
15 
The Lund gluon model, its 

kinematics and decay properties 

15.1 Introduction 

In this chapter we consider the way in which gluons are introduced into 
the Lund string fragmentation model, [7], [18], [104]. They are treated as 
internal excitations on the massless relativistic string (the MRS) similar to 
a sudden 'hammer hit' on an ordinary classical string. Thus they will be 
initially well localised in space-time. But we will find that they quickly 
disperse their energy-momentum to the surrounding string. This property 
means that the gluon excitation disappears and reappears periodically as a 
localised energy-momentum-carrying entity during the string cycle. 

We will start as usual with a classical mechanics scenario and study 
some simple modes of motion of the MRS in order to get acquainted with 
the notion of an internal excitation. We start with the mode which has 
acquired the poetical name of 'the dance of the butterfly'. It certainly does 
exhibit the grace and the beauty that goes with this name. After a brief 
snapshot description of the appearance of this mode in space coordinates 
we proceed to a description in space-time. This will lead us to the general 
equations of motion for the MRS and to an understanding of the way the 
string is built up in terms of moving wave fronts. 

After that we consider more complex modes, although there is no reason 
to go into too many details. The intention is simply to provide a sufficient 
understanding of the basics in this kind of string motion in order to make 
it possible to understand the way a string which has aquired a bend will 
fragment. 

One property which is both useful and rather easily understood is the 
fact that the space-time surface spanned by the string is a minimal surface. 
We will spend some time considering this notion. We will also stress 
the notion of infrared stability, which is closely related to the minimal 
surface properties. This means that a small disturbance, such as a small or 
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270 The Lund gluon model 

collinear gluon excitation, does not change the string surface more than 
in a correspondingly small and local way. 

After a brief description of the way fragmentation is handled (the whole 
process is a direct generalisation of the way a 'straight' string decays) we 
will turn to the consequences. We consider the correspondence in the 
bent string to the mean hyperbola decay, which was typical for the simple 
straight qq-string in Chapter 9. We will find a noticeable similarity between 
the (1 + I)-dimensional scenario and the multidimensional twistings and 
bends of the general string state. 

In particular it is possible to generalise the rapidity variable for the sim
ple straight string to a new variable which we have called A in [48]. After 
we have introduced the cross section for gluon emission in Chapters 16 
and 17 we will show how to calculate in an analytic form the properties of 
the A-distribution and related variables. These distributions are governed 
by irregularities related to the so-called anomalous dimensions of QCD. 

Within this pictorial scenario of gluon emission in the Lund model it 
is easy to understand both the increase in the multiplicity and the local 
properties of transverse flows. We will continue with a few remarks on 
heavy quarkonia decays. States such as the J /'P and 1 can, owing to their 
quantum numbers, decay only into three (or more) gluon final states. Such 
states are described in the Lund model by means of closed strings, the 
gluon excitations pulling out the string. Therefore there are differences 
between the decay of such a quarkonia state and that of a corresponding 
state with almost the same mass but outside the resonance (referred to 
as 'in the continuum'). We will explain the reason why there are more 
particles produced at the resonance, with its closed string state, than in 
the continuum with an open-ended string ending on a qq-state. 

15.2 The dance of the butterfly 

1 Snapshots of the motion 

In this section we will use some of the results from earlier investigations 
of string motion (cf. Chapter 6), in particular local energy-momentum 
conservation due to causality (cf. also Chapter 12). We consider the 
situation depicted in Fig. 15.1, where at the start the two endpoint particles 
q and q both have momentum kl.. along the same direction transverse to 
the connecting (straight) string (length 21;;::: 2kl../K). As before we describe 
the ensuing motion in terms of a few snapshots in time. 

A After a time (jt both endpoints have moved outwards in a straight 
line, in the same way as for the motion described in Chapter 12 
(in that case only one endpoint moved transversely). There are two 

https://doi.org/10.1017/9781009401296.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401296.015


15.2 The dance of the butterfly 271 

string segments, starting out with velocities v = cos(n/4) = 1/ -/2, as 
indicated in Fig. 15.1. These have energies 2Kbt, transverse momenta 
Kbt upwards and compensating longitudinal momenta ±Kbt. 

The endpoints have each lost Kbt in energy and transverse momenta 
and the remaining straight string is also 2bt shorter. In this way we 
account for all the available energy-momentum just as in Chapter 
12. This part of the motion will continue until all the original energy 
and transverse momenta of the q and q have been used up. 

B After that the q and Zj will start to move towards each other, each 
gaining energy and (oppositely directed) momentum at a rate of 
K. The two connecting string segments continue inwards as two 
fronts, each with energy 2kJ.. and transverse momentum kJ.., and with 
longitudinal momenta ±kJ.. respectively. 

During this phase they serve as 'transporters' of energy-momentum 
to the two endpoints. More precisely they pick up energy from the 
remaining straight string piece, thereby gaining energy at the lower 
end and losing it to the endpoint particles at the upper end. This 
part of the motion continues until the fronts meet at a time t = 1 
and it again coincides with the results of Chapter 12. 

The next part of the motion is, however, both surprising and beautiful. 

C After a time bt the meeting point of the fronts has, for purely 
geometrical reasons, moved upwards by a distance bt and each front 
is now bt-/2 shorter. Therefore each front has lost energy 2Kbt, 
transverse momentum Kbt and longitudinal momentum ±Kbt. The 
two endpoint particles have gained energies Kbt and longitudinal 
momenta ±Kbt (i.e. the joint longitudinal momentum loss vanishes). 

The remaining energy and transverse momentum 2Kbt are gathered at 
the meeting point of the fronts. This point has moved upwards with 
the velocity of light (i.e. the same velocity as the endpoints) and is 
evidently gaining energy-momentum at a rate 2K! This part of the 
motion will continue until the two endpoints q, Zj and the internal 
excitation, called g, meet at a transverse distance kJ../K from the 
starting position of the system. 

D After another time period bt, the q and Zj have passed each other 
and are now at a distance 2bt and moving outwards. The g continues 
upwards and there are two new string segments connecting the three 
particles. Each segment moves with velocity v = 1/ -/2, as indicated 
in Fig. 15.1, and therefore has energy 2Kbt, transverse momentum 
Kbt and longitudinal momentum ±Kbt. 
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Fig. 15.1. The butterfly-dance mode of the MRS with the velocity v of the string 
segments and the different situations described in the text exhibited. The quark 
(antiquark) is denoted as an open (solid) circle and the gluon when it appears as 
grey. The arrows denote the directions of motion of the particles and the string 
segment fronts and the orbits of the quark and antiquark are shown as dotted. 

The q and q have each lost the energy Kf>t and the longitudinal 
momentum component Kf>t. The remaining energy and momenta in 
the moving string segments stem from the internal g-excitation, which 
has lost 2Kf>t both in energy and transverse momentum (it is useful for 
the reader to calculate the amount of energy-momentum in the fronts 
and thereby the amount which must stem from the g-excitation). 

The internal excitation, the g, is evidently connected to the string in the 
same way as the q and the q, except that the string tension acts with a 
force 2K on the g. This can be understood intuitively from the fact that 
there are two connecting segments to the g and only one to each of the 
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q and q; we will see this property in more detail later. The g-excitation 
encountered in this way evidently has particle properties, i.e. it carries 
energy-momentum in a local way and in the Lund model it is used as a 
model for a gluon, just as the energy-momentum-carrying endpoints are 
used as models for a quark and an antiquark. 

