SOME LEMMAS ON INTERPOLATING BLASCHKE
PRODUCTS AND A CORRECTION

A. KERR-LAWSON

1. Introduction. A Blaschke product on the unit disc,
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where |¢| = 1 and & is a non-negative integer, is said to be interpolating if the
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is satisfied for a constant § independent of m. A Blaschke product always
belongs to the set I of inner functions; it has norm 1 and radial limits of
modulus 1 almost everywhere. The most general inner function can be
uniquely factored into a product BS, where B is a Blaschke product and
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for some positive singular measure u(6) on the unit circle. The discussion will
be carried out in terms of the hyperbolic geometry on the open unit disc D, its
metric

¥(z, w) = , z,w € D,
and its neighbourhoods N (x, ¢) = {3 € D: (3, 2') < ¢}.

Lemma 1 states that an interpolating Blaschke product B is bounded away
from zero as long as we do not come hyperbolically close to one of its zeros.
This is stated in (2) as Lemma 1, and is used extensively there, but the proof
given there is not correct. I learned, verbally, the proof presented here from
Kenneth Hoffman. In the next lemma and the examples that follow, we con-
sider the infimum of |B| over the points whose hyperbolic distance from the
zero set of B is at least e. This infimum will increase with ¢, but depending on
the particular function B, it may not approach 1 when e tends to 1. Lemma 3
characterizes interpolating Blaschke products (or finite products of them) as
those inner functions f for which {z: |f(z)|] < 8} is contained in a union
UnlV (o, €) of disjoint hyperbolic neighbourhoods for some § > 0.
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2. Interpolating Blaschke products. We give first the corrected lemma.

LemMA 1. If B(z) is the Blaschke product of a sequence (2,) satisfying the
condition (C) for a given 8, and if € > 0 is given, there exists a constant &
depending only on & and € such that |B(2)| = 8, whenever ¥ (2, 2,) = € for all n.

Proof. Let €, be an arbitrarily small positive constant such that ¢, < ¢, and

e < ¥(8, ). The latter condition ensures that the sets A, = N(z,, ) are
disjoint. For each positive integer #, the composite function f, is defined by

2+ 2,
fn(z) - B<1 + énz> .

This function has the same range on the set D, = {2 € D: |2| < ¢} that B
has on A,. From the condition (C), we obtain [f,”(0)| = (1 — |2,/2)|B’(2.)| = 6.
It can be shown from the Schwarz lemma that there corresponds to 6 and ¢ a
constant §, with the following property: Every f analytic on D, and satisfying
Ifl < 1,f(0) = 0, and |f(0)| = 6 has an image on the set D, which covers the
set {z € D: |z] < 8o}. See the discussion on the Schwarz lemma in (3, pp. 165~
171). This means that the Blaschke product B takes on each value \, for
[\| < 8o, in each A,.

To prove the lemma, we must show that |B(z)| = &, for all 2z not in the
union of the A,. If | B(2)| < 8 for such a 2, then for some integer m, |B,,(2)| < 8,
where B, is the partial product consisting of the first m factors of B. However,
|B.l = |B| holds in D, and hence B, must take on the value B,(z) in A,
1 =1,2,...,m. Moreover, B, is a rational function, and it can take any given
value only m times. This is a contradiction, and hence |B(z)| = 8, whenever
¥ (2, 2,) = € = ¢ holds for all #.

We observe from the above proof that 6, could be chosen first, and the
existence of a suitable e follows, as long as §, is not too large.

LEMMA 2. Suppose that B(z) is the Blaschke product of a sequence (z,)
satisfying (C) for a given 8. There is a positive constant &, depending only on 8,
and for each 8¢ < 81, there exists € > 0 such that |B(2)| = 8o whenever Y(z, 2,) = €
for all n.

Proof. Take any 8, small enough so that the argument from Lemma 1, using
the Schwarz lemma, will apply for some 8, < ¢(8, ). Then the conclusion
holds with € = €. The constant §, can be obtained as the supremum of all such
do.

The following example shows that the constant §; of Lemma 2 can have a
value less than 1. The function

A@) = exp(z + 1>

z—1

is an inner function without zeros on D. As z approaches 1 on the real axis,
A (2) approaches zero. This means that 4 (z) tends to zero as z approaches 1
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between any two hypercycles. From this, one can see that {z: |4 (2)] < 8} will
contain arbitrarily large hyperbolic neighbourhoods for each positive value of
6. For [\ <1, the function 4\, = (4 — \)/(1 — XA4) is an interpolating
Blaschke product with zeros on an oricycle touching {z: [s| = 1} at z = 1.
However, {z: [4Ax(2)| < p}, for any p with |\| < p, must contain those large
arbitrarily hyperbolic e-neighbourhoods on which A is small.

For an example of an interpolating Blaschke product with §; = 1, it suffices
to assume that
Zn = Zm_

O
lim J] -
Mo n=1; 1- Zn8m
n#=m

The proof depends on showing that, in the Schwarz lemma argument, as
6 — 1 it is possible to take ¢ and §, arbitrarily close to 1.

The following is a partial converse of Lemma 2.

LEMMA 3. Let F be any inner function. Suppose, for some & < 1, that
{2: |F(2)| < 8} s contained in the union of disjoini hyperbolic e-neighbourhoods
Nlan, €),a, € D forn =1,2,3..., of fixed radius. Then F is the product of a
Jfinite number of interpolating Blaschke products.

Proof. Let F = BS, where B is a Blaschke product, and S a singular
function. We show first that S is the identity, by showing that if either the
discrete or the continuous part of w(f) is non-trivial, then S must approach
zero along some radial path. The argument of the first example just given then
shows that {z: |S(z)| < p} will contain arbitrarily large hyperbolic neighbour-
hoods for each p > 0. If the continuous part dF(6) of the singular measure
du () is non-trivial, we can choose 6, with F’(8,) = +o0. We then apply the
argument of Fatou’s lemma (1, p. 34) to obtain

lim log|Si(re'")| = —F'(8)) = —0,
71

where S; is the inner function obtained from dF(8) alone, since

1 (" 17"
log|Si(re'’)| = — 27rd .1+ ¥ — 2rcos(6 — ¢)

We can also show that for any 6 where the discrete part of u(#) has non-zero
measure k, S(re*) must have a factor of the form

00
exp[k(i—i_{ﬁ):l , k>0,

which approaches zero as 2 — e radially.

Thus, F = B, and the zeros (z,) of this Blaschke product must each lie in
one of the sets N (a,, €). The given conditions impose a finite maximum for the
number of 2,’s which can appear in any N (a,, €). We decompose B into a finite
product of Blaschke products, each having at most one zero in any given

dF(4).
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N(ay, €). If B is any one of these, we know that B also satisfies the conditions
of the lemma, since |B| 2 |B|. If we let B, be B with the zero z, from
N(ay,, €) removed, then |B,| = |B| = 6 on the circular boundary of N(a,, ).
However, B, is zero-free inside, and hence |B,| = § holds throughout. This
means that |B,,(2,)| = 6, which is precisely (C).

In particular, this shows that if B is a Blaschke product which is not the
finite product of interpolating Blaschke products, then B will be arbitrarily
small at points arbitrarily far (hyperbolically) from its zeros. We might also
note that from Lemma 3 and Rouché’s theorem, we can easily prove that the
set of interpolating Blaschke products is open in I.
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