Yoshimasa Miyata Nagoya Math. J. Vol. 43 (1971), 151-156

ON A CHARACTERIZATION OF THE FIRST RAMIFICATION GROUP AS THE VERTEX OF THE RING OF INTEGERS

YOSHIMASA MIYATA

1. Introduction.

Let k be a \mathfrak{p} -adic number field and \mathfrak{o} be the ring of all integers in k. Moreover, let K/k be a finite Galois extension with the Galois group G = G(K/k). Then the ring \mathfrak{D} of all integers in K is an $\mathfrak{o}[G]$ -module. In this paper we shall give a characterization of the first ramification group G_1 of the extension K/k as the vertex of \mathfrak{D} which is defined below.

To define the vertex of \mathfrak{D} , we remember the vertex theory ([1], [2]). Let G be an arbitrary finite group and M be an $\mathfrak{o}[G]$ -module, where $\mathfrak{o}[G]$ is the group algebra of G over \mathfrak{o} . Let U be a subgroup of G. Then M is said to be U-projective if there is an $\mathfrak{o}[U]$ -module N such that M is isomorphic to a component of the induced $\mathfrak{o}[G]$ -module $\mathfrak{o}[\mathfrak{o}]\otimes_{\mathfrak{o}[U]}N$. If M is an indecomposable $\mathfrak{o}[G]$ -module, then there exists a subgroup V of G, such that

(i) M is V-projective and

(ii) if W is any subgroup of G, such that M is W-projective, then for some element g of G

$$gVg^{-1}\subset W$$
.

We call such V, that is uniquely determined up to conjugate subgroups in G, a vertex of M.

Now let K/k be the finite Galois extension with the Galois group G, and $\mathfrak D$ the ring of all integers in K. Then, since $\mathfrak D$ is not always indecomposable as an $\mathfrak o[G]$ -module, we consider the decomposition of $\mathfrak D$ into indecomposable $\mathfrak o[G]$ -modules M_i

$$\mathfrak{O}=M_1\oplus\cdots\oplus M_l.$$

Received September 17, 1970. Revised October 28, 1970. As the Krull-Schmidt theorem holds for v[G]-modules, the set $\{M_1, \dots, M_t\}$ of indecomposable v[G]-submodules is determined uniquely, up to isomorphisms, only by \mathfrak{D} . For each $i(1 \leq i \leq l)$ there exists a vertex V_i of M_i . By the above remark, the set $\{V_1, \dots, V_t\}$ of vertices is also determined uniquely, up to conjugate subgroups in G, only by \mathfrak{D} . We define the vertex of \mathfrak{D} as the minimal normal subgroup V of G containing V_i for all i. Thus the vertex V of \mathfrak{D} is defined uniquely. Our aim of this paper is to prove that the vertex V of \mathfrak{D} coincides with the first ramification group G_1 of the Galois extension K/k.

To achieve our aim, we use the cohomological characterization of the tamely ramified extension which H. Yokoi gave in [6]. We state this characterization as Theorem 2 in this paper.

2. G-algebra.

In this section we summarize definitions and propositions of the representation theory from Green's paper [2] which we use in this paper. An algebra A with identity element is said to be a G-algebra if A is a left $\mathfrak{o}[G]$ -module and moreover the condition

$$g(ab) = g(a)g(b)$$

is satisfied for all $g \in G$ and all $a, b \in A$. For each subgroup U of G we define A_U by

$$A_U = \{a \in A \mid g(a) = a, \text{ all } g \in U\}.$$

If U and W are subgroups of G such that $U \subset W$, then it follows clearly that

$$A_{rr}\supset A_{w}$$
.

Then we define the map $T_{v,w}: A_v \to A_w$, by

$$T_{U,W}(a) = \sum_{a} g(a)$$

for all $a \in A_{\mathcal{U}}$, where g runs over a set of representatives of distinct left cosets of U in W. As $a \in A_{\mathcal{U}}$, $T_{\mathcal{U},\mathcal{W}}(a)$ does not depend on the choice of representatives. $T_{\mathcal{U},\mathcal{W}}(a)$ is a element of $A_{\mathcal{W}}$. Let $A_{\mathcal{U},\mathcal{W}}$ be the image of $T_{\mathcal{U},\mathcal{W}}$. From [2] 4h Lemma, we have the following lemma:

LEMMA 1. Let U and W be subgroups of G, then

$$A_{U,G}A_{W,G}\subset \sum_{g\in G}A_{U^g\cap W,G}$$

where U^g is a conjugate subgroup gUg^{-1} of U.

Let e be a primitive idempotent of algebra A_G , then there exists a subgroup V of G, such that

(i) $e \in A_{v,a}$

and

(ii) if U is any subgroup of G, such that $e \in A_{v,a}$, then for some element g of G

$$gVg^{-1}\subset U$$
.

We call such V, that is uniquely determined up to conjugate subgroups in G, a defect group of e.

