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Abstract In Communications in Contemporary Mathematics 24 3, (2022), the authors have developed
a method for constructing G-invariant partial differential equations (PDEs) imposed on hypersurfaces
of an (n+ 1)-dimensional homogeneous space G/H, under mild assumptions on the Lie group G. In the
present paper, the method is applied to the case when G = PGL(n + 1) (respectively, G = Aff(n + 1))
and the homogeneous space G/H is the (n+ 1)-dimensional projective Pn+1 (respectively, affine An+1)
space, respectively. The main result of the paper is that projectively or affinely invariant PDEs with n
independent and one unknown variables are in one-to-one correspondence with invariant hypersurfaces
of the space of trace-free cubic forms in n variables with respect to the group CO(d, n− d) of conformal
transformations of Rd,n−d.
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1. Introduction

In this paper, we go on constructing G-invariant partial differential equations (PDEs) in
one unknown variable defined on (n+1)-dimensional G-homogeneous manifolds, following
the general theoretical scheme developed by the authors in [1]: there, the cases when G
is either the Euclidean SE(n + 1) or the conformal group CO(n + 1) were treated: here,
we will deal with the cases when G is either the projective PGL(n+1) or the affine group
Aff(n+ 1).
The reason why we treat these last two cases together in a separate paper is that,

unlike the two before, they give rise to third-order invariant PDEs; in particular, this
casts an important bridge with the differential geometry of affine hypersurfaces and, in
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particular, with the Fubini–Pick invariant. On this concern, see, e.g., [2, § 2.2], [4, § 1],
[5, § 3.5], [9], as well as the original work of Blaschke [3].
The vanishing of this invariant defines a G-invariant third-order PDE that can be

constructed, according to the general scheme developed in [1], by a suitable choice of a
fiducial hypersurface of order 3. In view of the tight relationship between the affine and
the projective case (see also [8]), we will state a result concerning both in § 5; technical
computations concerning the projective case, that is when Pn+1 is regarded as homoge-
neous space of SL(n+2), will be carried out in § 3. Analogous computations for the affine
case, that is when An+1 is regarded as homogeneous space of the affine group Aff(n+1),
which can be thought of as a ‘restriction’ of the projective case, will be carried out in § 3.
The main result is Theorem 5.1; each projectively or affinely invariant PDE imposed

on hypersurfaces of the (n+1)-dimensional projective or affine space is uniquely given by
a CO(d, n−d)-invariant hypersurface of the space of trace-free cubic forms in n variables,
were symbol CO(d, n−d) denotes the Lie group of conformal transformations of the space
Rn, equipped with a metric of signature (d, n− d).
A local coordinate description for the Aff(n + 1)-case, which obviously works for the

PGL(n+ 1)-case as well, will be given in § 5.2, whereas in the last § 5.4, we focus on the
case n =2.

1.1. Notations and conventions

The symmetric product will be denoted by �, and the symmetric `-power of a vector
space V will be denoted by S`(V ). If f : M → N is a differentiable map, then pull-back
via f of a bundle π : E → N is denoted by f∗(E). Symbol R× denotes the multiplicative
group of real numbers.

2. A general construction of G-invariant PDEs on a homogeneous manifold

M = G/H

We will review here, without proofs, the main definitions and results, as well as all
the necessary preliminary material, contained in [1, § 2 and 3]. Throughout this section,
M = G/H will be an (n+1)-dimensional homogeneous manifold and S ⊂ M an embedded
hypersurface of M ; in § 3 and 4, M will be either the projective space Pn+1 or the affine
space An+1, respectively.

2.1. Preliminary definitions

Locally, in an appropriate local chart

(u,x) = (u, x1, . . . , xn) (1)

of M, the hypersurface S can be described by an equation u = f(x) = f(x1, . . . , xn),
where f is a smooth function of the variables x1, . . . , xn, that we refer to as the inde-
pendent variables, to distinguish them from the remaining coordinate u, that is the
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dependent one.1 We say that such a chart is admissible for S or, equivalently, that the
hypersurface S is (locally) admissible for the chart (u,x). We denote by Sf = S the
graph of f :

Sf := {
(
f(x) ,x

)
} = {u = f(x)} .

Given two hypersurfaces S 1 and S 2 through a common point p, one can always choose
a chart (u,x) about p that is admissible for both: S1 = Sf1

, S2 = Sf2
.

Definition 2.1. Two hypersurfaces Sf1
, Sf2

passing through a common point p =
(u,x) are called `-equivalent at p if the Taylor expansions of f1 and f2, in a chart admis-
sible for both, coincide at x up to order `. The class of `-equivalent hypersurfaces to a
given hypersurface S at the point p is denoted by [S]`p, and the union

J`(n,M) :=
⋃

p∈M

{[S]`p | S is a hypersurface of M passing through p}

of all these equivalence classes is the space of `-jets of hypersurfaces of M.

Note that J1(n,M) = PT ∗M , that is the Grassmanian bundle Grn(TM) of tangent
n-planes to the (n+ 1)-dimensional manifold M. From now on, when there is no risk of
confusion, we let

J` := J`(n,M) .

The natural projections

π`,m : J` −→ Jm , [S]`p 7−→ [S]mp , ` > m ,

define a tower of bundles

· · · −→ J` −→ J`−1 −→ · · · −→ J1 = PT ∗M −→ J0 = M .

It is well known that π`,`−1 are affine bundle for ` ≥ 2. For any am ∈ Jm, the fibre of
π`,m over am will be denoted by the symbol

J`
am := π−1

`,m(am) .

Definition 2.2. A system of m PDEs of order k is an m-codimensional submanifold
E ⊂ Jk. A solution of the system E is a hypersurface S ⊂ M such that S(k) ⊂ E.

1 A reader who is familiar with the standard literature about jet spaces may have noticed that we
reversed the order of x and u; this choice will be more convenient for us as the coordinate u will play
the role of the ‘0th coordinate’.
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2.2. Assumptions on the Lie group G

Before introducing the conditions, the Lie group G will have to fulfill (see § 2.2.2) in
order to make Theorem 1.1 work, we recall some basic facts about the affine group that
will help understand the meaning of these conditions.