The motion described under A-C above takes a time 1 + k.llK and 
corresponds to a quarter of the full cycle of the butterfly dance. The 
motion following this is depicted in Fig. 15.1 for the next quarter-cycle 
also. It can easily be extrapolated from what we already know. After half 
a cycle we are back in the starting situation except that the q and q have 
changed places. It takes another half period before they are back in their 
original positions. 

We note that the total energy E is 2KI + 2k.l and the total momentum 
P is 2k.l and is transversely directed. The total period of motion before 
we are back in the starting position is therefore, as usual, 2EIK and 
we also note that the system has moved a distance 2P IK during this 
period. 

The g-particle is evidently only present as a point particle during 4k.llK 
of the full period. During the remaining time, 41, it has been transformed 
into two inward- or outward-moving fronts on the string. This is, of course, 
also the way any excitation on an ordinary rubber band will perform (try 
it on your kitchen table, which hopefully will have little friction, with a 
real rubber band !). 

In order to exhibit the Lorentz covariance of this picture we describe 
in Fig. 15.2 how the motion will appear in a different frame, in this case 
the ems of the system. It is again perfectly feasible to trace the motion 
using the same simple rules of local energy-momentum conservation as 
we have used repeatedly. The reader is encouraged to carry through the 
calculations in order to see the details. 

2 The space-time picture 

We will next provide a picture of the Lund gluon model in space-time. We 
use the notion of a light ray to describe a lightlike direction in space-time, 
e.g. the direction of the energy-momentum of one of the partons. We will 
also 'use lightcone distance to refer to the distance such a massless parton 
will move before it changes direction. 

In Fig. 15.3 we show at the top the situation at the time of meeting 
of the three particles. This corresponds to a quarter-period after the 
start, in the description of Fig. 15.1. The subsequent motion is then 
considered in the ems and is therefore a space-time version of Fig. 15.2. 
The two endpoints move outwards along their lightcones and the string 
at first consists of two segments moving between the light rays of qg 
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Fig. 15.2. The butterfly mode in the cms, using the same conditions and notation 
as in Fig. 15.1. The actual orbits of the quark (open circles), the antiquark (solid 
circles) and the gluon (grey circles), whenever it appears, are shown in the last 
combined picture. 

and gq, respectively. In this way the string is spanned via the g's light 
ray. 

When the gluon has disappeared, the two segment fronts continue and 
there is a straight (although, in this frame, moving) string part connecting 
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- k g 

q 

Fig. 15.3. The butterfly mode in space-time. The sets of parallel solid lines show 
the string at different times, the energy-momentum-carrying excitations move 
along the outer solid lines and the bends along the broken lines. 

the fronts (see Fig. 15.2). Note that the bends between the flat part and the 
moving fronts of the string move along light rays parallel to the original 
directions of the q or 71. 

Halfway through this (half-)period the string is totally straight. The two 
endpoints continue along the original direction of the g and then again 
two new string wave fronts are produced, which this time move inwards. 
The bends between the fronts and the remaining straight string again 
move along the lightcone directions determined by the original light rays 
of the q and 71. When the two fronts meet, the gluon reappears and the 
three particles approach each other, meet and separate again. During the 
motion the string evidently spans a surface in space-time and we will next 
consider some of the properties of this region. 

We firstly note that all its characteristics are determined by the three 
lightcone distances contained in the three original excitations. In particular 
the right-hand, i.e. q-side, boundary line is obtained by adding in turn the 
energy-momenta kq, kg and kq of the particles q, g and q (divided by 
K, of course, but for the moment we will put K = 1). Remember that 
the g loses twice the amount of energy-momentum per unit time to the 
adjoining string compared to the q and 71. Therefore the originallightcone 
distance indicated in Fig. 15.3 by g actually corresponds to half its energy
momentum, kg. The lightcone distances that the q and 71 move, after using 
up their original energy-momentum, correspond to the true size of g's 
energy-momentum. 

Thus the first conclusion is that the boundary line, which corresponds 
to the motion of the q, is given by kq + kg + kq, while the corresponding 
boundary line for the 71 is kq + kg + kq. We will soon find that there is a 
direct generalisation of this property to more complex string motions. In 
particular, everything q does is done in the opposite order by 71. 

The corresponding conclusion for the g is that we may describe it either 
in terms of the motion of the right front's bend (i.e. that closer to q) or 
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276 The Lund gluon model 

the left front's bend; cf. the figure. The paths are kg /2 + kq + kq + kg /2 or 
kg/2 + kq + kq + kg/2 respectively; these are the same space-time orbits as 
for the q and q except that they are displaced in space-time. It is again 
possible to generalise this result. 

To that end we define a four-vector-valued function A( 0, called the 
directrix, with the following properties (eq, eg, eq correspond to the energies 
of the three particles) 

I If 0 < ~ :::; eq, then A(O = kq(~/eq). 

II If eq < ~ :::; eq + eg, then A(O = kq + kg(~ - eq)/eg. 

III If eq +eg < ~ :::; eq +eg +eq, then A(~) = kq +kg +kq(~ -eq -eg)/eq. 

IV A(~) = -A(-n 

V A(2E +~) = A(~) + 2(kq + kg + kq), with E = eq + eg + eq. 

The orbit of the q, i.e. what we have referred to as the right-hand 
boundary line, is then A(t) and the corresponding orbit for the q is 
[A(t + E) + A(t - E)]/2 (this should be checked by the reader). It is less 
easy to convince oneself that the orbit of the right-hand bend discussed 
above is given by [A(t + eq) + A(t - eq)]/2 and that of the corresponding 
left-hand bend is [A(t + E - eq) + A(t - (E - eq)]/2. But it is worth doing 
because this is the general behaviour of any point on the string. We 
learned at the very beginning that the string does not conserve its length 
(nor does any rubber band on your kitchen table!). Therefore the points 
on the string cannot be characterised in terms of their space position only. 
But it is possible to characterise a point fully by means of the amount 
of energy possessed by the string to its right (i.e. towards the q-side) or 
equivalently to its left and we will now proceed to give a description of 
general string motion using this approach. 

The result of this exercise also explains why the motion is periodically 
simple and in particular why a combined translation 2E/K in time and an 
accompanying 2P /K in space always brings the string system back to the 
same situation. 

15.3 The general description of string motion 

1 The equations and their solutions 

As we saw above, a point on a string will be characterised by means of 
the amount of energy available between the point and the q-endpoint. We 
call this parameter (J and we write X((J, t) for the space position of the 
point and eq(t) for the q-particle energy at time t. 
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A formula for a is given by the integral along the string of the energy 

l X(T,t) 

a = Kdly(v1.) + eq(t) (15.1) 
Xq(t) 

where y(v1.) as usual is 1/ Jl- vi. 
The transverse velocity is denoted v 1. and the string tension T. The 

tension is everywhere directed along the string tangent oX/oa and it 
should, when the string piece considered is at rest, have the size K. From 
this it is evident that we must have 

oX v2 oX = T (15.2) at = V1., '~oa 

There will be two extra conditions stemming from our choice of parametri
sation, and from the fact that the string has no longitudinal degrees of 
freedom so that the velocity and the tension must be orthogonal. From a 
variation for fixed t of Eq. (15.1) we obtain 

da = KldXI (15.3) 

Jl- vi 
This result contains an evident connection between the length of the 
tension vector ITI and the velocity. We have actually encountered and 
discussed this condition before. It can be expressed as in Chapter 6 as the 
result of time dilation. In this way we obtain the two conditions 

