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Abstract

Given an /{-module M, the centralizer near-ring J(R(M~) is the set of all functions / : M -> M with
f(xr) = f(x)r for all x e M and r € R endowed with point-wise addition and composition of functions
as multiplication. In general, MR(M) is not a ring but is a near-ring containing the endomorphism ring
ER(M) of M. Necessary and/or sufficient conditions are derived for MR(M) to be a ring. For the case
that R is a Dedekind domain, the /{-modules M are characterized for which (i) MR(M~) is a ring; and
(ii) MR(M) = ER(M). It is shown that over Dedekind domains with finite prime spectrum properties
(i) and (ii) are equivalent.

1991 Mathematics subject classification (Amer. Math. Soc): 16D70, 16S50, 16Y30.

1. Introduction

Throughout, the word ring is used to mean an associative ring with identity and all
modules will be unital right modules.

Given modules M and N over a ring R, an R-homogeneous map from M to N is a
function / : M -> N such that, for all x € M and for all r e R, f(xr) = f(x)r. The
set of all homogeneous maps from M to M is denoted by JtR(M~), and JZR(M) is
a zero-symmetric abelian near-ring with identity under the usual operations of point-
wise addition and composition of functions [16]. This near-ring, sometimes called the
centralizer near-ring determined by R and M [11-15], obviously contains the ring
ER(M) of all /?-endomorphisms of M:

(1-1) ER{M) c

and satisfies all the ring axioms with the possible exception of the left distributive law,
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that is

(1.2)

In a recent paper [7], Fuchs, Maxson and Pilz have considered the class 1% of all
rings R such that, for every R-module M, ^#R(M) is a ring. They prove that a ring
R belongs to & (if and) only if J?R{M) = ER(M) for all /^-modules M. The focus
in [7] is on the rings in g% and their structure. They show that every ring in & is
non-commutative and must have non-zero zero divisors.

The current paper concerns itself with the structure of modules whose centralizer
near-ring is a ring without imposing this condition on the entire module class. It
will be convenient to call the ^-module M semi-endomorphal if J?R{M) is a ring.
If ^R(M) = ER(M), that is, if every R-homogeneous map from M to M is an
endomorphism, then M is said to be endomorphal.

We pose

PROBLEM 1.3. Given a ring R, find necessary and/or sufficient conditions for an
/^-module M to be semi-endomorphal.

PROBLEM 1.4. Given a ring R, find necessary and/or sufficient conditions for an
/?-module M to be endomorphal.

PROBLEM 1.5. Describe the rings R over which there exist semi-endomorphal mod-
ules which are not endomorphal.

After general results for modules over arbitrary rings, we let R be an integral
domain. Given a torsion-free /?-module M, we show that MR{M) — ER(M) if and
only if M is an /?-submodule of the quotient field Q of R; and ^#R(M) is a ring if and
only if any two R-independent elements of M are of incomparable type. Modules of
the latter kind are said to be absolutely anisotropic. For R a Dedekind domain, we
obtain a complete characterization: the R-module M is semi-endomorphal if and only
if either R is a submodule of Q/R, or M is torsion-free absolutely anisotropic. For
R a principal ideal domain, the endomorphal R-modules are shown to be precisely
the locally cyclic modules; if R has only finitely many prime ideals then every semi-
endomorphal ^-module is endomorphal. However, there do exist semi-endomorphal
^-modules which are not endomorphal if the prime spectrum of R and R have
equal cardinality. Thus, there exist abelian groups G such that Mi(G) is a ring but

2. Modules over arbritrary rings

Let R be any ring. The R-module M is said to be locally cyclic if, given any two
elements x and y in M, there exist a e M such that both x and v belong to aR. One
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easily verifies

PROPOSITION 2.1. Every locally cyclic module is endomorphal. In fact, if X is
locally cyclic and f : X —>• M is any R-homogeneous map, then f e Homfl(X, M).

Maxson and Smith give an example of a module which is semi-endomorphal but
not endomorphal [13, Example 2.1]. One verifies that their example is of the form
described in

PROPOSITION 2.2. If the R-module M has a family {X,},6/ of submodules Xt such
that (i) M = (J,.e/ Xi, and (ii) for each f e JtR(M) and for each i € I, f\Xt e
HomR(Xi, Xj), then ̂ R(M) is a ring.