2.2.1. Affine groups and their subgroups of affine type

Let V be a vector space, treated as an affine space, then the group Aff(V ) of affine
transformations of V fits into the short exact sequence of groups:

0 −→ V
T−→ Aff(V )

L−→ GL(V ) −→ 0. (2)

The monomorphism T maps a vector v ∈ V into the corresponding parallel translation
Tv: one has then a canonical normal subgroup TV, made of parallel translations, which
acts on V in a simply transitive way.
The action of TV defines even an absolute parallelism on V, i.e., it allows to canonically

identify the tangent space TvV at an arbitrary point v ∈ V of the affine space V, with
the vector space V ; in particular, if an origin o ∈ V is chosen, then the differential

L(g) := dog : ToV −→ Tg·oV

of g ∈ Aff(V ) at o can be regarded as an isomorphism of V, that is, as an element of
GL(V ). This explains the rightmost arrow of (2) and allows to regard GL(V ) as the linear
group of the affine group, that is, as the subgroup Aff(V )o = GL(ToV ) of the group Aff(V )
that stabilizes the origin o ∈ V ; this leads to the semidirect decomposition

Aff(V ) = TV o GL(V ) (3)

of the affine group Aff(V ), associated with the origin o ∈ V .
If now a subgroup H ⊂ Aff(V ) is given, decomposition (3) does not need to descend

to H, in the sense that the sequence

0 −→ TW := T−1(H)
T−→ H

L−→ LH := L(H) −→ 0 (4)

may be still exact but not split. This remark motivates the following definition.

Definition 2.3. We say that a subgroup H ⊂ Aff(V ) is of affine type if H admits a
semidirect decomposition

H = TW o LH (5)

for some o ∈ V . The subgroup LH = Ho is called the linear subgroup of H, whereas TW

is its subgroup of translations.

In condition (A2), we shall require that τ(H(k−1)) be a subgroup of affine type; indeed,
as a direct consequence of Definition 2.3, if H is a subgroup of affine type of Aff(V ), then
the orbit H · o of o coincides with the affine subspace W of V.
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Let H = TW o LH be a subgroup of affine type, where LH = Ho denotes its linear
subgroup, and let us fix a complementary subspace U to W in V, then any h ∈ H can
be decomposed into a product

h = Th · Lh . (6)

Therefore, in terms of the decomposition V = U + W , the action of the linear part Lh

takes the form

Lh =

(
∗ ∗
0 Lh

)
. (7)

We let LH := {Lh | h ∈ H}.

Lemma 2.1. Let H ⊂ Aff(V ) be a subgroup of affine type. Then, there exists a one-to-
one correspondence between LH-invariant hypersurfaces Σ ⊂ V = V/W and (cylindrical)
H-invariant hypersurfaces Σ = W +Σ in V.

Proof. Let π : V → V = V/W be the projection. Then, if Σ is an LH-invariant
hypersurface in V , then Σ := π−1(Σ̄) is an H -invariant hypersurface in V, see also
[1, Lemma 3.1]. �

2.2.2. k-admissible homogeneous manifolds

In what follows, unless otherwise specified, o is a fixed point of M = G/H (an ‘origin’),
so that M = G · o, and o` is a point of J` projecting onto o. This allows us to consider,
∀ ` ≥ 2, the fibre J`

o`−1 as a vector space with the origin o` playing the role of zero vector.

The group G acts naturally on each `-jet space J`:

g : J` −→ J` ,

o` = [S]`o −→ g · o` := [g(S)]`g(o) ,

with o ∈ S, for all g ∈ G.

Definition 2.4. The system E is called G-invariant if G · E = E.

We denote by H(`) the stability subgroup Go` in G of the point o`:

H(`) := Go` .

We are going to assume that there exists a point ok ∈ Jk, with k ≥ 2, such that:
(A1) the orbit

J̌k−1 := G · ok−1 = G/H(k−1) ⊂ Jk−1

through the projection ok−1 ∈ Jk−1 of ok is open;
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(A2) the orbit

W k := τ(H(k−1)) · ok ⊂ Jk
ok−1 (8)

of the natural affine action

τ : H(k−1) → Aff(Jk
ok−1) (9)

in the fibre Jk
ok−1 is an affine subspace and the group τ(H(k−1)) is a subgroup of affine

type, i.e.,

τ(H(k−1)) = TWk o L
H(k−1) , (10)

where L
H(k−1) is the stabilizer of ok, see Definition 2.3.

Assumption (A2) implies that there is a point ok ∈ Jk
ok−1 such that the restriction of

the affine bundle πk,k−1 : Jk → Jk−1 to the orbit G · ok is an affine subbundle of πk,k−1

(over the base J̌k−1).

Definition 2.5. A homogeneous manifold M = G/H is called k-admissible for k ≥ 2
if assumptions (A1) and (A2) are satisfied.

The problem of classifying all G-invariant PDEs E ⊂ Jk on a given (n+1)-dimensional
manifold M acted upon by a Lie group G will be made more workable by assuming M
to be a G-homogeneous manifold of a particular kind, namely a k -admissible one.

2.3. Natural bundles on jet spaces

2.3.2. The lift of hypersurfaces of M to J`

The space J` has a natural structure of smooth manifold: one way to see this is to
extend the local coordinate system (1) on M to a coordinate system

(u,x, . . . , ui, . . . , uij , . . . , ui1···il , . . .) = (u, x1, . . . , xn, . . . , ui, . . . , uij , . . . , ui1···il , . . .)
(11)

on J`, where each coordinate function2 ui1···ik , with k ≤ `, is unambiguously defined by

ui1···ik

(
[Sf ]

`
p

)
= ∂k

i1···ik
f(x) , p = (u,x) , k ≤ ` . (12)

In formula (12), the symbol ∂i denotes the partial derivative ∂xi , for i = 1, . . . , n; we
recall that the hypersurface S = Sf is the graph of the function u = f(x) and, as such,
it is admissible for the chart (u,x).

2 The ui1···ik ’s are symmetric in the lower indices.
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The `-lift of S is defined by

S(`) := {[S]`p | p ∈ S} .

It is an n-dimensional submanifold of J`. If S = Sf is the graph of u = f(x), then S
(`)
f

can be naturally parametrized as follows:3

(
u = f(x),x, . . . ui =

∂f

∂xi
(x), . . . uij =

∂2f

∂xi∂xj
(x), . . .

)
.

1.3.2. The tautological bundle and the higher order contact distribution on J`

Lemma 2.2. Any point a` = [S]`p ∈ J` canonically defines the n-dimensional subspace

Ta`−1S
(`−1) ⊂ Ta`−1J

`−1 , a`−1 := π`,`−1(a
`) . (13)

Definition 2.6. The tautological rank-n vector bundle T ` ⊂ π∗
`,`−1(TJ

`−1) is the

bundle over J` whose fibre over the point a` is given by (13), i.e.,

T ` =
{
(a`, v) ∈ J` × TJ`−1 | v ∈ Ta`−1S

(`−1)
}
.

The (truncated) total derivatives

D
(`)
i := ∂xi +

∑̀
k=1

∑
j1≤···≤jk−1

uj1...jk−1 i ∂uj1...jk−1
, i = 1 . . . n , (14)

constitute a local basis of the bundle T `.
The pre-image C` := (dπ`,`−1)

−1T ` of the tautological bundle on J`, via the differential
dπ`,`−1 of the canonical projection π`,`−1, is a distribution on J`.