T2 
T·v1. =0, 2 +vi = 1 (15.4) 

K 

Next we note that the momentum carried by a small energy 'grain' da is 
dp = dav1. (remember that dp/de = v for an on-shell particle). Therefore 
the change in momentum with time for this energy grain is given by 

d(dp) a2x a2x 
----;[t = T(a + da) - T(a) => da ot2 = daK2 oa2 (15.5) 

Thus we obtain (after division by da) the usual wave equation for the 
motion of the points on a string (i.e. in the limit when the energy
momentum grains referred to above become infinitesimal). We therefore 
conclude that the general solution must be 

X(a, t) = ! [B(t + a /K) + C(t - a /K)] (15.6) 

where Band C are two arbitrary vector-valued functions. This solution 
corresponds to two moving fronts and we will now consider suitable 
boundary conditions to determine them. These conditions are simple in 
this case because we note that for an open string with endpoints the tension 
of the string must vanish at the endpoints. Therefore for a = ° and a = E, 

https://doi.org/10.1017/9781009401296.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401296.015


278 The Lund gluon model 

E being the total string system energy, we must have 

K20X = 0 o(J 

Expressed in terms of B, C this means 

)](t) = C(t), )](t + ElK) = C(t - ElK) 

(15.7) 

(15.8) 

where the dots indicate derivatives. The two equations can be readily 
integrated and we may write 

B = C, B(t + 2EIK) = B(t) + 2PIK (15.9) 

Therefore the general solution can be expressed in terms of a single 
function B: 

X«(J, t) = HB(t + (J IK) + B(t - (J IK)] (15.10) 

with the requirement that B should be periodic, with a constant translation 
2P I K over the period 2E I K. In particular we note that the q-endpoint 
moves along the function X(O, t) = B(t) and the q along X(E, t) = [B(t + 
ElK) + B(t - EIK)]/2. 

The conditions in Eq. (15.4) mean that 

)]2 = 1 (15.11) 

i.e. the endpoints always move with the velocity of light. 
We have in this way obtained a complete description of any string with 

endpoints. In particular we find that the results for the simple qgq-state 
described in the earlier section is true for all points on the string. The 
directrix function A defined there evidently coincides with the four-vector 
(~,B(~)). (The result is easily generalisable to a string with many gluons 
and this is a useful exercise. We wi11later discuss an example with two 
gluons.) The condition IV on the directrix A is, however, peculiar to a 
string which passes through a single space-time point, i.e. the point where 
the three particles start out. 

We will end this section with a few considerations on the energy
momentum content of a string region. We note the relation used above 
for the energy grains, dp = d(Jv.1. From this we may by introducing our 
solution calculate the total momentum flowing across a spacelike surface 
in the region ABCD, depicted in space-time in Fig. 15.4. 

The region is limited by the two sets of curves t - (J and t + (J equal 
to constants (K = 1 again for simplicity). The parameter values are for A 
(t, (Jll, for B (t, (J2) and for the pair CD the 'earlier' and 'later' crossing 
points. 

Then we obtain by integrating out the energy-momentum content in 
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D 
t + 0" = const 

t - 0" = const 

A B 

c 

Fig. 15.4. The points A and B are at a spacelike distance (we choose equal times) 
and there is a region spanned by them and the points C (earlier) and D (later), 
which is the causal dependence region. 

between A and B at the fixed time t, 

rB ax 
PAB = JA daat" 

= ! [X(t + (2) + X(t - ad - X(t - (2) - X(t + ad] 
= XD -xc (15.12) 

Thus the difference vector between two points on the string surface is 
directly given by the energy-momentum that flows inside the causal depen
dence region. This result was freely used in the (1 + I)-dimensional model, 
where the lightcone directions coincided with the parameter curves t ± a 
(a useful exercise is to find the directrix for the description of a straight 
qq-string). Equation (15.12) means that this result is also true for a general 
string surface if we use the causal dependence region. 

It is in the same way possible to calculate the energy-momentum that 
will flow across a timelike curve between the points C, D (note that these 
points have the same value of a): 

J: dtT = XB -XA (15.13) 

This is the result first pointed out by Artru, [25], cf. Chapter 9: the 
momentum transfer between a group of particles moving to the left with 
respect to a particular breakup vertex and one moving to the right is given 
by the variable r. This variable also corresponds directly to the proper 
time, in this case between C and D. 
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Fig. 15.5. The solid lines show how the q-side grains move, thereby translating 
the original energy-momentum kq of the q leftwards across the space-time surface. 

Fig. 15.6. The two sets of g-grains moving apart, thereby translating half of the 
original energy-momentum kg in each direction across the space-time surface. 

2 The space-time surface of a qgq-state 

We now return to the butterfly-state motion to consider the space-time 
surface in the light of what we learned from the general behaviour of the 
MRS in the last subsection. The two wave fronts described by the directrix 
can be thought of as a (continuous) stream of energy grains moving to 
the left (from the q-side) and to the right (from the q-side). They move 
throughout with the velocity of light and can be thought of as having 
been emitted by the excitation particles. 

The conditions in Eq. (15.7) means that the grains coming in towards the 
left bounce out towards the right and vice versa. Note, however, that the 
grains often stay at the endpoint (and the g-excitation) positions for some 
time. We show in Figs. 15.5, 15.6 and 15.7 the way the energy-momentum 
vectors 'march' across the surface, thereby spannning it. 

If we follow the q-side boundary line the first part can be thought 
of as corresponding to emission of the kq-grains and the next part as 
corresponding to absorption of (half) the kg-grains (i.e. those sent out by 
the g in that direction). The part after that corresponds to re-emission of 
these kg-grains and is followed by absorption of the kq-grains by the q. 

Thus we find that the reason why the string does not keep its size is 
that grains may be gathered up at certain space-time positions during the 
cycle. These positions correspond to the excitation particles either at the 
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Fig. 15.7. The q-side grains moving across the space-time surface thereby trans
lating the original energy-momentum kq of the q. 

endpoints or in the centre and they have the property to absorb or emit 
grains at a constant rate in space-time. 

The reason that the g interacts at twice the rate of the q or the Zj is that 
in this case there are grains coming from or going towards both sides. A 
bend corresponds to the situation when the grains come in and go out 
again at the same rate. 

In the same way we could describe the emergence of the straight string 
piece connecting the two fronts as a combination of the kq-grains coming 
from the right and the kq--grains coming from the left, while the right (left) 
wave front region corresponds to the combination of half the kg-grains 
with the kq-grains (kq--grains). 

Each region therefore corresponds to a lightcone diamond spanned by 
two lightcone directions, each with a length corresponding to one of the 
characteristic original particle energy-momenta (half for the g, however, 
each time). 

From the results of this discussion it is easy to calculate the area of the 
surface for the half-period discussed. We find that kqkq- + kgkq + kgkq- = 
(kq + kg + kq-)2/2 = M 2/2. This is again in accordance with our earlier 
result that the space-time surface area for the full period is given by the 
squared system mass. 

At this point we would like to make a few historical remarks. At the 
basis of all advanced dynamics situations there can be formulated an 
action principle. Thus, according to Hamilton's principle, the motion of a 
system from time t1 to t2 is such that the line integral of the Lagrangian 
L, 

I t2 

I = dtL(x(t), x(t)) 
tl 

(15.14) 

has an extremum along the path x(t). Here L is expressed in terms of 
(possibly many) coordinates x and velocities x. 

