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Abstract

We prove that the quotient by SL2 × SL2 of the space of bidegree (a, b) curves on
P1 × P1 is rational when ab is even and a 6= b.

1. Introduction

The main objective of this article is to give a simple proof that the fields of invariants are rational
for some irreducible representations of SL2 × SL2. Such representations are realized as the spaces
Va,b =H0(OQ(a, b)) of biforms of bidegree (a, b) on the surface Q= P1 × P1. By symmetry we
may restrict to the range a6 b. In [She87], Shepherd-Barron proved that PV3,b/SL2 × SL2 with
b even is rational by analyzing transvectants for biforms. The case where a= 1 and b is even and
at least 10 was also settled by him in another paper, [She88]. We shall prove the following result.

Theorem 1.1. The quotient |OQ(a, b)|/SL2 × SL2 is rational when a < b and ab is even.

Let Vd denote the SL2-representation H0(OP1(d)). For most pairs (a, b) our proof will be
based on the following simple idea: we identify Va,b with Va ⊗ Vb = Hom(V ∨a , Vb) and consider
the natural fibration

Hom(V ∨a , Vb) 99KG(a, PVb) (1.1)

which associates to a linear map its image in PVb, where G(a, PVb) is the Grassmannian of
a-planes in PVb. This is birationally a vector bundle on which the first factor of SL2 × SL2

acts fiberwise and the second factor acts equivariantly. Starting from (1.1), we compare several
fibrations and eventually reduce the problem to the rationality of PVb/SL2, due to Katsylo and
Bogomolov [BK85, Kat84a, Kat84b].

Although we have the fibration (1.1) for any a6 b, difficulties arise in analyzing it for the
following cases:

– when ab is odd, a Brauer–Severi scheme over G(a, PVb)/SL2 becomes birationally nontrivial;

– when a= b, G(a, PVb) is one point;

– when a= 1, GL2 acts almost transitively on the fibers of (1.1);

– for a few other pairs (a, b), PGL2 does not act almost freely on some of the relevant spaces.

The first two cases, excluded from Theorem 1.1, will be the subject of future study. For the
third case (with b even), we just add a few supplements to the result of [She88], mainly using
transvectants. To study the last case, we identify PVa,b birationally with the space of parametrized

Received 30 March 2012, accepted in final form 20 November 2012, published online 22 May 2013.
2010 Mathematics Subject Classification 14L30 (primary), 14E08, 14H50 (secondary).
Keywords: SL2 × SL2-representation, rationality problem, rational space curve, transvectant for biform.

Supported by Grant-in-Aid for JSPS fellows [21-978] and Grant-in-Aid for Scientific Research (S) no. 22224001.
This journal is c© Foundation Compositio Mathematica 2013.

https://doi.org/10.1112/S0010437X13007069 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X13007069


S. Ma

rational curves of degree b in Pa. We actually have a= 2 in the relevant cases, and then the
rationality can be proved by using the geometry of rational plane cubics and quartics.

We note that our argument utilizing the fibration (1.1) will apply more generally to a certain
class of representations of product groups. In § 2.1 we formulate it in a couple of general forms
(Propositions 2.4 and 2.5). We then apply it to Va,b in § 2.2, deducing Theorem 1.1 for a > 1 and
b > 4. In §§ 3 and 4, we treat the remaining few cases in ad hoc ways as above.

Throughout this article we work over the complex numbers.

2. Fibration over the Grassmannian

In this section we prove Theorem 1.1 in the main case where a > 1 and b > 4. We first explain, in
§ 2.1, the method of proof in a general setting; we then apply it in § 2.2 to the present problem.