Definition 2.7. C` is called the `th order contact structure or the Cartan distribution
(on J`).

We will also need the vertical subbundle T vJ` := ker(dπ`,`−1) of TJ
`. The distribution

C` has been called the ‘higher order contact structure’ [6, 7, 14] because, for ` = 1, if
(u, xi, ui) is a chart on J 1, then C := C1 = ker(θ), where dθ = du− uidx

i, is the contact
distribution.

3 We stress once again that a switch has occurred between the first and the second entry, with respect
to a more standard literature.
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2.3.3. The affine structure of the bundles J` → J`−1 for ` ≥ 2

According to Definition 2.6, the tautological bundle T := T 1 is the vector bundle over
J 1 defined by

T[S]1p
:= T 1

[S]1p
= TpS .

Definition 2.8. The normal bundle N is the line bundle

N[S]1p
:= NpS = TpM

/
TpS

over J1.

Remark 2.1. To simplify notations, we denote by ∂u the equivalence class ∂u mod T .

Lemma 2.3 and Proposition 2.1 are both well known (see, for instance, [6, 12]).

Lemma 2.3. For ` ≥ 1, the following vector bundle isomorphism holds:

T vJ` ' π∗
`,1(S

`T ∗ ⊗N ) .

Proposition 2.1. For ` ≥ 2, the bundles J` → J`−1 are affine bundles modelled by
the vector bundles π∗

`−1,1(S
`T ∗ ⊗N ). In particular, once a chart (u,x) has been fixed, a

choice of a point [S]`p (the origin) defines an identification of J`

[S]`−1
p

with S`T ∗
pS.

2.4. Constructing G-invariant PDEs E

Let M = G/H = G · o, o ∈ M , be an (n+ 1)-dimensional homogeneous manifold and
recall (see § 2.2.2) that G acts on each jet space J` = J`(n,M). To further simplify the
setting, we will assume that M = G/H possess a fiducial hypersurface of order k, defined
below.

2.4.1. The fiducial hypersurface

Definition 2.9. Let S ⊂ M be a hypersurface, such that S 3 o. The hypersurface
S is called a a fiducial hypersurface (of order k), if S is homogeneous with respect to a
subgroup of G, such that (A1) and (A2) of § 2.2.2 are satisfied with ok := [S]ko .

Plainly, if M = G/H admits a fiducial hypersurface of order k, then it is k -admissible
as well (see Definition 2.5). Let S be a fiducial hypersurface of order k in the sense of

https://doi.org/10.1017/S0013091524000233 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000233


Projectively and affinely invariant PDEs on hypersurfaces 9

Definition 2.9; therefore, for any ` ≤ k, we will regard the point

o` := [S]`o ∈ J`

as the origin of J`. Furthermore, the identification

J`
o`−1 = S`(T ∗

o S)⊗NoS ,

in the case when the fiducial hypersurface S is the graph Sf of a f, reads (see Proposition
2.1):

J`
o`−1 = S`(T ∗

o Sf ) . (15)

We will use this identification in the sequel.

2.4.2. A general method for constructing G-invariant PDEs

We apply now Lemma 2.1 to the subgroup τ(H(k−1)) ⊂ Aff(Jk
ok−1) of affine type,

which eventually leads to [1, Theorem 3.1].

Corollary 2.1. Let M = G/H be a k-admissible homogeneous manifold. Then,
there exists a one-to-one correspondence between L

H(k−1)-invariant hypersurfaces Σ ⊂
Jk
ok−1/W

k and (cylindrical) τ(H(k−1))-invariant hypersurfaces Σ = p−1(Σ) ⊂ Jk
ok−1 ,

where

p : Jk
ok−1 → Jk

ok−1/W
k (16)

is the natural projection.

The aforementioned main result of [1], that is Theorem 3.1, is a direct consequence of
Corollary 2.1 and Lemma 2.4, applied to the bundle πk,k−1.

Lemma 2.4. Let π : P −→ B be a bundle. Assume that a Lie group G of automor-
phisms of π, such that B = G/H, acts transitively on B, where H is the stabilizer of a
point o ∈ B. Then:

i) any H-invariant function F on Po := π−1(o) extends to a G-invariant function F̂

on P (where F̂ (gy) = F (y) for y ∈ Po and g ∈ G), and F 7−→ F̂ is a bijection;
ii) any H-invariant hypersurface Σ of the fibre Po extends to a G-invariant hypersur-

face EΣ := G ·Σ of P, and this gives a bijection between H-invariant hypersurfaces
of Po and G-invariant hypersurfaces of P.

Proof. See [1, Lemma 3.2]. �

Theorem 2.1. Let M = G/H be a k-admissible homogeneous manifold (see
Definition 2.5). Then, there is a natural one-to-one correspondence between L

H(k−1)-

invariant hypersurfaces Σ (see also (10)) of Jk
ok−1/W

k and G-invariant hypersurfaces

EΣ := Ep−1(Σ) = G · p−1(Σ) of Jk = Jk(n,M), where p is the natural projection (16).
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Theorem 2.1 closes the summary of the theory developed by the authors in [1] that
is a strategy for constructing G-invariant PDEs imposed on the hypersurfaces of a k -
admissible homogeneous manifold M = G/H:

(1) calculate the orbit W k = τ(H(k−1)) · ok and decompose τ(H(k−1)) accordingly
to (10);

(2) describe L
H(k−1)-invariant hypersurfaces Σ ⊂ V k = Jk

ok−1/W
k;

(3) write down the G-invariant equations EΣ = G · p−1(Σ) in the coordinates (11).

In § 3, we begin implementing this strategy for the projective space Pn+1, whereas in
§ 4, we will be dealing with the affine space An+1; the G-invariant PDE itself is obtained,
in an unified manner, in § 5.

3. Stabilizers of the SL(n + 2)-action on J`(n, Pn+1)

We consider the linear space W := Rn+2 with the basis

{p, e1, . . . , en, q},

and we let G = SL(n + 2) act naturally on it; therefore, G acts on the projectivization
M := PW of W. The projective coordinates

[u : x1 : · · · : xn : t]

on PW = Pn+1 will be given by the dual coordinates to the basis above. We shall also
need a scalar product

g = 〈 · , · 〉 (17)

on E := 〈e1, . . . , en〉, of signature d, n− d. Let Sg denote the projective quadric

Sg := PW0 , (18)

where W0 is the null cone of the pseudo-Euclidean metric

gW := g − du� dt , (19)

that is, W0 := {w ∈ W | gW(w,w) = 0}. In § 5, we shall prove that Sg is a fiducial
hypersurface, see Proposition 5.1.
The point

o := [p] = [1 : 0 : · · · : 0 : 0]

clearly belongs to the hypersurface Sg, so that it makes sense to consider

o(k) := [Sg]
k
o
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for k ≥ 0 . In particular, the point o(1) = [Sg]
1
o, that is the tangent space ToSg =

To(Sg ∩ U) ∈ J1, in the affine coordinate neighbourhood

U := {[1 : x1 : · · · : xn : t]} (20)

can be identified with E = ker dot: indeed, ker do(tu− g) = ker(dot− dog) = ker dot = E,
because dog = 0.