Let M be a left $\mathfrak{o}[G]$ -module, and let E(M) denote the \mathfrak{o} -algebra of all \mathfrak{o} -endomorphisms of M. Then we obtain the following facts from [2] 5. Examples of G-algebras Example 3). We make E(M) into a G-algebra as follows: if $\theta \in E(M)$ and $g \in G$, we define $g(\theta)$ by

$$(g(\theta))(m) = g(\theta(g^{-1}(m)))$$

for all $m \in M$. Then for any subgroup U of G, $E(M)_U$ is the algebra of all $\mathfrak{o}[U]$ -endomorphisms of M. Suppose that M is an indecomposable $\mathfrak{o}[G]$ -module. Then the identity endomorphism $1 \in E(M)$ is a primitive idempotent of $E(M)_G$. The defect group of 1 in the G-algebra E(M) is the vertex of the indecomposable $\mathfrak{o}[G]$ -module M. If M is not indecomposable, each primitive idempotent $e \in E(M)_G$ determines an indecomposable component eM of $M = eM \oplus (1 - e)M$. The defect group of e in E(M) is the same as the vertex of eM.

We apply the above results concerning M to $\mathfrak{o}[G]$ -module \mathfrak{D} . We obtain the decomposition of the identity endomorphism $1 \in E(\mathfrak{D})$ into primitive idempotents e_i of $E(\mathfrak{D})_G$

$$(3) 1 = e_1 + \cdots + e_t$$

corresponding to the decomposition (1) of \mathfrak{D} . For each $i(1 \le i \le l)$ let V_i be the defect group of e_i . Then V_i is the vertex of $M_i = e_i M$. Hence the set $\{V_1, \dots, V_l\}$ is determined only by \mathfrak{D} up to conjugate subgroups in G. Then the vertex V of \mathfrak{D} defined in the introduction is also the minimal normal subgroup of G containing all defect groups V_i .

Now we prove the lemma which we shall use later.

LEMMA 2. Let A be a G-algebra, and f, f_1 , f_2 idempotents of A_G such that

 $f = f_1 + f_2$, $f_1 f_2 = f_2 f_1 = 0$. If U is any subgroup such that $f \in A_{U,G}$, then f_1 and f_2 belong to $A_{U,G}$.

Proof. f_i belongs to $A_{G,G} = A_G$ from the assumption. Since $f_i = f_i f$, f_i belongs to $A_{G,G} A_{U,G}$. By Lemma 1, we obtain

$$f_i \in A_{G,G} A_{U,G} \subset \sum_{g \in G} A_{G^g \cap U,G} = A_{U,G}.$$

3. Vertex of D.

We use the same notation as in the last section. For any element α of $\mathfrak D$ we define an element $\bar{\alpha}$ of $E(\mathfrak D)$ by

$$\bar{\alpha}(\beta) = \alpha \beta$$

for all $\beta \in \mathfrak{D}$. This map from \mathfrak{D} into $E(\mathfrak{D})$ is injective. We denote $\bar{\alpha}$ simply by α . Thus in the following $\mathfrak{D} \subset E(\mathfrak{D})$. We may think two kinds of operation of G on \mathfrak{D} . One of them is induced by considering G as the Galois group of the extension K/k and the other is defined by (2). These two kinds of operation of G on \mathfrak{D} are the same. In fact

$$\overline{g(\alpha)}(\beta) = g(\alpha)\beta = g(\alpha(g^{-1}(\beta))) = (g(\bar{\alpha}))(\beta)$$

for all α , $\beta \in \mathfrak{D}$.

Let U be any subgroup of G, then $\theta \in E(\mathfrak{O})_U$ induces an \mathfrak{o} -endomorphism $\bar{\theta}$ of \mathfrak{O}_U . In fact for any $\beta \in \mathfrak{O}_U$ and any $g \in U$, we have

$$(g(\theta))(\beta) = g(\theta(g^{-1}(\beta))) = \theta(\beta).$$

Therefore

$$g(\theta(\beta)) = \theta(\beta)$$
.

As $\theta(\beta)$ is kept elementwise by the operation of U, $\theta(\beta)$ belongs to \mathfrak{D}_U .

We can consider the identity of \mathfrak{D} as the identity endomorphism of \mathfrak{D} . In the following we denote the identity of \mathfrak{D} and the identity endomorphism by the same notation 1. When G acts on \mathfrak{D} as the Galois group of the extension K/k, \mathfrak{D} is a G-algebra. The map $T_{U,G}$ defined in the introduction is the usual trace map from L to k, where L is a subfield of K corresponding to U, i.e. K_U . We denote $tr_{U,G}$ instead of $T_{U,G}$ in the case that A is \mathfrak{D} .

THEOREM 1. Let U be a normal subgroup of G. Then all e_i in the decomposition (3) lie in $E(\mathfrak{D})_{U,G}$ if and only if the identity 1 lies in $tr_{U,G}\mathfrak{D}_U$.

