isomorphism

&: Hom (V, Q) A Hom (V, Q) = Hom (V A V, Q)
by

(=D)"f@)g@) + g@)fw) if {p,q} = {m, n}

0 otherwise,

B A g6 A w) - |

where f € Hom (V™, Q), g € Hom (V" Q),v € V?,and w € V< Itis understood
that f(v) = 0 whenm # p. If_4 denotes the minimal algebra of a space X, then
the Sullivan pairing induces an isomorphism

V: I(V) — Hom (7 (X), Q).

Since A isfree, itisisomorphic, asan algebra, with S (I (4)) and F 2(N) JF 3(N)
is isomorphic, as a graded vector space, with I(A) A I(A). Let d: I(V) —
I(AN) A I(A) be the degree 1 homomorphism defined by the composition

I BT N F N ) TN A T,
where d’(X) = w(d\) with =: F2(N) = F 2(N)/F 3(N) the quotient map.
THEOREM 6.1 [6]. The following diagram commutes:

[N %—‘1——> [N)YN TN

|V AW

¥ Hom (m(X), Q) X Hom (m(X), Q)

1

x| b
A 4 VV])* ‘;
Hom (m4(X),0)——Hom (4 (X)A m4(X), Q),

where WP: e (X) A 14 (X) > we (X)) 15 the degree — 1 homomorphism defined by
WP(x A vy) = [x,y] and WP* is its vector space dual.

Proof. From the definition of ® it is easy to check that
(¥ A W)AN)(x AY) = (=1)PK(dN),

where X\ € 4711 x € 7,(X),and y € 7,(X). By Theorem 5.4 the latter term
is precisely ((X, [x, y])) = (WP* o ¥)(X)(x A ).

Since ¥ and ® are isomorphisms, Theorem 6.1 implies that the dual White-
head product homomorphism WP* can be identified with d. Note that d is
completely determined by the quadratic terms in the d formula in A,
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We next give some general results on higher order Whitehead products which
are both useful in the sequel and interesting in themselves. We begin by observ-
ing that in Theorem 5.4 the » homotopy elements x; € m,,(X) were arbitrarily
chosen. Thus it was necessary to assume the higher order Whitehead product
set non-empty. However, if one chooses the homotopy elements dual to the
generators of the minimal model, then one can prove certain Whitehead pro-
duct sets are non-empty. We do this next.

Let X be a rational space with minimal model 4. Assume that 71, 72, . . . ,
71, . . . is an ordered set of algebra generators for./" with deg 7, = n, such that
mE=n 2...5n,=....Letz; €m;(X),7=1,2,...,¢t ...bedual to
the generators. That is, ({4, 2;)) = 64, the Kronecker delta.

LEMMA 6.2. Suppose for alli < k,dn; € F(N). Let ¢ = q4,...;, € Q be the

coefficient of ns, . .. 14, 10 the expansion of dny, where 1 < 1, < ... = 1, and
N=mn; + ...+ n;, = n + 1. Then the Whitehead product set [z, . .. ,2:] C
Tn—1(X) 1s non-empty. Furthermore, if y € (24, ..., 2:,) and we rewrite ny, . . .

nias 't gt wiht, > 0and 1 = 51 < ... < jy, then
(G, ¥)) = (=1)gti! .. ),
where N = 2 ach Bighip-

Proof. By Theorem 6.1 we need only consider the case when r > 2. To show
the set non-empty, it suffices by [13, p. 127] to prove the following: If z;,, ...,
2x, 18 a proper subsequence of z,, . . . , 35,, then [z, . . ., 2,] = {0}. We do this
by induction on s. Let s = 2 and let ; be any generator of dimension n;, + 7,
— 1. Thendegn; < degn. Thusi < kandsodn; € F(N).Since2 = s <7,
it follows from Theorem 5.4 that ({#4, [2x;, 2x,])) = 0. Thus [2;,, 2,] = 0. Now
let s < r and assume the result for s — 1. By inductive assumption, [z, . . .,
2, # 0. Weletx € [zi,, ..., 2] and show x = 0. If n, is a generator of A4 of
dimension 7y, + ... 4+ n, — 1, then as before dn; € F(A). Since r > s,
({74 x)) = 0 by Theorem 5.4. This shows x = 0 and completes the induction.
Therefore [z, . .., 24] # 0.