Lemma 3.1. The stabilizing subgroups corresponding to the origins o(k), for k =
0, 1, 2, 3, are:

H = Rn+1 o GL(n+ 1) ,

H(1) = Rn+1 o ((Rn o GL(n))× R×) ,

H(2) = (Rn+1 o (Rn o O(d, n− d))× R×) ,

H(3) = Rn+1 o (O(d, n− d)× R×) .

Proof. An element of G stabilizing the line generated by p is a (n+2)×(n+2) matrix
with determinant one, displaying all zeros in the first column, save for the first entry, that
has to be equal to the inverse of the determinant of the rightmost lower (n+1)× (n+1)
block; in other words,

H = G[p] = Aff(E ⊕ Rq) = Rn+1 o GL(n+ 1) . (21)

The same can be seen on the infinitesimal level; passing to the Lie algebra g of G, we
consider the decomposition

g = sl(W) = so(W)⊕ S2
0(W) , (22)

where so(W) = so(d+ 1, n+ 1− d) is identified with the space of skew-symmetric forms
Λ2W and S2

0(W) denotes the space of trace-free symmetric forms with respect to gW , cf.
(19); therefore, since W splits into the sum

W = Rp⊕ (E ⊕ Rq)

of the (n+1)-dimensional space Rq⊕E and the one-dimensional subspace Rp, we obtain
the decompositions

so(W) = (Rp ∧ (E ⊕ Rq))⊕ so(E ⊕ Rq) , (23)

S2
0(W) = Rp� (E ⊕ Rp)⊕ Rq � (E ⊕ Rq)⊕ S2

0E ⊕ R(p� q − e0 ⊗ e0), (24)

where e0 ∈ E is a suitable vector. It is now easy to see that the Lie algebra g0 = h of the
stabilizer H is given by

h = gl (E ⊕ Rq) ⊕ (Rp⊗ (E ⊕ Rq)∗) = gl (E ⊕ Rq) ⊕ ((Rp)∗ ⊗ (E ⊕ Rq))∗ . (25)
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Since

ToM = T[p]PW = (Rp)∗ ⊗ W
Rp

' (Rp)∗ ⊗ (E ⊕ Rq) ,

we obtain

h ' ToM ⊕ gl(ToM) .

The last identification allows to rewrite (21) as follows:

H = ToM o GL(ToM) ,

where the factor GL(ToM) (respectively, ToM ) is the image (respectively, kernel) of the
isotropy representation

j : H −→ GL(ToM) . (26)

In light of what we have found, it is easy to pass from (25) to the Lie algebra h(1) of H(1)

h(1) = h
o(1)

= (Rp⊗ (E ⊕ Rq)∗)⊕ gl(E ⊕ Rq)E , (27)

where

gl(E ⊕ Rq)E = gl(E)⊕ E ⊕ Rq , (28)

is the subalgebra preserving E. On the level of Lie groups, this means that

H(1) = (E ⊕ Rq)∗ o ((E o GL(E))× (Rq)×) ' Rn+1 o ((Rn o GL(n))× R×) ,

or, more intrinsically,

H(1) = ToM o (Aff(ToSg)× R×) . (29)

We shall show now that the subgroup of (29) that stabilizes o(2) is precisely

H(2) = ToM o (E(ToSg)× R×) , (30)

where

E(ToSg) = E o O(E) = Rn o O(d, n− d)

is the group of rigid motions of E ' ToSg. Note that the isotropy representation (26) tells
us that the factor ToM of H(1) survives in H(2); it is also easy to see that the ‘conformal
factor’ R×, since it scales the dependent variable, does not affect the second jet at zero of
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the quadric Sg, see (18); indeed, if we identify second-order jets with quadratic forms (see
§ 2.3.3), then the second jet at zero of the quadric Sg is g itself. Similarly, a transformation
coming from the GL(ToSg) component of the group E(ToSg) preserves o

(2) if and only if
it preserves g ; therefore, it must be an element of O(ToSg).
In order to finish the proof of (30), it remains to show that the ‘translational’ component

ToSg of E(ToSg) does not move o(2); we postpone this to the proof of the analogous prop-
erty in § 4 (see Remark 4.1), together with the proof that the aforementioned component
does move o(3), eventually showing that

H(3) = ToM o (O(ToSg)× R×) ,

thus concluding the whole proof. �

Remark 3.1. The structure of H(1) is that of

H(1) = HoAut(H) ,

where

Lie(H) = E ⊕ E∗ ⊕ Rp ,

with H being the (2n+ 1)-dimensional Heisenberg group. Indeed, from (27) and (28), it
follows that

h(1) = h
o(1)

= (gl(E)⊕ E ⊕ Rq)⊕ (Rp⊗ E)⊕ Rp ,

that is,

h(1) = Lie(H)⊕ gl(E)⊕ Rq . (31)

In terms of traceless (n+ 2)× (n+ 2) matrices, an element

(a, bt, α,A, β)

of the algebra (31) corresponds to the matrix −β − tr(A) 0 α

0 A b

0 at β

 .

Remark 3.2 The hypersurface Sg is a homogeneous manifold, namely,

Sg = SO(W)/(SO(W) ∩H(1)) .

It is indeed convenient, before passing to the application of Theorem 2.1, to prove the
analogous result for the affine case; after that, the two cases will go on in parallel, due
to the fact that the structure of the model fibre of J 3 over J 2 does not feel the topology
of the underlying manifold, that has changed from Pn+1 to An+1.
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4. Stabilizers of the Aff(n + 1)-action on J`(n,An+1)

By the symbol An+1, we denote the linear space Rn+1, regarded as an affine space. The
affine space An+1 is a manifold with the action of the affine group

G = Aff(n+ 1) = Rn+1 o GL(n+ 1) ,

such that the vector normal subgroup Rn+1 acts simply transitively. We fix the standard
basis

{e0, e1, . . . , en}

of Rn+1 = Re0 ⊕ E, and we let

(u,x) := (u, x1, . . . , xn)

be the corresponding coordinates. We have then the same n-dimensional space E as
before, with the same coordinates, but now the (n+1)-dimensional underlying manifold
is

M := An+1 = Rn+1 = Re0 ⊕ E .