2.1 A general method
Let V and W be representations of algebraic groups G and H, respectively. We set

a= dim PV, b= dim PW

and assume that a6 b. The tensor product V ⊗W is a representation of G×H. We identify
V ⊗W with Hom(V ∨, W ) and consider the images of linear maps V ∨→W that are injective.
This defines a fibration

V ⊗W 99KG(a, PW ) (2.1)
over the Grassmannian G(a, PW ) of a-planes in PW . If we denote by E →G(a, PW ) the universal
subbundle of rank a+ 1, then, by (2.1), V ⊗W becomes G×H-equivariantly birational to the
vector bundle V ⊗ E over G(a, PW ). Here G acts on V linearly and H acts on the bundle E
equivariantly. Consequently, we have

P(V ⊗W )/G×H ∼ P(V ⊗ E)/G×H. (2.2)

We shall present an approach to the rationality problem for P(V ⊗W )/G×H that utilizes
this description. Let G0 ⊂G (respectively, H0 ⊂H) be the subgroup of elements which act
trivially on PV (respectively, PW ). In particular, H0 acts on the bundle E by certain scalar
multiplications. We write G=G/G0 and H =H/H0.

Lemma 2.1. Suppose that:

(1) H acts on G(a, PW ) almost freely;

(2) we have an H-linearized line bundle L over G(a, PW ) such that H0 acts on E ⊗ L trivially.

Then

P(V ⊗W )/G×H ∼ (PV ⊕a+1/G)× (G(a, PW )/H). (2.3)

Proof. By assumption (2), the H-linearization of the bundle E ′ = E ⊗ L descends to an H-
linearization. Then, by assumption (1), we may apply the no-name lemma to E ′, trivializing
it as an H-linearized vector bundle locally in the Zariski topology. Since P(V ⊗ E) is canonically
identified with P(V ⊗ E ′), we obtain the G×H-equivariant birational equivalence

P(V ⊗ E) = P(V ⊗ E ′)∼ P(V ⊗ Ca+1)×G(a, PW ),

where both G and H act trivially on the factor Ca+1. 2

Note that any H-linearized line bundle L over G(a, PW ) is the tensor product of a power of
the Plücker line bundle det E∨ and a 1-dimensional representation of H.
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Rationality of fields of invariants

By (2.3), the rationality problem for P(V ⊗W )/G×H can be decomposed into proving
that PV ⊕a+1/G is rational and that G(a, PW )/H is stably rational of level no greater than
dim(PV ⊕a+1/G). The latter two problems could be studied, for example, via the following
reductions.

Lemma 2.2. If G acts on PV ⊕a′
almost freely for some a′ 6 a, we have

PV ⊕a+1/G∼ C(a+1)(a−a′+1) × (PV ⊕a′
/G). (2.4)

Proof. This is a consequence of the no-name lemma applied to the projection PV ⊕a+1 99K PV ⊕a′

from some complementary summand V ⊕a−a′+1, which is a G-linearized vector bundle. 2

Lemma 2.3. In addition to the assumptions (1) and (2) in Lemma 2.1, suppose that:

(3) H acts on PW almost freely.

Then we have

Ca × (G(a, PW )/H)∼ Ca(b−a) × (PW/H). (2.5)

Proof. By the same argument as in the proof of Lemma 2.1, we see that PE/H is birational to
Pa × (G(a, PW )/H). We regard PE as the incidence variety

PE = {(P, x) ∈G(a, PW )× PW | x ∈ P} ⊂G(a, PW )× PW.

The fiber of the second projection π : PE → PW over x= [w] ∈ PW is identified with G(a− 1,
P(W/Cw)). Therefore, if F → PW is the universal quotient bundle of rank b, PE is identified
with the relative Grassmannian G(a− 1, PF) over PW via π. Then G(a− 1, PF) is canonically
isomorphic to G(a− 1, PF ′) for the H-linearized bundle F ′ = F ⊗OPW (1). Since H0 acts on F
and OPW (−1) by the same scalars, F ′ is H-linearized. Now we can use the no-name lemma for
F ′ to trivialize it as an H-linearized vector bundle locally in the Zariski topology. Consequently,
we obtain the H-equivariant birational equivalence

PE 'G(a− 1, PF ′)∼G(a− 1, Pb−1)× PW,

where H acts on the factor G(a− 1, Pb−1) trivially. 2

Comparing (2.3), (2.4) and (2.5) and noticing that (a+ 1)(a− a′ + 1)> a, we can summarize
the above argument in the following proposition.

Proposition 2.4. Let V and W be representations of G and H, respectively, such that
a= dim PV is smaller than b= dim PW . Assume that:

(i) we have an H-linearized line bundle L as in Lemma 2.1;

(ii) G acts on PV ⊕a′
almost freely for some a′ 6 a;

(iii) H acts on PW and G(a, PW ) almost freely.