PROOF. It suffices to verify (1.2). Let f,g,h e JtR(M) and let a € M. Then
a e Xi for some/ e I. By hypothesis, g (a), h{a) € X, and/|X, is a homomorphism.
Thus f{g + h){a) = f(g(a) + h{a)) = fg{a) + fh(a) = (fg + fh)(a) as desired.

In order to derive necessary conditions for a module to be semi-endomorphal, the
existence of non-trivial direct sum decompositions proves useful (cf. [7, 14]). One
easily proves

LEMMA 2.3. Direct summands of (semi-)endomorphal modules are {semi-endo-
morphal.

For ease of reference, we include the following result from [14].

LEMMA 2.4. ([14, 2.1]) Suppose that M is an R-module and A and B are submod-
ules ofM such that M — A® B. If M is semi-endomorphal and f e ^R(M), then
f(a+b) = f(a) + f(b)foralla € A and all be B.

A general method for constructing R-homogeneous maps was given by Maxson
and van der Walt in [14]. We modify their construction. Let Y c M be a non-empty
subset of the R-module M. If, for all r G R and all y e Y, yr e Y then Y is said to
be R-closed; define Y to be strongly R-pure if a e M, r e R and 0 ^ ar e Y imply
a € Y. Note that Y is an R-closed and strongly R-pure subset of M if and only if the
set X = Y \ {0} satisfies (ii) and (iii) of [14, 2.2].

LEMMA 2.5. Let X be a subset of the R-module M which is R-closed and strongly R-
pure, and let cp : X —*• M be an R-homogeneous map. Define a function f : M —> M
by

<p(a) if a € X,
1 0 otherwise.

Then f is an R-homogeneous map.
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PROOF. Note that /(0) = <p(0) = 0. Let r e R and a e M. If a e X, then
f(ar) = <p(ar) = (p(a)r = f(a)r. Suppose a £ X. Then f(a) = 0 and either
ar £ X or ar = 0. In either case, f(ar) = 0 = f{a)r.

An ./?-module M is said to be torsion-free if, for a e M and r e R,ar = 0 implies
a = 0 or r = 0. Clearly, the existence of a non-zero torsion-free /^-module implies
that R is a ring without zero-divisors.

REMARK 2.6. Let M be an 7?-module.

(i) If X is a submodule of M such that the quotient module G/X is torsion-free,
then X is an ^-closed and strongly R-pme subset of M.

(ii) The union of any family of /^-closed and strongly /?-pure subsets of M is
R-closed and strongly R-pure.

Maxson and van der Walt show that semi-endomorphal modules are either indecom-
posable, or what they term R-connected [14, 2.3]. We shall require the following
result.

LEMMA 2.7. Let M be a semi-endomorphal R-module which has a non-trivial
direct sum decomposition. If S is a submodule of M such that M/S is torsion-free,
then S = M.

PROOF. It suffices to show that S contains every proper direct summand of M.
Let M = A © B with B / 0. Assume A % S. Then there is a € A\S. Put
X = (A n S) © B. Then X is a submodule of M with torsion-free quotient M/X.
By 2.6 and 2.5, the map f : M -+ M denned by f(x) = x if x € X and f(x) = 0
otherwise is R-homogeneous. Let 0 ^ b e B. Then b e X, and both a and a + b are
not in X. Thus

f(a + b) = 0 ^ 6 = /(&) = / (a )

and M is not semi-endomorphal, by 2.2.

COROLLARY 2.8. Torsion-free semi-endomorphal modules are indecomposable.

3. Modules over integral domains

From now on we assume that R is an integral domain. We use the terminology of
[9]: if x e M is an element of an R-module M, the order ideal of x is the set

o(x) = {r e R\xr = 0},
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and x is said to be a torsion element if its order ideal is non-zero; the set T{M) of all
torsion elements of M is a submodule of M such that the quotient module M/T(M)
is torsion-free. Applying 2.7 with S = T(M) yields

LEMMA 3.1. Let M be a module over an integral domain which has a non-trivial
direct sum decomposition. If M is semi-endomorphal then M is a torsion module.

Throughout, we let Q denote the quotient field of R. If M is a torsion-free
R-module then M may be regarded as an /?-submodule of the vector space V =
M <g>« Q. The rank of M is defined to be the g-dimension of V. The torsion-free
rank-one /?-modules are, up to isomorphism, precisely the non-zero 7?-submodules of

Q.
An easy calculation shows that Q is a locally cyclic ^-module. Since quotient

modules of locally cyclic modules are locally cyclic, 2.1 implies

LEMMA 3.2. The quotient field Q of R and the factor module Q/R are locally
cyclic endomorphal R -modules.