Proof. Suppose that $e \in (\mathfrak{D})_{U,G}$ for $1 \leq i \leq l$. Then there exists $\theta_i \in E(\mathfrak{D})_U$

such that

$$e_i = \sum_{\{g\}} g(\theta_i),$$

where the $\{g\}$ are representatives of the distinct left cosets of U in G. Put $\theta = \theta_1 + \cdots + \theta_l$, then we obtain

$$1 = \sum_{\{g\}} g(\theta)$$

and θ induces an endomorphism $\bar{\theta}$ in $E(\mathfrak{D}_{\overline{U}})$ as we state above. As $\{g\}$ are all representatives, we can think that g runs over the factor group $\bar{G} = G/U$. We can consider the equation (4) as the equation in the \bar{G} -algebra $E(\mathfrak{D}_{\overline{U}})$. Thus we have

$$1 = \sum_{g \in \bar{G}} \bar{g}(\bar{\theta})$$
.

 $\mathfrak{D}_{\overline{U}}$ is \overline{G} -weakly projective. Hence the 0-dimensional Galois cohomology group $H^{o}(\mathfrak{D}_{\overline{U}})$ is trivial (c.f. [3]). Since $H^{o}(\mathfrak{D}_{\overline{U}}) = (\mathfrak{D}_{\overline{U}})\overline{G}/tr\mathfrak{D}_{\overline{U}}$, 1 lies in $tr_{\overline{U},G}\mathfrak{D}_{\overline{U}}$.

Conversely, we suppose that 1 lies in $tr_{U,G}\mathfrak{D}_U$. Since $tr_{U,G}\mathfrak{D}_U \subset E(\mathfrak{D})_{U,G}$, 1 lies in $E(\mathfrak{D})_{U,G}$. Applying Lemma 2 to the case that f=1, $f_1=e_1$ and $f_2=e_2+\cdots+e_l$, we obtain that $e_1\in E(\mathfrak{D})_{U,G}$. Similarly we obtain that e_i lies in $E(\mathfrak{D})_{U,G}$ for $2\leq i\leq l$.

H. Yokoi gave the following theorem:

Theorem 2. (H. Yokoi [6]). The extension K/k is tamely ramified if and only if the 0-dimensional Galois cohomology group $H^o(\mathfrak{D})$ is trivial.

Now we prove the main theorem of this paper.

THEOREM 3. The vertex V of $\mathfrak D$ is the first ramification group G_1 of the extension K/k.

Proof. At first we prove that G_1 contains V. By Theorem 2, $H^o(\mathfrak{D}_{G_1}) = \{0\}$. Then 1 lies in $tr_{G_1,G}\mathfrak{D}_{G_1}$. By Theorem 1, e_i lies in $E(\mathfrak{D})_{G_1,G}$ for $1 \leq i \leq l$. Hence G_1 contains the defect group V_i of e_i . As G_1 is a normal subgroup of G, G_1 contains the vertex V of \mathfrak{D} .

Next we prove conversely that V contains G_1 . As e_i lies in $E(\mathfrak{D})_{V,G}$ for $1 \leq i \leq l$, it follows from the proof of Theorem 1 that $H^o(\mathfrak{D}_V) = \{0\}$. Let K_V be a subfield of K corresponding to V. Then, by Theorem 2 the extension K_V/k is tamely ramified. The ramification field K_{G_1} contains any tamely ramified subfield of K (c.f. [5]). Hence V contains G_1 .

Finally we obtain the next corollary. It is the statement to express E. Noether's Theorem concerning the characterization of the tamely ramified extension ([4]) in other words.

COROLLARY. The extension K/k is tamely ramified if and only if the ring $\mathfrak D$ of all integers in K is $\mathfrak o[G]$ -projective.

Proof. $\mathfrak D$ is $\mathfrak o[G]$ -projective if and only if each M_i of the decomposition (1) of $\mathfrak D$ is $\mathfrak o[G]$ -projective. M_i is $\mathfrak o[G]$ -projective if and only if the vertex of M_i is trivial. Moreover, the extension K/k is tamely ramified if and only if the first ramification group G_1 is trivial (c.f. [5]). Since G_1 is the vertex of $\mathfrak D$, the corollary is proved.

Remark. E. Noether's Theorem is obtained by replacing projective by free in this corollary.

REFERENCES

- [1] J.A. Green, Blocks of modular representation, Math. Zeit. 79 (1962), 100-115.
- [2] J.A. Green, Some Remarks on Defect Groups, Math. Zeit. 107 (1968), 133-150.
- [3] Y. Kawada, Daisūteki Seisūron, Kyoritsu, Tokyo (1957).
- [4] E. Noether, Normalbasis bei Körpern ohne höhere Verzweigung, J. Reine Angew. Math. 167 (1932), 147–152.
- [5] E. Weiss, Algebraic Number Theory, McGraw-Hill, New York (1963).
- [6] H. Yokoi, On the ring of integers in an algebraic number field as a representation module of Galois group, Nagoya Math. J. 16 (1960), 83-90.

Fuculty of Education, Shizuoka University