Since An+1 still possesses the zero, we set o := 0 ∈ An+1. In analogy to (18), we let Saff
g

be the quadric

Saff
g = {u = g(x,x)} , (32)

where g is the same scalar product on E as before, see (17). In § 4, we shall prove that
Saff
g is a fiducial hypersurface, see Proposition 5.1.

As before, we let o(k) := [Saff
g ]ko , for k ≥ 0, so that the point o(1) = [Saff

g ]1o will be again

the tangent space ToSaff
g ∈ J1, that is the hyperplane E = Rn of Rn+1.

Lemma 4.1. The stabilizing subgroups of the origins o(k), for k = 0, 1, 2, 3, are:

H = GL(n+ 1) , (33)

H(1) = (Rn o GL(n))× R× , (34)

H(2) = (Rn o O(d, n− d))× R× , (35)

H(3) = O(d, n− d)× R× .

Proof. Formula (33) is well known; an affine transformation preserves the zero, that
is the origin o(0) = o = 0 of An+1, if and only if it is linear, i.e., an element of GL(n+1).
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Concerning (34), let us note that a (n+1)× (n+1) non-singular matrix preserves the
hyperplane Rn, that is the origin o(1), if and only if it has the form(

A w

0 µ

)
,

where A ∈ GL(n), w ∈ Rn and µ ∈ R×. Identity(
A w

0 µ

)
= µ ·

(
µ−1A µ−1w

0 1

)

shows that StabH(o(1)) is obtained from the subgroup RnoGL(n) of matrices of the form

(
A w

0 1

)
, (36)

by multiplying it by the group R×.
To deal with (35), it is convenient to introduce, by a slight abuse of notation, two

special elements of H(1), namely

MA,µ :=

(
A 0

0 µ

)
, w :=

(
In w

0 1

)
.

It is worth observing that MA,µ acts naturally by A on the hyperplane Rn while rescaling
by µ the elements of the complementary line Re0, whereas the vector w acts on the affine
hyperplane u =1 by translation; in particular, it ‘tilts’ the line Re0 into the line R(e0+w).
Since (

A w

0 µ

)
=

(
A 0

0 µ

)
·

(
In A−1w

0 1

)
,

any element of H(1) can be expressed as product of the above special elements:

H(1) = {MA,µ ·w | A ∈ GL(n) , µ ∈ R× ,w ∈ Rn}. (37)

Let us pass to the first claim of (35), i.e., to the computation of the stabilizer
Stab

H(1)(o
(2)) of the second-order jet at 0 ∈ Rn of the quadric hypersurface Saff

g =
{(Q(x),x) | x ∈ Rn}, where

Q(x) := g(x,x)

is the quadratic form associated to the scalar product (17).
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To begin with, we act by a transformation of type w on the hypersurface Saff
g ; it turns

out that, even if the resulting hypersurface w(Saff
g ) looks like a ‘slanted paraboloid’ (see

the picture below), the second-order jet at zero of w(Saff
g ) is the same as the original

hypersurface Saff
g .

In order to see this, let us observe that

w(Saff
g ) = {w · (Q(x),x) | x ∈ Rn} = {Q(x), (x+Q(x)w) | x ∈ Rn} ,

where the function t(x) := x + Q(x)w is a small deformation of the identity in a suffi-
ciently small neighbourhood of zero. As such, t(x) will admit a (local) inverse. We claim
that

x(t) := t−Q(t)w (38)

approximates the inverse of t(x) up to third-order terms. Indeed,

t(x(t)) = t−Q(t)w +Q(t−Q(t)w)w

= t−Q(t)w + (Q(t)− 2Q(t)〈w, t〉+Q2(t)Q(w))w

= t− (2Q(t)〈w, t〉+Q2(t)Q(w))w

= t+O(‖t‖3) .

This will allow us to work with the graph of the function f(t) := Q(x(t)) instead of the
hypersurface w(Saff

g ), as long as only jets from zero up to second order are concerned. In
particular,

∇f(0) = ∇Q(0) · ∂x
∂t

(0) = ∇Q(0) ,

since the Jacobian ∂x
∂t at zero is the identity. We have then proved that [f ]10 = o(1).

Analogously,

∂2f

∂ti∂tj
(0) =

∂

∂tj

(
∂Q

∂xk

∂xk

∂ti

)
(0) =

∂2Q

∂xh∂xk

∂xh

∂tj
∂xk

∂ti
(0) +

∂Q

∂xk

∂2xk

∂tj∂ti
(0)

=
∂2Q

∂xh∂xk
(0)δhj δ

k
i =

∂2Q

∂xi∂xj
(0) ,
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since the first derivatives of Q vanish at the origin. Then, we also have that [f ]20 = o(2),
i.e., w · o(2) = o(2).
Therefore, in view of (37),

H(2) = {MA,µ ∈ H(1) | MA,µ · o(2) = o(2)}, (39)

so that it remains to compute the second-order jet at zero of the hypersurface

MA,µ(Saff
g ) = {(µQ(x), A · x) | x ∈ Rn} = {(µA−1 ∗(Q)(x),x), | x ∈ Rn} ,

and impose that it be equal to o(2).
Since both Q and µA−1 ∗(Q) are quadratic forms, their second-order jets at zero

coincides if and only if

µA−1 ∗(Q) = Q ⇔ A∗(Q) = µQ ,

i.e., A is a conformal transformation of Q, and µ is the corresponding conformal factor,
uniquely determined by A. In other words, A ∈ O(d, n−d) ·R× and µn = det(A)2, which
concludes the proof that H(2) = (Rn o O(d, n− d))× R×.
The last case, i.e., the second claim of (35), will be dealt with in a similar fashion; to

compute H(3), we first rewrite H(2) as

H(2) = {MA,µ ·w | A ∈ O(d, n− d)× R× , µn = det(A)2 , w ∈ Rn},

in analogy to (37).
Since both Q and µA−1 ∗(Q) have vanishing third-order jets at zero, in order to

compute H(3) it suffices to impose that transformations of type w preserve o(3), i.e.,

H(3) = {MA,µ ·w ∈ H(2) | w · o(3) = o(3)},

in analogy to the previous case (39). In this last case, however, the third-order jet at zero
of w(Saff

g ) will not be the same as o(3), unless w = 0. We have already observed that
f(t) and Q(x) have the same derivatives at 0 up to order 2.
To study the third-order jet at zero ofw(Saff

g ), we need to compute the third derivatives
of f, where now f(t) = Q(x(t)), with x(t) being the true inverse of t(x), and not the
approximated one, i.e., (38). The reason why we use the same symbol for both the exact
and the approximated (local) inverse, beside an evident notation simplification, is that
the final result will depend only on the approximated one.