This statement is closely related to the behaviour of geodesics on 
surfaces defined by a differential geometry and a metric. Thus a free 
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relativistic point particle (mass m) will move in such a way that the 
(invariant) length along the path is minimal and one can choose Ldt = 
-mJ(dt)2 - (dx)2 = -mdt')1 - v2 as the Lagrangian. The inclusion of 
electromagnetic fields introduces a geometry in phase space and modifies 
the particle motion to a new geodesic. 

String dynamics can be formulated in a similar way, [62], by requiring 
that a surface area should be minimal. This can be expressed in very general 
forms (and in the reviews on the subject, [62], you will find very learned 
discussions). For the situation at hand we may formulate this surface area 
as a two-dimensional integral with integration element 

dL = -Kdldtyt-;f = -Kdtd(J I~I )1- (~~) 2 

= -Kdtd(J ( aX)2 (aX)2 _ (ax aX)2 
a(J at a(J at 

(15.15) 

In the last line we have extended X into a four-vector X = (t, X). 
Use of Euler's variational calculus on such a two-dimensional integral 

leads to the wave equation considered in Eq. (15.5). The main point is, 
however, that the string surface always is a minimal surface. That is the 
reason why its behaviour is directly describable by means of the boundary 
curve, i.e. the directrix. Every young person who ever twisted a wire into 
some closed shape and dipped it into soapy water has seen the beauty of 
the shimmering thin surface emerging and probably also noted that this 
minimal surface is directly related to the bends and the twists on the wire. 
These features correspond in the MRS to the elementary excitations on 
the string. This illustrates why we can describe the string surface in terms 
of only the endpoint qq- and the internal g-excitation paths. 

15.4 Multigluon states and some complications 

1 On the color-flow connections 

We will not study the most general multigluon scenario that is possible 
within the Lund model but will be content to consider a state with two 
gluons having a general appearance similar to the earlier one-gluon case 
(Fig. 15.8). 

We immediately encounter the problem that there are two ways of 
drawing the Lund string between the excitations in this case. These ways 
are shown in Fig. 15.8. The two cases correspond to different color
flow directions around the gluon corners. Classically they are mutually 
exclusive but it is a complex question whether quantum mechanics will 
allow interference between the two color-flow states. 
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g g g g 

q q q q 

(a) (b) 

Fig. 15.8. The initial situation for a symmetrical two-gluon state with the 
momentum vectors of the four partons indicated. The broken and dotted lines 
show the string for the two possible color flows in the situation. 

We will come back to the problem in Chapter 17 when we discuss 
multigluon bremsstrahlung emission. We note that the question is basically 
whether it is sufficient to know the charges in order to obtain the fields. 
This is always the case for abelian fields like those of electromagnetism. 
Besides very small quantum corrections due to photon-photon scattering 
it is always possible to describe the emerging electromagnetic fields as a 
superposition of the fields due to the separate charges. 

One basic assumption in the Lund model is that the color electric fields 
do have a meaning per se, because all the final-state particles stem from 
the breakup of these fields. In a totally perturbative QCD scenario only 
the charges, i.e. the q, q and the g's, appear in the final state and one 
is, in general, summing over all their connecting color indices. Then the 
color-flow connection needed for the Lund model string fragmentation 
is not obvious. It turns out that both of the color-flow configurations 
described above will occur at the matrix element level as distinct contri
butions (cf. [71]). At the cross section level (i.e. after squaring the matrix 
elements) there will be interference between the color-flow configurations, 
however. 

The interference terms are in general smaller by a factor of 1/ N; 
(with Nc the number of colors) compared with the terms correspond
ing to definite color-flow directions. Therefore one may hope that they 
should not be very noticeable for the observables in an actual exper
iment. From the point of principle they are, however, of great inter
est. There are some possible cases for which these corrections can be 
studied, [103], although there is at present no convincing experimen
tal proof of their existence. The problem is that there are n! possible 
color flows obtainable in connection with the general n-gluon state. Al
though, as we will see in the following chapters, the coherence properties 
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of gluon radiation will strongly suppress most of these configurations 
there are nevertheless too many possible color-flow configurations left 
to pinpoint the differences simply from the hadrons observed in a final 
state. 

The question, raised in this subsection, whether the field configurations 
in QeD are part of the state description is generally described in quantum 
field theory as the problem of possible super-selection quantum numbers. 
From the way the theory is formulated, in terms of the QeD Lagrangian, 
cf. e.g. [52], there are no clues as to whether such quantum numbers exist. 
Only the charges occur, in the perturbative treatments of QeD. Super
selection quantum numbers are therefore not observable unless one sums 
all the perturbative contributions. 

2 A two-gluon state 

Leaving aside this question we proceed to study one of the color-flows in 
the two-gluon state shown in Fig. 15.8. This state is the most 'natural' one 
in the sense that the string does not contain sharp bends. It is also the one 
with the largest probability of occurring owing to the above-mentioned 
coherence properties of gluon emission. 

In Fig. 15.9 we show the space-time behaviour of this string state. It 
is easily understood as soon as we provide the directrix, which, this time, 
corresponds to the ordered curve between kq,kgl,kg2,kq. It is obviously 
possible to expand the definition of the directrix in subsection 2 of section 
15.2 to any number of color-connected gluons along the same lines. 

We note again, in particular, how the grains transport the vectors of 
the elementary excitations diagonally across the surface. The initial region 
between the two gluons is spanned by kgd2 and kg2/2 with the grains of 
the first coming from the left and those of the second from the right. This 
piece of surface appears four times during this half-cycle of the string 
motion, first between gi and g2, next between the q and one bend, then 
between another bend and the q and finally in the rebuilding of the two 
gluon excitations. 

It is also of interest to compare the situation for a single gluon in Fig. 
15.3 with the one described by Fig. 15.9: note that on the surface of the 
butterfly-dance mode the single gluon 'ridge' along the lightcone has split 
up into a diamond between the two gluons. Evidently if the two gluons are 
close together then this diamond will approach the original single gluon 
ridge. In this case the two bends on the wave fronts denoted bi and b2 in 
the figure will merge and re-form a single gluon. 

This means that the interpretation of the surface in the Lund model is 
irifrared stable, i.e. whether two collinear gluons are described as a single 
entity or as two distinct parts the surface will look the same. This property 
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Fig. 15.9. The space-time surface spanned by a symmetrical two-gluon state. 

is of the utmost importance for the success of the Lund model. The same 
thing is the case if one, or both, of the gluons is collinear with the 
q and/or the q. Again some parts of the surface will become thinner 
until they finally coincide with the lightcone motion of the q and/or the 
q. 

If the gluon is soft and central, i.e. it contains little energy, then it will 
quickly become two wave fronts. In this case the wave fronts are very 
tiny disturbances on a basically straight string. This is again an expression 
of the infrared stability of the Lund string fragmentation. A soft gluon 
does not influence the fragmentation process; the final state will look very 
much as if the gluon never had been there! 

In making the comparison between the two figures it is interesting that 
the appearance of more gluons in a certain sense 'smooths off' the string 
surface. Evidently a general string surface can be described in terms of 
lots of soft and collinear gluons crawling along 'eating' and 'spitting out' 
the energy grains to which we have repeatedly referred. 
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Fig. 15.10. The butterfly-dance mode after a boost such that the qg-segment of 
the string is at rest. The quark is shown as an open circle, the antiquark as a 
solid circle, the gluon grey and the directions of motion are marked with arrows. 