Submodules of locally cyclic modules need not be locally cyclic. However, we
have

LEMMA 3.3. Every torsion-free rank-one module over an integral domain is endo-
morphal. In fact, if X and M are torsion-free R-modules with X of rank one and
f : X -»• M is an R-homogeneous map, then f e Homff(X, M).

PROOF. Assume the hypotheses. Let x and y be non-zero elements of X. Then
there exist non-zero r,seR with rx = sy. Computation shows that rsf(x + y) =

Two torsion-free R-modules M and N are said to be quasi-isomorphic, in symbols
M~N, if each is isomorphic to a submodule of the other. Quasi-isomorphism is
an equivalence relation on the class of torsion-free ^-modules. For a torsion-free
rank-one module A, the type of A is the equivalence class containing A:

t(A) = {B e Mod-R\B torsion-free and B±A}.

Two types t(A) and t(B) are said to be incomparable if HomR(A, B) = 0 and
HomR(B, A) — 0. Using the fact that Q is the injective envelope of each of its
non-zero /?-submodules [18, p. 50], one verifies that this definition is independent
of the choice of representatives in the two types. If x is a non-zero element of the
torsion-free R -module M, the pure submodule generated by x is

(x)* = {y € M\yr € xR for some non-zero r e /?},
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and the type of x is defined to be the type of (JC)*: t(x) — t({x)J. For abelian groups,
of course, these notions agree with the standard definitions [6].

Beaumont and Pierce call a torsion-free abelain group G completely anisotropic
if no two independent elements of G have the same type [2, p. 28]. We modify this
notion by calling a torsion-free module over an integral domain absolutely anisotropic
if any two independent elements have incomparable type. The existence of absolutely
anisotropic torsion-free abelian groups of rank two was established in [2] (see also [1,
8]). In our context we have

THEOREM 3.4. Let M be a torsion-free module over an integral domain R. Then
J(RiM) is a ring if and only ifM is absolutely anisotropic.

PROOF. Let M be a torsion-free /?-module. Suppose, firstly, that M is semi-
endomorphal. By way of contradiction, assume M contains two independent elements
whose types are comparable. Let X and Y denote the pure rank-one submodules they
generate. Without loss of generality, we may assume Hom^X, Y) / 0. Choose a
non-zero homomorphism cp : X —> Y and pick x e X with cp(x) ̂  0. By 2.6, we
may apply 2.5 which yields an R-homogeneous map / : M —»• M such that f\X = cp
and f(M \ X) = 0. Using 1.2 and the independence of x and f(x) it follows that

0 = / ( / ( * ) +x) = / ( / ( J C ) + lM(x)) = / ( / + lM)(x) = / / ( JC) + f(x) = f{x)

which is a contradiction. Conversely, suppose M is absolutely anisotropic. Let
{X,},€/ be the set of all pure rank-one subgroups of M. Then Hom«(X,, Xy) = 0
whenever ;' ^ j . Let / e J(RiM). It follows from 3.3 that, for each / e / ,
f\Xj € HomR(X,, M) and, thus, / |X, e HomR(X,, X,). Apply 2.2.

The torsion-free endomorphal modules over integral domains are precisely those
of rank one:

THEOREM 3.5. Let M be a torsion-free module over an integral domain R. Then
if and only if M has rank one.

PROOF. Assume M is a torsion-free R -module of rank at least two. Then there exist
two pure rank-one submodules A and B of M such that A D B = 0. Let X = A U B.
By 2.6, X is an R-closed and strongly R-pure subset of M. Apply 2.5 with <p = 1M|X
and call the resulting /?-homogeneous map / . Pick 0 / a e A and 0 / b e B. Then

fia + b) = 0 ^ a + b = fia) + fib).

Thus, M is not endomorphal. The proof is completed using 3.3.
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4. Modules over Dedekind domains

Let R be a Dedekind domain. We will give a complete characterization of the
semi-endomorphal /?-modules. Similar to modules over principal ideal domains,
modules over Dedekind domains have nice decomposition properties. In particular,
every indecomposable module over a Dedekind domain must be either torsion or
torsion-free [9, p. 336, Theorem 10]. Thus, we have the following consequence of
3.1:

LEMMA 4.1. A semi-endomorphal module over a Dedekind domain is either a
torsion module or is torsion-free.