Then, setting N = (a+ 1)(a− a′) + 1 + a(b− a), we have

P(V ⊗W )/G×H ∼ CN × (PV ⊕a′
/G)× (PW/H).

In this way, the rationality problem for P(V ⊗W )/G×H can be reduced, under several
hypotheses, to results concerning stable rationality of PV ⊕a′

/G and PW/H. We would like to
mention that for invariant fields of linear representations, to prove stable rationality is rather
easier than proving rationality in many cases.

For our application to SL2 × SL2-representations, we also state a variant deduced from
Lemmas 2.1 and 2.3, bypassing Lemma 2.2.
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Proposition 2.5. Let V and W satisfy the assumptions in Proposition 2.4, except (ii). Suppose
instead that PV ⊕a+1/G is rational of dimension d> a. Then, setting M = d− a+ a(b− a), we
have

P(V ⊗W )/G×H ∼ CM × (PW/H).

Remark 2.6. When a> b, we can instead consider the kernels of linear maps V ∨→W to obtain
a fibration V ⊗W 99KG(a− b− 1, PV ∨). But if we identify G(a− b− 1, PV ∨) with G(b, PV )
naturally, this coincides with the fibration W ⊗ V 99KG(b, PV ) as in (2.1).

2.2 Application to Va,b

Let Vd denote the SL2-representation H0(OP1(d)). We shall apply Proposition 2.5 to the
SL2 × SL2-representations Va,b = Va ⊗ Vb such that

1< a < b, b > 4, ab ∈ 2Z. (2.6)

We have G=H = SL2, G0 =H0 = {±1} and G=H = PGL2. We first check the almost-freeness
condition (iii) in Proposition 2.4.

Lemma 2.7. Let 06 a < b and b > 4. Then PGL2 acts on G(a, PVb) almost freely.

Proof. The case a= 0 is well known, so we assume a > 0. We first consider the case where b− a>
4. Observe that for a general point x ∈ PVb and a general a-plane P through x, the orbit PGL2 · x
does not intersect with P outside x. Indeed, if we consider the projection π : PVb\x→ Pb−1 from
x, a general (a− 1)-plane P ′ ⊂ Pb−1 is disjoint from the 3-fold π(PGL2 · x\x). Then our claim
follows by taking the a-plane P = π−1(P ′). Since b > 4, x is not fixed by any nontrivial g ∈ PGL2.
Then g does not preserve P , because otherwise it would fix x= P ∩ (PGL2 · x). This proves the
lemma in the range b− a> 4. Since we have the dualities

G(a, PVb)'G(a, PV ∨b )'G(b− a− 1, PVb),

the range a> 3 is also covered. For the remaining case of (a, b) = (2, 5), G(2, PV5) is birationally
identified with the quotient by PGL3 of the space of morphisms P1→ P2 of degree 5. Since a
general rational plane quintic has its six nodes in a general position, it has no nontrivial stabilizer
in PGL3. This establishes our assertion for G(2, PV5). 2

We now proceed according to the parity of b, assuming (2.6).
When b is even, the element −1 ∈ SL2 acts on Vb trivially so that the bundle E is already

PGL2-linearized. Moreover, the quotient PV ⊕a+1
a /SL2 is rational by [Kat84c] and has dimension

a2 + 2a− 3> a. Hence the assumptions in Proposition 2.5 are satisfied, and we see that

PVa,b/SL2 × SL2 ∼ Ca(b+1)−3 × (PVb/SL2).

Then PVb/SL2 is rational by the results of Katsylo and Bogomolov [BK85, Kat84b].
When b is odd, the element −1 ∈ SL2 acts on Vb by multiplication by −1. Hence it acts on E

also by multiplication by −1. In this case, since E has odd rank a+ 1 (remember that ab is even),
−1 ∈ SL2 acts on the Plücker bundle L= det E∨ by −1. Then we can twist E by L to cancel the
action of −1 ∈ SL2. Thus condition (i) in Proposition 2.4 is satisfied. As in the case of even b,
we then deduce that PVa,b/SL2 × SL2 is birational to Ca(b+1)−3 × (PVb/SL2). Now PVb/SL2 is
rational by [Kat84a].