15.5 The breakup of a gluonic Lund string 

1 The possible problems 

The general rules for the breakup should be the same as for the simple 
(1 + I)-dimensional qq-state we have discussed extensively before (Chapters 
7-10). There are, however, complications when the string surface is no 
longer completely flat and we will now discuss some of them. In order to 
orient ourselves towards the problem we will start with the butterfly-dance 
mode again. This time we perform a boost transversely to the segment qg 
with a velocity v = 1/ J2 (cf. the situation discussed in connection with 
Fig. 15.1). 

In Fig. 15.10 we show the appearance of the qgq-state after this boost. 
The q-partic1e is now moving outwards along a straight string at rest and 
the g is going in the other direction. At the q-end there is no reason 
to expect any difference from the (1 + I)-dimensional model. The other 
segment between the g and q is of course moving away in a different 
direction. In the figure we show by a dotted line the path of the q in this 
frame. It is useful to carry through the calculations necessary to prove 
that the motion indicated in Fig. 15.10 really describes the situation! 

We therefore assume that this part of the string segment will break up 
in its own rest frame, as before, and the same evidently goes for the region 
around the q (although that rest system is different). The difficulty occurs 
only in traversing the gluon corner from the straight string segment on 
the one side to the segment on the other (note that the segments are in 
general moving apart in different directions !). 

There have been different suggestions in different models of how to 
handle a gluon corner in fragmentation. It is possible, for instance, to 
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assume that the gluon is split up into a qq-pair according to one or another 
rule. Then one would be able to handle the breakup by considering the two 
new strings obtained. In the Lund model we will keep to a connected-string 
situation, however. 

Evidently, some difficulties may arise owing to the fact that the gluon 
in the Lund model is not always a pointlike particle: according to our 
findings, it dissolves into two wave fronts moving apart with a straight 
segment in between the two bends 'left over' from the g. It turns out that 
there will be problems with respect to the time sequences of the breakups. 
The main problem is whether it is possible to produce a scheme that has 
the same fragmentation results if we start the process along the straight 
segment on one side of the gluon corner if we start it on the other side and 
fragment in the opposite direction. This turns out to be impossible if we 
allow the string states to move independently in space-time. It is only for 
the simple (1 + i)-dimensional model that the breakup of a string always 
produces two dynamical systems that are identical apart from their size. 

To see the difficulty assume that we break the string around one of the 
wave front bends. Suppose we produce a ql ill-pair in the string segment 
ending on the q == qo. Then we obtain a straight segment starting on qo 
and ending on ill which behaves like an independent string state (and may 
be fragmented further in the usual Lund way). Besides the momentum 
transfer at the breakup this part will also continue to move as before, 
i.e. its space-time surface is (part of) the original string surface. The 
'leftover' state with ql at the end and the wave front bend approaching 
also forms an independent string system but this system will no longer 
move in space-time as before when it was connected to qo. 

The new state will trace out a different space-time surface, which is not 
part of the original one. It is rather easy to convince oneself that if we 
trace it backwards in time then the g-excitation (from which the wave 
front bend stems) will be different (or even non-existent!). Therefore we 
obtain by this breakup two systems and one of them is not dynamically 
equivalent to a part of the original system. 

If we instead consider a string breakup on the other side of the wave 
front bend, producing a q2il2-pair, then neither the system composed of 
il2, the wave front bend and the straight segment to qo nor the remaining 
system ending on q2 will behave in a simple way. They will trace out in 
space-time string surfaces without any simple resemblance to the original 
one; see for example [104]. What is even worse is that the behaviour of 
the subsystems depends upon the order in which we produce the qlill- or 
the q2il2-breakups. The two production points are always at a spacelike 
distance (this is of course always the case for the production vertices along 
a Lund string !). We are, however, used to being able to introduce e.g. a 
proper time ordering with respect to the starting vertex. But even this 
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"'> I.: 

Fig.15.11. The coordinates of some points on the string surface of the butterfly
dance mode. 

proper time ordering may be different due to the fact that the produced 
string systems will move differently according to whether we break the 
string first at the ql ql-vertex or at the q2q2-vertex. 

The conclusion of Sjostrand's paper [104] is that it is necessary to 
implement the string breakup as a process on the original string surface. 
This means that we consider the string surface to be given as a 'frozen' 
geometrical object. Under these circumstances it is perfectly feasible to 
implement the symmetrical Lund model fragmentation process. 

2 The gluon fragmentation model of Sjostrand 

We will make the following basic assumption . 

• A string piece, if it fulfils the mass-shell condition, can be pro
jected onto a hadronic state with the same probability irrespective 
of whether it contains at the semi-classical level internal excitations, 
bends etc. 

Sjostrand [104] has produced one version of a possible gluon fragmen
tation scheme based upon this assumption. It is incorporated into the 
Monte Carlo program JETSET, [105]. One of his findings in [104] is that 
there are only small differences between various possible schemes from 
the point of view of observables. 

In order to describe his scheme we note that each point on the string 
surface can be given a 'proper time' with respect to the starting point of 
the original particles. In order to understand this we consider again the 
surface of the butterfly-dance mode (see Fig. 15.11). 

The regions between the q and the g, and between the g and the q, are 
of the same kind as we met in the (1 + 1 )-dimensional model, i.e they are 
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simply two lightcone regions. Consider an arbitrary point in the figure 
such as A and note that it can be described by means of two coordinates: 

(15.16) 

Therefore the squared proper time is given by r A = A2 = 2~1~2kqkg = 
~1~2(kq +kg)2 = ~16M~,g. Its relation to an area can be inferred from the 
figure (we have again used dimensions such that K = 1). The same goes 
for all parts of the qg and gq regions. 

A more complex point is C, also indicated in the figure. It can be 
described as follows: 

(15.17) 

where ~4 = 1/2. As for A we may identify r C = C2 and express it, this 
time, in terms of three coordinates ~j and the squared masses between the 
original partons. This is again an area and it is useful to construct it on 
the figure! There is no difficulty in convincing oneself that this procedure 
can be extended to any point on the surface. 

It is also possible to define steps similar to the production steps in the 
(1 + i)-dimensional model. If we imagine ourselves at the point A and 
would like to pick up a particular energy-momentum from the string by 
a step to, e.g. the point B, then if B is in the same segment as A there is 
again no difference from the (1 + i)-dimensional case. 

If B and A are in different string regions (for B == C we have such a 
case in the figure; C is on the flat string region between the two outward
moving fronts) then it is again possible to define a difference vector PAC 

between A and C in terms of the original parton energy-momenta: 

(15.18) 

(Note that P2 is determined by the starting position A and that there is 
a relation between PI, ~3 and A's position, ~l = PI + ~3, and one further 
condition, P3 = ~5). 

The requirement that PAC should be on the mass shell then provides 
a condition among the coordinates P j. The mass square can again be 
described in terms of certain areas on the surface. The main point is, 
however, that if we know the position of A, the size of r C and the squared 
mass pic then the position of C is also determined if it is on the string 
surface. (Convince yourself of that!) 

The way JETSET implements the fragmentation is then step by step: 

11 With a knowledge of the original flavor (or antiflavor) a new qq-pair 
is chosen with the probabilities described before. 

12 A meson with mass m is produced and a value of the fragmentation 
variable z is chosen from the symmetric fragmentation function. 
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Fig. 15.12. The space-time development of a qgq-state; the original directions of 
the partons are shown as broken lines, the string positions at different times are 
shown as solid lines and the momentum vectors of the emerging yoyo-hadrons 
are shown by the thinner arrows. 