The theory of torsion modules over Dedekind domains is essentially that of torsion
modules over principal ideal domains. We summarize results from [9]: Let 2?
denote the set of all maximal ideals of R. For each P e 3* and each R -module
M, let Mp denote the set of all elements in M with order ideal a power of P.
Then MP is a submodule of M and MP can be regarded as a module over the ring
R(P) = {rs~l\r, s e R,s £ P), the localization of R at P. Moreover, R(P) is a
discrete valuation domain, in particular a principal ideal domain. If M is torsion then

Let Q again denote the quotient field of R. Then Q/R is a torsion /?-module,
hence Q/R = ®P^Q/R)P.

Define R(P°°) — (Q/R)p. As a factor module of the locally cyclic module (?,each
R(P°°) is locally cyclic; it is also an injective hull of the modules of the form R/P".
Each R/P" is a principal ideal ring whose ideal lattice is a chain [10; p. 137, 6.20].
It follows that the submodules of R(P°°) are totally ordered. The indecomposable
torsion modules are precisely the modules of the form R/P" and R(P°°) with P e &.

As is the case for Z-modules [5, p. 86, Exercise 5], one has

LEMMA 4.2. Every finitely generated submodule of Q/R is cyclic.

A characterization of the endomorphal torsion modules is contained in

THEOREM 4.3. Let T be a torsion module over a Dedekind domain R. The following
properties are equivalent.

(1) J?R(T)isaring.
(2) ^R(T) = ER(T).
(3) T is locally cyclic.
(4) T is a submodule of Q/R.

PROOF. Let T = @P€g> TP be a torsion module. By 4.2, (4) implies (3), and
(3) implies (2), by 2.1. Trivially, (2) implies (1). Assume (1). If each TP is
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indecomposable, T has the desired form. Assume not. Then T contains a direct
summand G = A® B with 0 ^ A, B < R(P°°) for some P. By 2.3, the module G
must be endomorphal. Let X = {a + b\a e A, b e B, o{a) = o(b)}. One verifies
that X is an /?-closed and strongly /?-pure subset of G. Applying 2.5 with <p = lc\X
results in an R-homogeneous map / : G -*• G. Choose x e A and y e B such that
o(x) = o(y) = P. By 2.4

0 + x + y = f(x + y) = f(x) + f(y) = 0

which is a contradiction.

Thus, all semi-endomorphal R-modules are determined:

COROLLARY 4.4. If M is a module over the Dedekind domain R, then JKR{M) is
a ring if and only if either (i) M < Q/R, or (ii) M is torsion-free and absolutely
anisotropic.

PROOF. Combine 4.1,4.3 and 3.4.

COROLLARY 4.5. If M is a module over the Dedekind domain R, then JZR{M) —
ER(M) if and only if either (i) M < Q/R, or (ii) M is torsion-free of rank one.

PROOF. Combine 4.1,4.3 and 3.5.

COROLLARY 4.6. A module M over a Dedekind domain is semi-endomorphal but
not endomorphal if and only ifM is absolutely anisotropic torsion-free of rank at least
two.

If R is a Dedekind domain which has only finitely many maximal ideals, then R
is a principal ideal domain [10, p. 144, Exercise 3]. Since R has only finitely many
pairwise non-associate primes, there are only finitely many types so that no torsion-
free R-module of rank two or larger can be absolutely anisotropic. Since, by 3.3,
every torsion-free rank-one module must be endomorphal, we have

COROLLARY 4.7. Let R be a Dedekind domain. If there exists a semi-endomorphal
R-module which is not endomorphal, the prime spectrum of R is infinite.

5. Modules over principal ideal domains

Let R be a principal ideal domain. Since R is a Dedekind domain, the characteriz-
ation problems are solved. Over a principal ideal domain, every torsion-free rank-one
module is locally cyclic. In view of 4.5, 3.2 and 2.1, this implies
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PROPOSITION 5.1. A module over a principal ideal domain is endomorphal if and
only if it is locally cyclic.

We turn to Problem 1.5, that is, the existence of semi-endomorphal modules which
are not endomorphal. By 4.7, R having a finite prime spectrum implies every semi-
endomorphal R-module is endomorphal. The question remains whether the converse
holds.