∂3f

∂ti∂tj∂tl
=

∂

∂tj

(
∂2Q

∂xh∂xk

∂xh

∂tj
∂xk

∂ti
+

∂Q

∂xk

∂2xk

∂tj∂ti

)
=

∂3Q

∂xh∂xk∂xs

∂xs

∂tl
∂xh

∂tj
∂xk

∂ti
+

∂2Q

∂xh∂xk

∂2xh

∂tj∂tl
∂xk

∂ti
+

∂2Q

∂xh∂xk

∂2xk

∂ti∂tl
∂xh

∂tj

+
∂2Q

∂xk∂xs

∂2xk

∂tj∂ti
∂xs

∂tl
+

∂Q

∂xk

∂3xk

∂ti∂tj∂tl
.
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Evaluating the last expression at 0, we obtain

∂3f

∂ti∂tj∂tl
(0) = 2Qhk

∂2xh

∂tj∂tl
(0)δki + 2Qhk

∂2xk

∂ti∂tl
(0)δhj + 2Qks

∂2xk

∂tj∂ti
(0)δsl

= 2Qhi
∂2xh

∂tj∂tl
(0) + 2Qjk

∂2xk

∂ti∂tl
(0) + 2Qkl

∂2xk

∂tj∂ti
(0) . (40)

Now, for the purpose of computing the second derivatives of x at 0 in (40), we can use
the approximated inverse that is (38):

∂2x(t)

∂ti∂tj
(0) =

∂2(t−Q(t)w)

∂ti∂tj
(0) = −2Qijw .

Indeed, the discrepancy between the true and the approximated inverse, being of third
order in x , will still vanish in 0, even after a double differentiation.
Therefore, the third-order term of the Taylor expansion of f around 0 (where, it is

worth stressing, f is the one computed via the true inverse of t(x)) is precisely

1

3!

∂3f

∂ti∂tj∂tl
(0)titjtl = −1

6

(
2Qhi2Qjlw

h + 2Qjk2Qilw
k + 2Qkl2Qjiw

k
)
titjtl

= −2Q(t)〈t,w〉 . (41)

Since we have already observed that w(Saff
g ) and Saff

g have the same jets at 0 up to order

2, and the third-order derivatives of Q are zero, formula (41) shows that [Saff
g ]30 = o(3) if

and only if w = 0.
This shows that Stab

H(2)(o
(3)) = O(d, n − d) × R×, thus concluding the entire

proof. �

Remark 4.1. As we have anticipated, the proof of Lemma 4.1 also provides the miss-
ing steps in the proof of Lemma 4.1; observe also that the residual action of the group
G on the fibre J3

o2
is exactly the same, that is, that of E(Rn)×R×. It is then reasonable

to continue analysing the two cases in parallel.

5. PGL(n)- and Aff(n)-invariant PDEs on hypersurfaces of Pn+1 and An+1

Proposition 5.1. The projective hyperquadric Sg defined by (18) (respectively, the
quadric hypersurface Saff

g defined by (32)) is a fiducial hypersurface of order both 2 and 3

with respect to the action of the affine group Aff(n+1) on the affine space An+1 (respec-
tively, of the projective group SL(n + 2) on the projective space Pn+1), in the sense of
Definition 2.5.

Proof. For the order k =2, the proof is analogous to the Euclidean case, see
[1, Proposition 4.1]. Indeed, J 1 is the same as PT ∗Rn+1 or, equivalently, the flag space
F0,n, on which the linear group GL(n+1) already acts transitively, let alone Aff(n+1). So,
o(1) is the flag (0,Rn) and the action of H on J1

0 = P(Rn+1 ∗) is transitive. Therefore, since
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the Aff(n + 1)-orbit of o is the entire M, the Aff(n + 1)-orbit of o(1) is the entire space
J 1, viz.

J1(n,An+1) = Aff(n+ 1)/H(1) .

To deal with the case k =3, we shall study the orbit H(1) · o(2) in J2

o(1)
, bearing in mind

the identification

J2

o(1)
≡ S2T ∗

o Saff
g ⊗NoSaff

g = S2Rn ∗ ⊗ 〈∂u〉 , (42)

cf. (15), and the description (34) of H(1). Since the quadratic form Q associated to
the scalar product is non-degenerate, its GL(n)-orbit will be open. Incidentally, we see
the appearance of a Aff(n+ 1)-invariant second-order PDE, namely the Monge–Ampère
equation E ⊂ J2 given by det(uij) = 0.
Summing up,

J̌2 = Aff(n+ 1) · o(2) = Aff(n+ 1)/H(2)

is an open subset of J2(n,An+1) (which is contained in the complement J2(n,An+1)r E
of the Monge–Ampère equation E). Therefore, the assumption (A1) of Definition 1.5 is
met for the order k =3.
It remains to check assumption (A2) of Definition 2.5; we begin by showing that the

orbit H(2) · o(3) is a proper affine sub-space of J3

o(2)
. To this end, we shall need the

identification ,

J3

o(2)
≡ S3Rn ∗ ⊗ 〈∂u〉 , (43)

that is analogous to (42). Indeed, from the proof of Lemma 4.1, it is clear that the
H(2)-orbit of o(3) is made of the elements

[w(Saff
g )]3o ,

with w ∈ Rn. Therefore, from formula (41), it follows immediately that

[w(Saff
g )]3o − o(3) = [−2Q(x)〈x,w〉]30

and then (43) allows to identify the difference [w(Saff
g )]3o − o(3) with the element

−2w# � g (44)

of the vector space S3Rn ∗ ⊗ 〈∂u〉, where w# is the dual covector to w by means of the
scalar product (17). In other words, as w ranges in Rn, (44) describes the linear subspace
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Rn ∗ � 〈g〉 ⊂ S3Rn ∗ .

By construction, this is the linear space modelling the fibre H(2) · o(3). Since the same is
true for any fibre, assumption (A2) of Definition 2.5 is met; indeed, as we pointed out in
§ 2.2.2, assumption (A2), in the case when (10) holds, is the same as having a (proper)
affine subbundle and (10) immediately follows from (35).
The projective case can be dealt with analogously. �

5.1. The main result

Theorem 5.1. Fix a scalar product g of signature (d, n− d) as in (17) and let Saff
g ⊂

An+1 (respectively, Sg ⊂ Pn+1) be the corresponding fiducial (quadratic) hypersurface.
Let

S3
0Rn ∗ :=

S3Rn ∗

Rn ∗ � 〈g〉
(45)

denote the space of trace-free cubic forms on Rn. Then, for any CO(d, n − d)-invariant
hypersurface

Σ ⊂ S3
0Rn ∗ ,

we obtain an Aff(n + 1)-invariant third-order PDE EΣ ⊂ J3(n,An+1) (respectively, an
SL(n+ 2)-invariant third-order PDE EΣ ⊂ J3(n,Pn+1)).