In this way, Theorem 1.1 is proved for a > 1 and b > 4.
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3. Rational space curves

In the rest of the article we study the cases excluded from (2.6) to complete the proof of
Theorem 1.1. The cases of (a, b) = (3, 4) and a= 1, b= 2n> 10 were settled by Shepherd-Barron
in [She87, She88]. (In [She88] he proved the rationality of G(1, PVb)/SL2, which, by either (2.2)
or (3.2), is birational to PV1,b/SL2 × SL2.) Hence the cases to be considered are

(a, b) = (2, 3), (2, 4), (1, 4), (1, 6), (1, 8).

In this section we study the first three cases via geometric approaches. In § 3.1 we identify
|OQ(a, b)| birationally with the space of some parametrized rational space curves for any (a, b).
Using that description, we study the cases (a, b) = (2, 3) and (a, b) = (2, 4) in §§ 3.2 and 3.3,
respectively. The case (a, b) = (1, 4) is treated independently in § 3.4.

3.1 Rational space curves
Let a, b > 0 be any positive integers. To a general curve C on Q= P1 × P1 of bidegree (a, b) we
may associate a morphism φC : P1→ PVb = |OP1(b)| by regarding C as a family of b points on
the second P1 factor parametrized by the first P1 factor.

Lemma 3.1. The curve φC(P1) has degree a, i.e. φ∗COPVb
(1)'OP1(a).

Proof. By the Riemann–Hurwitz formula, the first projection C→ P1 has r = 2gC − 2 + 2b
branch points where gC is the genus of C. Substituting gC = (a− 1)(b− 1), we have r = 2a(b− 1).
These branch points on P1 correspond to the intersection of φC(P1) with the discriminant
hypersurface D in PVb. Since D has degree 2(b− 1), φC(P1) has degree a. 2

Conversely, given a general morphism φ : P1→ PVb of degree a, we obtain a curve on P1 × P1

by pulling back the universal divisor on PVb × P1. Reversing the above calculation, we see that
C has bidegree (a, b).

Let Ua,b be the space of morphisms P1→ PVb of degree a, on which PGL2 × PGL2 acts as
follows: the first PGL2 factor acts on the source P1 of the morphisms, and the second PGL2 factor
acts on the target PVb in the natural way. Then the above construction gives a PGL2 × PGL2-
equivariant birational map

PVa,b = |OQ(a, b)| 99K Ua,b. (3.1)

We obtain, in particular, that

PVa,b/PGL2 × PGL2 ∼ Ua,b/PGL2 × PGL2.

If we denote by Ra,b the space of rational curves of degree a in PVb, this may also be written as

PVa,b/PGL2 × PGL2 ∼Ra,b/PGL2, (3.2)

where PGL2 acts on Ra,b by its action on PVb. Since PGL2 as the subgroup of Aut(PVb)' PGLb+1

is the stabilizer of a rational normal curve, we have

PVa,b/PGL2 × PGL2 ∼ (Ra,b ×Rb,b)/PGLb+1.

Exchanging a and b, we also obtain

PVa,b/PGL2 × PGL2 ∼Rb,a/PGL2 ∼ (Rb,a ×Ra,a)/PGLa+1. (3.3)

Remark 3.2. The map (3.1) and the description PVa,b ∼ P(Va ⊗ E) in § 2 are connected by
considering the linear span of φC(P1), which is generically a-dimensional and in which φC(P1) is
a rational normal curve.
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3.2 The case (a, b) = (2, 3)
By (3.3) it suffices to prove that R3,2/PGL2 is rational, where R3,2 ⊂ |OP2(3)| is the space of
rational plane cubics and PGL2 ⊂ PGL3 is the stabilizer of some reference smooth conic Γ. We
may take the homogeneous coordinates [X, Y, Z] of P2 and normalize Γ so that it is defined by
XZ = Y 2.