As remarked earlier, the answer is 'yes' if /? = Z. This follows from results
of Beaumont and Pierce who posed the problem of finding necessary and sufficient
conditions for a given set T of types to equal the typeset T(A) of a rank-two torsion-
free abelian group A [2]. In our context, we are concerned with the existence of
absolutely anisotropic modules, that is, modules whose typesets have the property
that any two of its members are incomparable.

For typesets of this sort, the realization problem of [2] has also been considered
by Dubois [4], Ito [8], Schultz [17], Arnold and Vinsonhaler [1], and others. Their
constructions differ. Given a typeset T, all known constructions of the /-module A
having T for its typeset involve, at some point, some number theoretical result which
is not available for arbitrary principal ideal domains, for example, the prime number
theorem: lim,,^^ n/pn = 0 . It is an open question raised in [1] whether a realization
theorem can be proved without using some version of this theorem [ibid., p. 20, 5.3].

For our purposes, we are concerned with a much weaker form of the realization
problem: all we need is the existence of one typeset T any two of whose members are
incomparable and a torsion-free module A such that T = T(A).

Under the special hypothesis that R is a principal ideal domain with sufficiently
many primes, this can be proved establishing the existence of absolutely anisotropic
torsion-free /^-modules. The following clever construction was communicated to the
authors by Vinsonhaler.

PROPOSITION 5.2. Let R be a principal ideal domain of infinite cardinality K. If the
set of maximal ideals of R has cardinality K , then there exists an absolutely anisotropic
torsion-free R-module of rank two.

PROOF. Assume the hypotheses. Let Q denote the quotient field of R and let
V = Q ffi Q be the two-dimensional vector space over Q. Choose an index set / such
that [X,},£/ is the collection of all one-dimensional subspaces of V with Xt / Xj
if; ^ j . One verifies \R\ = \V\ = \I\ = K SO that, by hypothesis, &> = {/>,},£/

with Pi ^ Pj if / 7̂  j . For each P{ e ^ , select one prime p, € R such that
Pi = piR. Let At = {kp~"\k 6 R,n e N}. Then At is an /?-submodule of Q. For
each / € / , select a non-zero vector vt e Xt such that i>,- = (a,-, bt) with a, and b, in
R, at and fr, relatively prime. Moreover, if (1,0) € X,, pick Vj = (1, 0); if p = p,
is one of the primes selected earlier and (p, 1) e Xk, choose vk = (p, 1). The set
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v,Aj — {v,q\q e Aj} is an 7?-submodule of V. Let G = 5Z,-e/
 v^i- If x e G is a

non-zero element, then xQ = X, for some i, and the pure submodule (x)t = G D X,
of G generated by x contains u,A,. Hence, x is divisible in G by every power of
Pi. Assume, by way of contradiction, G is not absolutely anisotropic. Then there
exist two independent elements x and y in G whose types are comparable. It follows
that there is a prime p e R such that G is p-divisible. Let j e I such that p = pj.
Choose k € / different from j and let v = vk. Since G = Gp, there is x e G
such that v = xp and* = Yli<=Fv>k'P7m' where F c / is finite, &, e /?, the m, are
non-negative integers, and m, > 0 implies pt is no divisor of kh We claim that 7 e F
and w; = 1. Indeed, if r = f ] / e f p™' and r, = rp~m', we have ur = £ ; e f v,A:,r,p,
and the coordinates of v being relatively prime implies 7 G F and ms > 1. Hence £; is
not divisible by p = p ; , so that because of Vjkjrjp = vr — J2i¥:j Vik,r,p e (R®R)pm>
the coordinates of Vj both are divisible by pm>~x. Thus, rrij = 1 and r = prr This
implies (u - Vjkj)rj e (R © /?)/? so that

(5.3) u - vjkj e(R® R)p.

Recall that v = vk where k ^ j was arbitrary. For the final contradiction we
distinguish two cases: if Pj divides a,, then Vj ^ (1,0) so that (1,0) = vk for some
k ^ j in / ; if Pj \ aj then Vj ^ (/?, 1) and we have (p, 1) = vk for some /: / j . In
either case, u = ut cannot satisfy (5.3). This completes the proof.

COROLLARY 5.3. Let R be a principal ideal domain whose prime spectrum has the
same cardinality as R. Then there exists an R-module M which is semi-endomorphal
but not endomorphal.

PROOF. Observe 4.6.
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