13 The next r c = r f is calculated from the earlier one, r A = r j , by 
r f = (1 - z )(C + m2 / z). This relation is exact in any of the 'simple' 
regions defined by two lightcone directions. 

J4 The new breakup point is chosen as the point which has the value 
rf and the step vector pic = m2. This is a unique prescription and 
determines the point C. 

We have left out the transverse momentum generation, which is done in 
the same way as before, i.e. with a gaussian distribution. There are some 
complications about the directions that should count as transverse to the 
string direction in the relevant region, cf. [104]). The final mass, m, is then 
the transverse mass. 

Some further technical problems are discussed in Sjostrand's work, 
[104], but there is no need to delve into them here. We will instead turn 
to the experimentally observable consequences of the Lund gluon model. 

15.6 The final-state particles in the breakup of a qgq-state 

1 General properties and the string effect 

In Fig. 15.12 we illustrate the appearance of the final-state breakup in 
space-time for a one-gluon state. The three original excitations are moving 
out along the directions shown in the figure. The string is spanned via 
the g from q to q and a set of small final-state yoyo strings is depicted 
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(for simplicity, at the moment of their emergence as independent entities) 
together with their space sizes and their momentum vectors. 

The most noticeable thing is that most of the final-state yoyo particles 
move out along the three original parton directions with varying energies. 
The reason for this is that a moving string is Lorentz-contracted, as we 
have seen before. Therefore the size of one of the yoyo string pieces that 
moves quickly along e.g. the q-direction may appear very much smaller 
than one of the yoyo pieces produced at the centre. Nevertheless in its 
own rest system it is, of course, the same size. There will then be many 
more yoyo-hadrons from the seemingly small string pieces close to the 
trajectories of the three partons. 

Quantitatively we may make the following estimates. Suppose that we 
consider a Lorentz frame in which the gluon goes out at an angle n/2 with 
respect to the q-direction. Then the longitudinal size I (i.e. the size along 
the q-direction) of a hadron with mass m and energy E is proportional 
to m/ E. Such a string piece will contain an amount of gluon momentum 
kg oc I, i.e. oc 1/ cosh y, with the rapidity Y along the q-direction being 
calculated in this frame. Therefore we conclude that a gluonic disturbance 
is in general only noticeable within a small rapidity region (of order 
£5y'" 1) around the gluon direction (remember that angle and rapidity are 
connected). It will fall off as exp(-Iy - Ygl} for larger rapidity differences. 

There are some corrections to this, stemming from (almost) collinear 
gluon emission along the original gluon direction. Such emissions will tend 
to broaden the angular region affected around a hard parton but most of 
the parton energy still remains within a tiny angle even after a gluonic 
cascade and fragmentation; see the discussion in the following chapters. 

Thus there will be three jets of particles basically along the three original 
directions (although there are some interesting differences between the jet 
directions and the original directions, to which we return). 

From this picture we also conclude that the slower particles at the 
centre in general emerge earlier in time than the faster ones. This effect 
has been noted earlier and discussed in Chapter 7 in connection with the 
notion of the formation time. 

The next experimentally observable result is that there will be a few 
particles produced in the angular sectors between the q and the g and be
tween the g and the q but there are none produced between the q and the 
q because there is no string spanned over this sector. This is the nowa
days well-known string effect, which was predicted (see [18]) before it was 
observed by the JADE group at PETRA. 

There are several problems in disentangling this effect in an experiment, 
however. There are firstly the transverse momentum effects from the 
gaussian zero-point fluctuations. This means that the particles, which 
in the mean will emerge along two hyperbolas in momentum space, as 
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Fig. 15.13. The momentum-space picture of the final-state particles, which in the 
mean emerge along two hyperbolas. Due to transverse momentum fluctuations 
during the fragmentation the particles are diffused over the shaded regions. 

shown in Fig. 15.13, are in reality diffused over the shaded areas. The 
typical distance of the hyperbola from the origin is of the order of 300 
MeV Ie, which is also the size of the transverse momentum fluctuations. 

The second problem is to know which of the three jets is the gluon jet. 
In general the gluon jets contain less energy than the q or q jets do, but 
there are large variations according to the QCD emission probabilities. 
Nowadays this problem has diminished owing to the very large statistics 
produced in the LEP experiments. In these experiments it is even possible 
to tag one or both of the q and q jets by observing semi-Ieptonic heavy 
quark decays. 

We may conclude that the string effect which was already quite no
ticeable in the JADE data nowadays provides strong confirmation of the 
existence of color-flow asymmetries in connection with gluon emission. 
There is, within perturbative QCD [27] also, such an effect, which is re
lated to the coherence properties of gluon bremsstrahlung (cf. Chapters 
16, 17). 

It is interesting to note that if one only considers particles which have 
a large transverse momentum out of the production plane (the qgq-state 
evidently defines a single plane in momentum space) then the string effect 
is even larger. The same applies if one considers only heavy particles, such 
as kaons and baryons. The reason, within the string scenario, is that the 
production of large (transverse) masses will use up larger pieces of the 
string and therefore such particles will feel more of a push from the string 
motion. 
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2 The jet-axes problem 

A general problem in e+ e- annihilation experiments is to determine the 
'true' jet-axes' directions. In this case, as compared with e.g. hadronic inter
actions or inelastic lepto-production, there is no obvious initial direction 
along which the main dynamics proceeds. 

The initial annihilation current of the e+ e--pair is in the ems directed in 
the plane transverse to the momentum direction of the pair, if we neglect 
the rest masses. This was discussed for the current matrix elements in 
Chapter 4. The same also goes for the current of the qq-pair produced in 
the annihilation, with respect to their momentum directions. 

Therefore there is a correlation between the initial e+ e--direction and 
the qq-direction, corresponding to the current overlap Ije . jq l2 ex (1 + 
cos2 0), 0 being the angle between the two directions. This is a rather soft 
correlation, varying only between 1 and 2. 

In order to analyse the final state in an event it is therefore necessary 
to define some directions by means of the observed particles. Several such 
methods are currently in use for doing jet analysis but we will not go into 
many details. We would like to point out, however, that the description 
of the events in terms of directions defined from the events themselves 
almost necessarily leads to some bias. 

One rather obvious possibility is to consider a tensor I rx/3 constructed 
from the final-state momentum vectors Pj = 2:rx Pjrxerx of the N observed 
particles in an event: 

N 

Irx/3 = ~)PJ(jIX/3 - PjrxPj/3) 
j=l 

(15.19) 

This tensor plays a role similar to the inertia tensor in the theory of solid 
bodies. Taken as a matrix it is possible to diagonalise it and to construct 
the eigenvalues ..1rx as well as the (unit) eigenvectors erx , IX = 1,2,3. From 
its construction we conclude that there will be a smallest eigenvalue, 
conventionally ..13, and one defines the corresponding eigenvector e3 as the 
sphericity axis and the sphericity S as 

S = 3..13 = min [32:f=1(e x pj)2] 
2: ..1j e 22:f=1 PJ 

(15.20) 

where the minimum corresponds to e = e3. In this way one finds the axis 
along which the sum of the (squared) transverse momenta is minimal. 