Every rational plane cubic has a unique singularity. We apply the slice method for the nodal
map

κ :R3,2→ P2, C 7→ Sing C,

which is clearly PGL2-equivariant. The group PGL2 acts on P2 − Γ transitively, and the stabilizer
G of the point p= [0, 1, 0] is isomorphic to (Z/2Z) n C×, where Z/2Z acts by [X, Y, Z] 7→
[Z, Y, X] and α ∈ C× acts by [X, Y, Z] 7→ [α−1X, Y, αZ]. The fiber κ−1(p) is an open set of
the linear system PV ⊂ |OP2(3)| of cubics that are singular at p. Hence we have

R3,2/PGL2 ∼ PV/G.

The group G acts linearly on V , and we have the following G-decomposition:

V = 〈XY Z〉 ⊕ 〈X2Z, Z2X〉 ⊕ 〈X2Y, Y Z2〉 ⊕ 〈X3, Z3〉.

Let W = 〈X2Z, Z2X, X2Y, Y Z2〉 and W⊥ = 〈XY Z, X3, Z3〉, and consider the projection
π : PV 99K PW from W⊥. Then π is a G-linearized vector bundle. Since G acts on PW almost
freely, by the no-name lemma we have

PV/G∼ C3 × (PW/G).

The quotient PW/G is rational because it is 2-dimensional. This proves that PV2,3/PGL2 × PGL2

is rational.

3.3 The case (a, b) = (2, 4)
By (3.3) it is sufficient to show that R4,2/PGL2 is rational, where PGL2 is the stabilizer in PGL3

of some smooth conic. General rational plane quartics have three nodes. Let S3P2 be the third
symmetric product of P2, and consider the nodal map

κ :R4,2 99K S
3P2, C 7→ Sing C. (3.4)

General κ-fibers are open sets of sublinear systems of |OP2(4)|. Since PGL2 acts linearly on
H0(OP2(4)), κ is birationally the projectivization of a PGL2-linearized vector bundle. Since
PGL2 acts on S3P2 almost freely, by the no-name lemma we have

R4,2/PGL2 ∼ P5 × (S3P2/PGL2).

Using the slice method (in the converse direction), we see that

S3P2/PGL2 ∼ (S3P2 × |OP2(2)|)/PGL3.

We then apply the slice method to the projection S3P2 × |OP2(2)| → S3P2. The group GL3 acts
on S3P2 almost transitively, and the stabilizer G of

p1 + p2 + p3 = [1, 0, 0] + [0, 1, 0] + [0, 0, 1]

is isomorphic to S3 n (C×)3, where S3 acts by the permutations of X, Y, Z and (C×)3 is the
torus of diagonal matrices. Then we have

(S3P2 × |OP2(2)|)/PGL3 ∼ |OP2(2)|/G∼H0(OP2(2))/G.
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The G-representation H0(OP2(2)) is decomposed as

H0(OP2(2)) = 〈X2, Y 2, Z2〉 ⊕ 〈XY, Y Z, ZX〉.

We set W = 〈X2, Y 2, Z2〉 and W⊥ = 〈XY, Y Z, ZX〉. The group G acts on W almost transitively,
so that we may apply the slice method to the projection H0(OP2(2))→W from W⊥. Hence, for
the stabilizer H ⊂G of a general point of W , we have

H0(OP2(2))/G∼W⊥/H.

Then W⊥/H is birational to C× × (PW⊥/H), and PW⊥/H is rational because it is 2-
dimensional. This completes the proof that PV2,4/PGL2 × PGL2 is rational.

3.4 The case (a, b) = (1, 4)
The quotient PV1,4/PGL2 × PGL2 is birational to G(1, PV4)/PGL2 by (3.2). Since V4 ' V ∨4
as SL2-representations, we have a PGL2-equivariant isomorphism G(1, PV4)'G(1, PV ∨4 ). By
projecting the standard rational normal curve in PV ∨4 from lines, we obtain a birational map

G(1, PV ∨4 )/PGL2 99KR4,2/PGL3.

Thus the problem is reduced to showing the rationality of R4,2/PGL3.
We apply the slice method to the nodal map (3.4), which we now regard as a GL3-equivariant

map. We reuse the terms p1 + p2 + p3 and G from § 3.3. Then, for the linear system PV of quartics
singular at p1 + p2 + p3, we have

R4,2/PGL3 ∼ PV/G∼ V/G.