Now with dn, € (AN )andy € (24, ..., 2], we have

(i y)) = <_1)AK(d77k)~

We write dn, as a linear combination of products of » or more generators. It is
not hard to show that each term with » factors which occurs in dy, other than
gnqn't. .. m; b gives rise to a matrix (as in (5.3)), such that K of it is zero. The
nip't. ..yt term in dyy yields a matrix 4 of the form

A, -

A, 0
0
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where 4 ;is a t; X t, matrix with 1 in each entry. We consider two cases: (i)
Some 7;; is odd and ¢; > 1. Then »,,'* = 0 and so ¢ = 0. (ii) All other cases.
In (ii) it easily follows from Definition 2.6 that K(4) = ! ... t!. Thus in
either case K (dni) = gti! ... t,!. This completes the proof of Lemma 6.2.

Before giving a consequence of this lemma we need a simple definition.
Definition 6.3. We say all Whitehead products of order r vanish in X if for any

relementsx; € m,;(X),7=1,2,...,7, [%1,..., %] = {0}. We say all White-
head products vanish in X if all Whitehead products of order r vanish in X for
all » = 2.

PROPOSITION 6.4. Let X be a rational space whose minimal model N has a fixed
set of generators. Then all Whitehead products of order less that s vanish in X of
and only if du € F *(N) for every element u of N .

Proof. Suppose all Whitehead products of order less than s vanish. If suffices
to show dn; € % *(N) for every generator 1, of 4. Suppose this is not the case,
and let 5, be the first generator such that dn € % *(A). Thus dy, € F (N if
1 < k. Let r be the largest integer such that dn € % "(A). Therefore2 < r < s.
Hence we have dn;, € #7(N) for all i £ k. Choose a term qn;, . .. n,, in the
expansion of dn, with ¢ % 0and 1 £ 4, £ ... £ 4,. By hypothesis [z, ...,34,]
= {0}, and so Lemma 6.2 implies

0= {7, 0)) = (—=1)q!

for some non-zero integer /. Thus ¢ = 0, which is a contradiction. Therefore

dne € Fs5(WN).

We now prove the opposite implication. Let x; € m,;(X),7=1,...,7 ber
elements with » < s. By induction we may assume all Whitehead products of
order < rvanish. Therefore by [13, p. 127] there is an element x € [xy,. .., x,]

C my_1(X). By Theorem 5.4, for any u € AN-1
(@ x)) = (=1)°K(dp) =0
since du € % *(A) and s > r. Thus x = 0. This completes the proof.

As a consequence we obtain the following corollary which, though it may be
known, we have not found in the literature. It answers a question in Porter’s
thesis [12, p. 51] for rational spaces.

COROLLARY 6.5. Let X be a rational space in which all Whitehead products of
order < s vanish. Then any sth order Whitehead product set in X is non-empty
and consists of a single element.

Proof. Letx; € m,,;(X) be any s homotopy elements, j = 1,...,s. As before
the set [x1, . . ., %] is non-empty since lower order Whitehead products vanish.
Now let x, ¥y € [x1,...,x,] and let u be any element of /¥=1, N = 3 #,. Be-

cause du € F *(AN) by Proposition 6.4, we have by Theorem 5.4 that

<<i1,°€>> = (_I)AK(d“) = <<ﬁyy>>
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Since this is true for all w € #¥~1 x = y. Thus [xy, .. ., x,] consists of a single
element.

We now turn to calculating some higher order Whitehead products in two
stage Postnikov systems. These propositions are included more to illustrate the
computational possibilities of Theorem 5.4 than to present the most general
results.

Suppose X is rational space with 7;(X) = Owhen? < zandn <17 < kn — 1.
Let.4 be the minimal algebra of X. Denote the generators of /' (kn — 1) in
dimension # by a1, @z, . . ., @, and the generators in dimension kz — 1 by S,
B2y - .., B Letxy, %o, ..., x, € m(X) and y1, yo, . . ., ¥; € Tn1(X) be dual
homotopy elements. Then day = 0,7 =1, ..., 7 and dB8; = p,(a1, ..., a;),
j=1,...,t where each p; is a homogeneous polynomial of degree %k in r
variables with rational coefficients. It follows from Corollary 6.5 that all kth
order Whitehead product sets in m4,_1(X) are non-empty and consist of a
single element.