Proof. Let us begin with the affine case. The first step consists in proving that
τR(H(2))-invariant hypersurfaces in

S3T ∗
o Saff

g ⊗NoSaff
g

R
o(2)

are the same as CO(p, n − p)-invariant hypersurfaces in S3
0Rn ∗. To this end, recall the

structure of H(2), studied in Lemma 4.1 (see, in particular, formula (35)) and observe
that the factor R× acts by multiplication by µ ∈ R× on NoSaff

g . The factor O(p, n−p) acts

naturally on S3T ∗
o Saff

g , which can be identified with S3Rn ∗. According to Proposition 5.1,

an element w in the factor Rn acts by shifting along R
o(2)

= Rn ∗ � 〈g〉 by −2w# � g,
see also (44), and hence its action on the quotient is trivial.
The claim then follows from Theorem 2.1, recalling that, up to a covering,

CO(d, n− d) = O(d, n− d)× R×.
Since the projective case can be dealt with analogously, we omit the proof. �

5.2. Coordinate description

Since the problem is, by its nature, a local one, we shall not consider the projective
case, since the affine space An+1 can be considered as an affine neighbourhood embedded
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in Pn+1. Again, we extend the global coordinate system {u, x1, . . . , xn} of An+1 to a
(local) coordinate system of J3(n,An+1); see also § 2.3.1.

Lemma 5.1. Let EΣ be the Aff(n+1)-invariant equation associated to the CO(d, n−d)-
invariant hypersurface Σ, as in Theorem 4.1. Then, in the aforementioned coordinate
system on J3, the equation EΣ can be described as {f = 0}, where the function
f = f(uij , uijk), that does not depend on u, x1, . . . , xn, u1, . . . , un, is the same function
describing the hypersurface Σ

o(1)
of J3

o(1)
.

Proof. It is a consequence of Lemma 2.4, where the bundle is

J1 × J3

o(1)
⊂ J3(n,An+1)

and the subgroup T ⊂ G = Aff(n+ 1) will be the (2n+ 1)-dimensional group

T = Rn+1 o

{(
In 0

w 1

)
| w ∈ Rn

}
.

The first factor of T acts by translations on Rn+1 and the lifted translations fix the ui’s
and, similarly, the uij’s and the uijk’s. Therefore, it is enough the first factor of T to fulfill
the hypothesis of Lemma 2.4.
Let us consider now

φ =

(
In 0

w 1

)
.

Easy computations show that φ(1) ∗(ui) = ui + wi, whereas φ(2) ∗(uij) = uij and
φ(3) ∗(uijk) = uijk. The first fact shows that T acts transitively on J 1 (since the trans-
lations act transitively on J 0 and the φ’s act transitively on the fibres of J1 → J0). The
second fact shows that T acts trivially on the fibre J3

o(1)
. Thus, the result follows from

Lemma 2.4 applied to the group T. �

Example 5.1. For n =2, a straightforward computation based on the proof of
Lemma 5.1 (see [9, § 6] for more details) shows that the subset E := {f = 0} of J 3,
where

f = 6uxxuxxxuxyuyyuyyy − 6uxxuxxxuxyyu
2
yy − 18uxxuxxyuxyuxyyuyy

+ 12uxxuxxyu
2
xyuyyy − 6u2

xxuxxyuyyuyyy + 9uxxu
2
xxyu

2
yy − 6u2

xxuxyuxyyuyyy (46)

+ 9u2
xxu

2
xyyuyy + u3

xxu
2
yyy − 6uxxxuxxyuxyu

2
yy + 12uxxxu

2
xyuxyyuyy − 8uxxxu

3
xyuyyy

+ u2
xxxu

3
yy ,

is invariant with respect to the group Aff(3). In [9], it is also shown that the same subset
E , in the real case, shows two different characters, depending on whether it projects over
the open subset detuij > 0, or detuij < 0: the former corresponds to the invariant
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PDE associated with CO(2) = CO(0, 2), the latter to the invariant PDE associated with
CO(1, 1); see also § 5.4. In the first case, the invariant PDE is actually a system of two
PDEs; this corresponds to (46) being the sum of two positive quantities; in the second
case, the invariant subset E turns out to be the union of two scalar PDEs.

5.3. Complex COn-invariant hypersurfaces in S3
0(C

n), with n = 3, 4

The departing point of the main Theorem 5.1 is a CO(d, n− d)-invariant hypersurface
Σ in the trace-free third symmetric power S3

0Rn ∗ of the n-dimensional real vector space
Rn ∗. While a general classification in the real case is still unattainable, much can be said
in the case of small values of n, if we work over the field of complex number.
Therefore, only in this section, V = Cn is going to be a complex vector space, with n =

3, 4; having set W := S3
0(V ), we shall study complex CO(V )-invariant hypersurfaces Σ in

W ; in particular, there will be no signature, so that we consider the complex conformal
group CO(V ) = COn(C), rather that its split real counterparts COd,n−d(R).
More accurately, we will derive a description of complex invariant hypersurfaces Σ in

the irreducible CO(V )-module W = S3
0(V ) of traceless symmetric three-forms of the

standard module V = Cn for n =3 and, partially, for n =4 from the known results of
invariants’ theory, see [11, 13]; afterwards, one can reduce the description of the real
hypersurfaces that are invariant with respect to the corresponding normal real forms
CO1,2(R) and SO2,2(R), as well as with respect to the compact real forms CO3(R) and
CO4(R), to the description of the real forms of the above-obtained complex hypersurfaces.
By employing the same notation of [10], we will denote by R(kπ1) the irreducible

representation of the simple Lie algebra son(C), whose highest weight is kπ1, always
assuming that n ≥ 3 and denoting by π1 the first fundamental weight of son(C); in
particular, R(π1) is the tautological representation in the space V = Cn and R(3π1) is
the highest irreducible component W = S3

0V in the symmetric cube S3V .

5.3.1. The complex case with n= 3

Recall that the Lie algebra so3(C) is isomorphic to the Lie algebra sl(U) = sl2(C)
and that all irreducible sl2(C)-modules are exhausted by the symmetric power SkU of
the tautological module U = C2. The tensor product SkU ⊗ S`U ′ is decomposed into
irreducible submodules by the Klebsh–Gordon formula

SkU ⊗ S`U ′ =
∞∑
i=0

Sk+`−2iU.

The tautological representation of so3(C) = sl2(C) is the adjoint representation V = S2U
and the representation

R(3π1) = S3
0(V ) = S3

0(S
2V ) = S6(U).

This is the sl2(C)-module of binary forms of order 6. The full algebra of
(polynomial) invariants C[S6(U)]sl2(C) is known, see [11]. It is generated by five
invariants f2, f4, f6, f10, f15, of degrees 2, 4, 6, 10, 15, where the last invariant
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Table 1. Invariant hypersurfaces for n=3 and d ≤ 10.