There is another way, already mentioned in Chapter 13, to find the 
direction along which the sum of the longitudinal momenta is maximal, the 
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thrust axis DT such that the thrust T is maximal: 

[2 2:f=l 9(n· pj)n· pj] T=max --~~7,N~~--~ 
n 2:j=llpjl 

(15.21) 

For events in which the observable momentum is conserved (meaning that 
no particle has evaded the detectors) we can change the thrust definition 
to 

T [ 2:f=l Ipj . nl] = max 
n 2:f=llpjl 

(15.22) 

There are no perfect detectors so the first definition is often the safer one. 
It is evident that from an analytical point of view the sphericity measure 

is more regular. But at the same time it will give a quadratic weight to 
the momenta. Therefore a single particle with a large momentum will 
in general provide a larger contribution than a group of particles which 
together have this momentum. 

This is particularly inconvenient if we consider an event before or after 
the decay of some of the particles. The thrust definition is less sensitive 
to these features. However, although thrust is not easy to work with 
analytically, it is very simple in general to generate a computer routine 
to find out where the thrust axis is for the observed particles in a given 
event. A general feature is that the thrust axis connects the two groups 
of particles which together have the largest (and oppositely directed) 
momenta. Therefore thrust directly serves as a 'handle' on the way the 
event looks. 

Both the sphericity and the thrust variables provide a means to assess 
quantitatively the amount of gluon emission. For a large-energy single 
qq-event the thrust T ~ 1 and the sphericity S ~ o. They will deviate 
noticeably from these values for events containing one or more hard gluons 
because in that case a large amount of energy is moving transversely. 

The string effect in the Lund model fragmentation actually produces 
some (minor) distortions in the particle distributions due to the way thrust 
and sphericity are defined. Suppose that there is a gluon emitted at a finite 
angle with respect to either the q- or the q-direction and suppose that the 
mass of the two partons is not small. From this configuration we expect 
that some particles will be produced in the angular region between the q 
(q) and the g. 

The thrust and sphericity axes will both be tilted towards the most 
energetic of the q or q and the g but the particles in between will 
also influence the determination of the axes. In particular any jet-finding 
algorithm [2] would tend to create jets such that there is a slightly smaller 
angle between the observed directions of the qg- and gq-jets than between 
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Fig. 15.14. A collinear configuration of a qgq-state, and the ensuing final-state 
hadrons, described in momentum space. 

the original parton directions, in order to accommodate the extra particles 
in between. The field of jet-searching algorithms is, however, still under 
intense development and we refer to the discussions in e.g. [2] for those 
readers with a technical interest in them. 

3 Infrared stability 

We have already referred to this notion. In the next chapter we will 
show that the cross sections for gluon emission are divergent for soft and 
collinear emissions. Therefore the number of gluons is not a well-defined 
notion but the effect of the gluon emission is observable. It is an essential 
point that if soft or collinear gluons are emitted in a bremsstrahlung 
process, it is their combined activity that will play a role for the frag
mentation. We have already seen that the surface of the MRS is infrared 
stable, in the way the concept is employed in the Lund model. A soft or 
collinear gluon only has small and, in general, local effects. 

In Fig. 15.14 we exhibit the result in momentum space for the fragmen
tation of a qgq-state in the case where the gluon is close in angle to the 
q. Again, the shaded area is the one inside which the final-state particles 
emerge. It is then noticeable that, as the mass of the gq-pair diminishes 
towards the mass of the final-state hadrons, no hadrons are produced in 
between the two partons. Instead final-state particles may occur having a 
larger energy than any of the partons! 

If we instead consider the emission of a 'soft' gluon in the centre of the 
event, i.e. a gluonic disturbance containing small cms energy then there 
are only very small effects even in the neighborhood of the gluon rapidity. 
In Fig. 15.15 we show again the shaded area in momentum space where 
the final-state particles emerge for such a soft gluon emission. The gluon 
is only noticeable as a small localised transverse momentum 'bump' in the 
distribution. 
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q 

Fig. 15.15. A soft gluon emission and the ensuing final-state particles in mo
mentum space. 

As a general rule of thumb, the effect of a gluon excitation is hardly 
noticeable when the transverse momentum of the gluon or the gq- or 
gq-pair's mass is smaller than 2 GeV. Actually there is a moving interface 
between the fragmentation and the gluon emission processes according to 
the Lund model. One can stop the emission of gluons basically anywhere 
between a cutoff at kJ.. = 7 GeV down to a few hundred MeV and still 
obtain the same distribution of final-state hadrons. One needs different 
fragmentation parameters, however, and we will present an interesting 
systematics for this phenomenon in Chapter 17. 

4 The decay of heavy quarkonia 

One of the true revolutions in high-energy physics occurred when the 
very long-lived resonance state, the J /'1', was found in October 1975. It 
was amazing to disentangle a state which is so massive. The J /'¥-mass 
is around 3.1 GeV, i.e. about four times the p- and w- masses and three 
times the proton and neutron masses. A more important fact was that the 
J /'1' is so long lived. This meant that there must be new physics involved. 

After the first few months of frantic discussions and investigations the 
high-energy physics world settled for the fact that there was a c-flavor 
quark and that the J /'1' was a bound state, of vector character, of a 
ce-pair. The other vector mesons, the p, wand </>, are all built from the 
light quarks and all decay rather quickly; it is only necessary to produce 
one or two new light qq-pair(s) to make them decay into a mixture of 
light pseudoscalar meson states. 

We note that flavor is a conserved quantity in QCD-initiated reactions. 
For the J /'1' (and also in connection with the later-discovered Y, a bound 
state of a bb-pair with mass around 9.5 GeV) the corresponding mesons, 
the D-states and the B-states, contain the c (c) and b (b) together with 
a light Zj (q). It turns out, however, that even the lightest DD (BB) 
has too large a rest mass to allow the decay J /'1' ~ DD (Y ~ BE). 
It is then necessary either that one of the c (b) or c (b) decays semi
leptonically (which we will not treat in this book; owing to the small 
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Fig. 15.16. A state in which two gluons separate, spanning two string regions 
each carrying a mass s/4 = (W /2)2, compared with a single string spanned by a 
qq-state of mass s = W 2. 

coupling constants these are rather suppressed reactions) or that there is 
an interaction channel allowing for the annihilation of the heavy flavor 
and antiflavor into multigluon states. 

This latter alternative requires the c and c (b and b) to meet, i.e. the decay 
is governed by the wave function at the origin of the relative coordinates, 
111'(0)12, which serves as a form factor suppressing the decay. The possible 
decay channels are governed by the internal quantum numbers of the J /'¥ 
or the Y. The simplest such state is a three-gluon state (but multigluon 
states would also be allowed). 

In this case a closed string will emerge spanned by the three gluon cor
ners. We have not treated this situation in the general description of string 
motion above, mainly because we do not need the details in a general 
description. 

It is rather easy to imagine how the closed string is stretched and the 
only feature of interest for this discussion is that it has no endpoints. We 
have seen before that the existence of a string endpoint means necessarily 
that there is also a fragmentation region governed by the flavor at the 
endpoint. In practice this means a lower yield of final-state particles within 
1-2 units in rapidity. For a closed string (which is the same all over) 
these suppressions are not available and this is particularly noticeable for 
baryon-antibaryon production. The gluon is flavorless. There is also the 
fact, to be further discussed in the next section, that the appearance of 
gluons increases the phase space for particle production. 

As a minimum size for the increase in phase space we may imagine 
that one of the three gluons is very soft, so that we obtain a situation in 
which two gluons move out in opposite directions, as in Fig. 15.16. In the 
figure we also show a state with the same mass s = W 2, but containing 
only a qq-pair. We note that if the total rapidity for the qq-state is 
(AY)q = log(s/sq), then the total rapidity within which we can produce 
particles will be (AY)g = 210g(s/4sg ) in the gg-state. 
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The reason is that each gluon will have two adjoining string pieces and 
that the mass in each one must be W /2. If there are three hard gluons 
on the string the corresponding rapidity range will be even larger but it 
turns out that one of the gluons is in general rather soft in the process 
under consideration so that the approximation is well justified. 