Our first computation concerns a kth order Whitehead product where all the
homotopy elements are the same (Cf. [1, § 4]).

ProrosiTiON 6.6. Let x € 7,(X) and let y be the kth order Whitehead product
element [x, x, . . ., x].

(i) If nis odd, then y = 0.

(1) If n s even, then

y =k ; pi(((as, %)), ((@z, %)), - - s (& %))) 5.

Proof. Since 8, . .., 8, form a basis for I**1(A4) dual to y;, ..., ¥, y =
> =1 ((B,, ¥))y; Hence it suffices to compute the rational numbers ({8, y)).
Let p,(a1, ..., a,) = 27 qqo;, where I = (i1, ..., %) is a multi-index with
1= =...24Sra;=a;...a4, ¢ € Q. The matrix 4; corresponding
to the term a ; in p;(a, . . . , @,) will have pgth entry ((&q,, x)),p =1,..., k.
Thus all the columns of each 4; will be equal. When # is odd, K(4;) = det
(4;) = 0, and so

((Byy)) = £R(pjlen, ... ) = 2 ¢K(4) =0
for all ;. When # is even, '
K(4;) = VEZSIc (@i, %)) - (@ %))
B (G 1) - (G ).

Thus, in this case,

<<B_J'7 y) = K(Pi(alr ceehar))
= ZI: QIK(AI)

Rip;(((an, %)), - ooy ((@n x)))-

This completes the proof of the proposition.
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Let X be the same space as described above, but now consider the kth order
Whitehead Product element

y = [lev"' vxj11xj2>"' vxj‘:r'~-vxjsv~-'1x]s:|y
N, N N
t t2 ts
where x;, is repeated {; times, «x,, is repeated ¢, times, etc. We assume 1 < j; <
. <jgeacht; > 0and{; + f» + ... 4+ t;, = k. Let a; be the coefhicient of
a,". ey in pslay, ..., @), where dB; = pilay, ..., a).

ProrositioN 6.7. With the above hypotheses,
(i) if mis odd and t; > 1 for some i, then the Whitehead product element y = 0;
(ii) otherwise the Whitehead prodisct element

t

y o=ttt Y ay;
1

e
(The signis — if nand k(k — 1)/2 are odd, and + in all other cases.)

Proof. As in the proof of Proposition 6.6 we need only compute the rational
numbers ({8;, ¥)). The result now follows from Lemma 6.2.

It is an easy consequence of the proof that a similar result holds for any kth
order Whitehead product of the dual generators in 7, (X). It should also follow
from ‘“‘anti-commutativity’’ of higher order Whitehead products.

We can apply Proposition 6.6 to the localization of complex and quatern-
ionic projective spaces, CPy(m — 1) and HPy(m — 1). The minimal model of
CPy(m — 1) is generated by elements « in dimension 2 and 8 in dimension
2m — 1, with da = 0 and dB = o™ Then if x € 73(CPy(m — 1)) is dual to &
and y € mou_1(CPy(m — 1)) is dual to 8, Proposition 6.6 implies that the mth
order Whitehead product [x, . .., x] = m!y. This agrees with a similar result of
Porter [14] for CP(m — 1).

Likewise, it follows that in HPyp(m — 1) there are homotopy elements
x € 7(HPy(m — 1)) and y € w41 (HPy(m — 1)) with the mth order White-
head product [x, ..., x] = m!ly. For HP (m — 1) however, Barry has shown
(4, p. 24] that if ¥’ € 7,(HP(m — 1)) is a generator, then the mth order
Whitehead product [«/, . . ., x’] is the empty set. He does show [4, p. 17] that
there is an integer s for which [sx’, ..., sx’] is non-empty and equals s™m !
times the Hopf map plus an element of finite order. This agrees with the
calculation of [sx, ..., sx]in wy,_1(HPp(m — 1)) using Proposition 6.6. This
gives an example of a space ¥ and homotopy elementsx; € 7,,(¥V),7 =1,...,
r, for which [x1, ..., x,] € 7xy_1(Y) is empty, but [e;(x1), ..., e(x,)] C
mn—1(Yp) is non-empty.