Degree d Polynomial f

2 f = f2

4 f = af2
2 + bf4

6 f = af2
2 + bf2f4 + cf6

8 f = af4
2 + bf2

2 f4 + cf2f6 + df2
4

10 f = af5
2 + bf3

2 f4 + cf2
2 f6 + df4f6 + ef10

f15 ∈ A := C[f2, f4, f6, f10] and the algebra A is the algebra of polynomials in four
(independent) variables fi.

Theorem 5.2. Any complex SO(V )-invariant hypersurface in S3
0V , with V = C3

has the form Σc
f = {f = c} where f ∈ C[f2, f4, f6, f10f15] and c ∈ C is a constant. Any

CO(V )-invariant hypersurface has the form Σ0
f = {f = 0} where f = f(f2, f4, f6, f10, f15)

is a homogeneous polynomial of fi, deg(fi) = i.

Moreover, any homogeneous invariant hypersurface of degree ≤ 210 has the form f =0
where the polynomial f is given in Table 1; the explicit form of the generators can be
found in [13].

5.3.2. The complex case with n= 4

Consider now the case n =4. Then, so(V ) = so4(C) = so(U) + so(U ′), U = U ′ = C2

and the tautological module is V = U ⊗ U ′. Then S2
0V = S2U ⊗ S2U ′ and

V ⊗ S2
0(V ) = SU ⊗ S2U ⊗ U ′ ⊗ S2U ′ = (S3U + U)⊗ (S3U ′ + U ′).

Then, S3
0V = S3U ⊗ S3U ′.

It is known that the algebra of invariants of the sl2(C)-module S3U of ternary forms
is generated by the discriminant δ, see [13], where for

p(x, y) = a0x
3 + a1x

2y + a2xy
2 + a3y

3,

the discriminant is

δ(p) = a21a
2
2 − 4a0a

3
2 − 4a31a3 − 27a20a

2
3 + 18a0a1a2a3.

Hence, the algebra of invariants C[S3
0V ]so3(C) contains δ and δ′.

Theorem 5.3. Any polynomial f = f(δ, δ′) defines an invariant hypersurface f= c,
where c ∈ C is constant. Any homogeneous polynomial f = f(δ, δ′) defines an CO(V )
invariant hypersurface f=0.

We stress that not all invariants are polynomials of δ and δ′, that is, there may be
other invariants.
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5.3.3. A glimpse into the real case

A standard method to cook out real invariants, having at one’s disposal the complex
ones, is by means of the anti-involution σ in so(Cn), i.e., the complex conjugation in
Cn; the anti-involution σ determines the real form so(k, `) and then the real and the

imaginary parts of the complex generators of the algebra A = C[Cn]so(C
n) turn out to

be real invariants that generate the whole real algebra of invariants. But there is a catch:
the so-obtained real generators might be dependent.
Even though, in general, the description of a minimal system of generators of A is a

very complicated problem, in practice it is possible to describe the invariants in small
degrees k.
The so-called symbolic method for constructing invariants boils down to obtaining

scalar invariants by contracting tensor products y1 ⊗ y2 ⊗ · · · ⊗ yk of cubic forms
with the inverse metric g ij . For example, for k =2, one can construct the invariant

I = yijkzi′j′k′g
ii′gjj

′
gkk

′
; in the case of binary form, one has to use also the determinant

det yij .
This way, one can get a description of the invariants in the small degree.

5.4. The Aff(3) case

Going back to the real-differentiable setting, if we set n =2, then it is is easy to use the
results contained into Theorem 5.1 and Lemma 5.1 to write down explicitly the unique
Aff(3)-invariant scalar third-order PDE E imposed on hypersurfaces of A3. To clarify
what we mean by ‘unique’, it should be stressed from the outset that, in general, the
Aff(n+1)-invariant PDE E ⊂ J3 constructed according to Theorem 5.1 projects onto an
open subset J̌2 of J 2; this is a direct consequence of the assumption (A1) on the action
of G, see § 2.2.2. In turn, there are as many open subsets J̌2, as the GL(n)-equivalence
classes of fiducial hypersurfaces (32); if we denote by dn the ceiling of n/2, then these
classes are labelled by the signatures

(n, 0) , (n− 1, 1) , . . . , (n− dn, dn) ,

i.e., there is dn+1 of them. The union of all the subsets J̌2 is dense in J 2, and its boundary
is the unique second-order Aff(n+1)-invariant PDE, that is the Monge–Ampère equation
dethess(u) = 0; see also the proof of the assumption (A1) of Proposition 5.1.
In the case n =2, we have only two open subsets of J 2, corresponding to the Riemanian

(+,+) and to the Lorentzian (+,−) signature of the Hessian of the surface in A3, denoted,
respectively, by J̌2

+ and J̌2
−. In view of the important link between the Aff(3)-invariant

PDEs and the geometry of affine surfaces, we sketch the relation between such PDEs and
the Fubini-Pick invariant.
Let u = f(x1, . . . , xn) describe a hypersurface S of An+1 which is the graph of the

function f. Let us consider the basis

(
∂u , D

(1)
1 , . . . , D(1)

n

)
=
(
∂u , ∂x1 + u1∂u , . . . , ∂xn + un∂u

)
.
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The above basis is unimodular as det(∂u , D
(1)
1 , . . . , D

(1)
n ) = 1. The components of the

Blaschke metric G are

Gij = ρuij , (47)

where

ρ = [det (uij)]
− 1

n+2 ,

whereas the components of the Fubini-Pick cubic form C are

Cijk = −1

2
(ρuijk + fijDk(ρ) + fjkDi(ρ) + fikDj(ρ)) ,

where Dh are the total derivatives, see also (14). The Fubini-Pick invariant is the function
defined as

Gi1i2Gj1j2Gh1h2Ci1j1h1
Ci2j2h2

, (48)

which, in the case n =2 and up to a non-zero factor, is equal to the right-hand side term
of (46). Then, the Aff(3)-invariant PDE is E := {f = 0}, with f given by (46), see [9]
for more details. Another approach, based on the study of the singularities of the group
action that has been used in [8], lead to the very same equation (46).
We stress that the equation E projects onto the whole of J 2, because (46) is defined

on the whole J 3; however, if we take the intersections

E ∩ J̌2
+ , E ∩ J̌2

− ,

we obtain precisely the two equations, say, EΣ+ and EΣ− , that come from Theorem 5.1;
they correspond to the CO(2)-invariant subset Σ+ := {0} and to the CO(1, 1)-invariant
subset Σ− made of two invariant lines, respectively. In other words,

E = EΣ+ ∪ EΣ− ,

whence the adjective ‘unique’.
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