Therefore there will be a larger multiplicity for all hadrons in the case 
of a closed three-gluon string, although this of course depends upon the 
two scales Sq and Sg which govern the fragmentation. If we set Sq = Sg = 2 
Ge V2 we obtain for Y 

(~Y)q ~ 3.8, (~Y)g ~ 4.8 (15.23) 

This implies that there should be around 1.3 times as many mesons on the 
Y -resonance with the three-gluon decay as in the continuum surrounding 
it (which seems to be a reasonable approximation). But there will be a 
noticeable enhancement of baryons as compared with an open string. 

According to the simple baryon-antibaryon production model discussed 
in Chapter 13 there is a region of around 1.5 units in rapidity, close to the 
endpoints, which is lost for baryon-antibaryon production. For the gluon 
string there is no 'flavor direction' and consequently this suppression is 
not available. Therefore the enhancement of baryons should in this case 
be very noticeable for a gg-state with the same mass as a qq-state in the 
continuum. From the numbers above we would expect that the ratio of 
the number of baryons would be 

(BB)y ~ 4.8 = 2.1 
(BB)cont 3.8 - 1.5 

(15.24) 

The estimates presented above are not far off the experimental results 
from ARGUS, although we have certainly used a very simple model! 

15.7 A measure of multigluon activity, the generalised phase-space 
rapidity 

Based upon the ideas presented in [48] we will in this section introduce 
a useful new variable, the total generalised rapidity A. We will be content 
to consider a single hard gluon emission and extend the definition of A to 
multigluon situations in section 17.4. 

We have already seen that the appearance of gluonic excitations in a 
string state produces certain regions, close to a hard gluon emission region, 
where more particles will emerge. Therefore for such events there will no 
longer be an essentially constant rapidity plateau, which was characteristic 
for the simple (1 + 1)-dimensional qq-model. (This result is independent 
of the axes chosen to define the rapidity variable). 
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Fig. 15.17. The particles are produced along hyperbolas corresponding to fixed 
values of the squared proper time r. 

It is useful to introduce some variable which follows the production 
region, as does the ordinary rapidity for a straight qq-string. We would 
like such a variable to have the following properties. 

• The measure A should be well defined for each event. 

• The mean value of A should be proportional to the corresponding 
mean value of the multiplicity of the events. 

• The distribution in multiplicity for events with a given value of A 
should be almost Poissonian (although slightly narrower, as we found 
for the Lund model properties in Chapter 11). 

We can rather easily obtain such a variable if we generalise the mean 
hyperbola decay picture we used in Chapter 9. There we found that the 
breakup vertices of the string are on the average distributed along a 
curve with a constant value of r, the squared proper time. In energy
momentum-space language the squared proper time corresponds to the 
squared momentum transfer between the particles produced to the left 
and to the right of the production vertex. From this dual relationship 
(cf. Figs. 9.4 and 9.5) the hyperbola decay corresponds to ladder diagram 
chains for which the momentum transfers are all the same. 

If we consider a typical breakup, such as the one shown in Fig. 15.12, in 
space-time we obtain a picture like that in Fig. 15.17. We again notice the 
two hyperbolas in the regions between the q and the g and between the g 
and the q together with a few particles produced near the gluon corner. 

In order to describe the situation we introduce the following notation. 
The total energy-momentum of the event is Ptot with s = Pt~t and the 
three energy-momenta of the partons are kj, where 

3 

L kj = Ptot , Sij = 2kikj = (ki + kj )2, s = S12 + s23 + S13 (15.25) 
j=l 
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(indices 1 and 3 represent the q and q, respectively, and index 2 represents 
the g). 

Thus we obtain a generalisation of the total rapidity range from the case 
where the event is of the qq-type to the case where it is of the qgq-type: 

~y = 210g(y!S/Wq) = log(s/sq) 

(~Y)gen == ), = 10g(S12/Wg Wq) + log(s23/Wg Wq) 

= ~Y + log(S12S23/SSg) 

(15.26) 

The two terms in the definition of A are the lengths of the two hyperbolas 
in the qg- and the gq-sectors. 

We now assume that there are regions close to the q- and q- ends, 
respectively, that correspond to fragmentation regions, in which there is a 
lower density of particles. Thus we 'lose' log Wq = (1/2)logsq in each q
and q-region. Similarly we assume that on both sides of the gluon corner 
there is a corresponding loss governed by log Wg = (1/2) log Sg. 

We may then conclude that the rapidity region has increased owing to 
the emission of the gluon, and that the quantity 

log(S12S23/SSg) == log(k]jsg) (15.27) 

is a measure of the increase. We will next show that the quantity kl.. 
occurring in Eq. (15.27) in fact corresponds to the transverse momentum 
of the gluon. 

To see this we consider the event again in a frame where the q and q 
separate in opposite directions with energies el and e3, respectively. The 
g will move away transversely with energy e2. Then we obtain by direct 
calculation that 

S12 = (el + e2)2 - er - e~ = 2ele2 

S23 = (e2 + e3)2 - e~ - e~ = 2e2e3 

S13 = (el + e3)2 - (el - e3)2 = 4ele3 
2 

k2 = S12S23 = e2 '" e2 
l.. S 1 + (e2/2)(1/el + 1/e3) - 2 

(15.28) 

the approximation being valid unless the g's energy is of the same order 
as the energies of the q and q. Another way to obtain the result is to 
note that there is a direction in the cms (approximating the directions of 
the q and q) along which ki, as defined above, is identical to the gluon's 
transverse momentum. We will show this in Chapter 17 after we have 
introduced a few more kinematical notions. 

The result for the phase-space extension is clear. What happens is that 
the single hyperbola for the flat string is exchanged for two hyperbolas, the 
connecting point being 'pulled out' by the gluon corner. The tip formed in 
this way corresponds to an extension of phase space (not only for emission 
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of final-state hadrons but also for further gluon emission, cf. Chapter 17), 
whose size is determined by the transverse momentum of the gluon. 

The size of the extension is calculated in terms of a scale Sg characteristic 
of the particle production around the gluon corner. In the same way the 
original hyperbola is measured by means of a scale Sq characteristic for 
production at the q- and 71- endpoints of the string. In the section on 
i-decay we used the estimates Sg = Sq = 2 GeV2. 

In section 17.4 we will consider the necessary steps for a generalisation 
of the A-measure to multigluon situations. We note, however, that the 
present definition is only useful when the squared masses between the 
partons exceed the scales Sq andlor Sg and we will therefore in section 
18.7 extend the definition to an infrared-stable A-measure. 

At the same time we will be able to introduce a 'local' value of the 
A-measure. Up to now A as it is defined evidently corresponds to the total 
available region for particle production (and, as we will later also find, 
for gluon emission in perturbative QCD). Therefore it is similar to ~y, 
the total available rapidity region for the decay of a straight qq-string. 
Using the directrix function (generalised to multiparton situations) it is 
possible to introduce a value A(a) that varies from e.g. A(a = 0) = 0 to 
A(a = ElK) = A (for the variable a see Eq. (15.10), just as the ems-rapidity 
y varies from (-1/2)~y to (+1/2)~y. 
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