For the remainder of the paper we shall have occasion to consider both
topological spaces of finite type (see the beginning of § 3) and their rationaliza-
tions. We shall consistently denote a space of finite type by ¥ and the localiza-
tion of such a space by X.
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The computations of Whitehead products, like those in Propositions 6.6 and
6.7, for the rationalization of a space can yield information about Whitehead
products in the space itself. As an illustrative example, we mention the follow-
ing proposition.

ProOPOSITION 6.8. Let YV be a space with minimal model N (with a fixed set of

generators). Suppose xi, ..., x, are homotopy elements in we(Y) such that
(x1,...,x,] # 0. If there is an element N in N withd\ € F 7 (N) and K (d\) 5 0,
then all elements of [x1, . . ., x,] have infinite order.

We conclude this section with some results on H-spaces and higher order
Whitehead products.

ProrositioN 6.9. If X is a rational space, then X is an H-space if and only if
all Whatehead products vanish in X.

Proof. 1t is proved in [13, p. 126] that all Whitehead products vanish in an
H-space. Thus we prove the reverse implication. Snppose all Whitehead prod-
ucts vanish in X. We show the differential d of the minimal model A4 of X is
zero. For every element u of 4/, Proposition 6.4 implies that du € & *(A) for
alls = 1. Thus du = 0. We finish the proof by showing that d = 0 implies that
X is an H-space. We have that H*(X) = H*(AV) =¥ a free algebra. Hence
H*(X) has the cohomology of an appropriate product of Eilenberg-MaclLane
spaces K (Q, n). From this it easily follows that there is a map of X into this
product which induces an isomorphism of cohomology groups. Consequently
this map is a homotopy equivalence. Therefore X is an H-space. This completes
the proof.

We conclude the paper by proving an analogue of Proposition 6.9 for topo-
logical spaces. The following is a generalization of [3, Satz] from spaces of the
homotopy type of finite CIW-complexes to spaces of finite type.

ProrosiTioN 6.10. Let YV be a space of finite type. Then Yy is an H-space if and
only if every element in every higher order Whitehead product set in Y has finite
order.

Proof. 1t suffices by Proposition 6.9 to establish the equivalence of the follow-
ing two assertions:

(i) All Whitehead products in Yy vanish.

(i1) Every element in every higher order Whitehead product set in ¥ has
finite order.

(i) = (ii): Let e: ¥ — Yj be the localization map and let x € [x1, ..., x/]
C wy_1(Y). Then

ep(x) € [eg(xr), ..., ep(x)] S mva(Yy),
and so e;(x) = 0. Thus x is in the kernel of ¢4, and hence x has finite order.
(i) = (i): We assume (ii) and prove by induction on r that every Whitehead
product of order » in Yy vanishes. For r = 2, consider [x1, x2] € my_1(Vp).
Then Mux; = e;(3;) for integers M, and elements z, in the homotopy groups
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of Y. Thus
]LI]MQ[xl, x‘),] = [Mlxl, ]WgﬁCQ] = [e#(zl), 6#(22)] = 6#[21, ZQ].

But (21, z2] has finite order and hence so does [xi, x2]. Therefore [x;, x2] = 0.
Now assume that (i) holds for all Whitehead products of order < r. Let x €

[x1, ..., x,] € 7y_1(Yp) be an rth order Whitehead product element. Then
Mix; = e;(z;) for integers M, and homotopy elements z;. Unfortunately the
set [21, ..., 2,] C 7y_1(Y) may be empty. However, since all Whitehead

products in ¥ have finite order, a result of [3, § 3b] asserts that there exists an
integer M such that 0 € [Mz,, ..., Mz,]. Hence

0 = ¢;(0) € [e(MZ)), ..., es(Mz)] = [MMxy, ..., MM,x,).

But x € [x1, ..., x,], and so it easily follows that M"M, ... M,x is also in
[MMx,, ..., MMx,]. By Corollary 6.5, M"M,. .. M,x = 0. Thereforex = 0,
and hence [xy, ..., x,] = {0}. This ends the inductive argument, establishes

(i), and completes the proof.
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