In terms of the coordinates [X, Y, Z], the G-representation V is decomposed as

V = 〈X2Y 2, Y 2Z2, Z2X2〉 ⊕ 〈X2Y Z, Y 2ZX, Z2XY 〉.

The rest of the proof is similar to the final step in § 3.3: we may use the slice method for the
projection of V from either irreducible summand, and then resort to Castelnuovo’s theorem to
show that V/G is rational. Thus PV1,4/PGL2 × PGL2 is rational.

4. Transvectants

In this section we treat the cases (a, b) = (1, 6) and (a, b) = (1, 8). We first recall in § 4.1 some
basic facts about transvectants for biforms. In §§ 4.2 and 4.3 we study the two cases by applying
the method of double fibration [BK85] to certain transvectants.

4.1 Transvectants for biforms
For two representations Va,b and Va′,b′ of SL2 × SL2, their tensor product is

Va,b ⊗ Va′,b′ = (Va � Vb)⊗ (Va′ � Vb′ ) = (Va ⊗ Va′ )� (Vb ⊗ Vb′ ).

Applying the Clebsch–Gordan decomposition for SL2,

Vd ⊗ Vd′ =
d′′⊕

r=0

Vd+d′−2r where d′′ = min{d, d′}, (4.1)

we obtain the irreducible decomposition

Va,b ⊗ Va′,b′ =
⊕
r,s

Va+a′−2r,b+b′−2s,
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where 06 r 6min{a, a′} and 06 s6min{b, b′}. By this decomposition we have an SL2 × SL2-
equivariant bilinear map

T (r,s) : Va,b × Va′,b′ → Va+a′−2r,b+b′−2s,

unique up to scalar multiplication. Let T (r) : Vd × Vd′ → Vd+d′−2r be the rth transvectant, i.e. an
SL2-bilinear map associated to (4.1). Then a standard argument in linear algebra shows that
T (r,s) is given (up to a constant) by

T (r,s)(P1 ⊗ P2, P
′
1 ⊗ P ′2) = T (r)(P1, P

′
1)⊗ T (s)(P2, P

′
2), (4.2)

where P1 ∈ Va,0 = Va, P2 ∈ V0,b = Vb, P ′1 ∈ Va′,0 = Va′ and P ′2 ∈ V0,b′ = Vb′ .
Let [X, Y ] be the homogeneous coordinate of P1. The transvectant T (r) is given explicitly by

the following formula (cf. [Olv99]):

T (r)(P, P ′) =
r∑

i=0

(−1)i

(
r

i

)
∂rP

∂Xr−i∂Y i

∂rP ′

∂Xi∂Y r−i
. (4.3)

In particular, when r = d′ 6 d, T (d′)(P, P ′) is called the apolar covariant and is calculated by
substituting −∂/∂Y and ∂/∂X for X and Y , respectively, in P ′, applying that differential
polynomial to P , and then multiplying it by d′!.

From (4.2) and (4.3) we may calculate the (r, s)th transvectant T (r,s) explicitly in terms of
the bihomogeneous coordinate ([X1, Y1], [X2, Y2]) of P1 × P1. For example, when a= a′ = 1 and
b> b′, we have

T (1,s)(X1 ⊗ P + Y1 ⊗Q, X1 ⊗ P ′ + Y1 ⊗Q′) = T (s)(P, Q′)− T (s)(Q, P ′), (4.4)

where s6 b′, P, Q ∈ V0,b = Vb and P ′, Q′ ∈ V0,b′ = Vb′ .

4.2 The case (a, b) = (1, 6)
We shall apply the method of double fibration [BK85] to the bi-apolar covariant

T (1,2) : V1,6 × V1,2→ V0,4.

Note that dim V1,2 = dim V0,4 + 1. The image of V1,6→Hom(V1,2, V0,4) given by H 7→ T (1,2)(H, •)
is not contained in the degeneracy locus: for example, take H to be X1X

3
2Y

3
2 + Y1(X4

2Y
2
2 +

X2
2Y

4
2 ). Thus the PGL2 × PGL2-equivariant map

ϕ : PV1,6 99K PV1,2, CH 7→Ker(T (1,2)(H, •))

is well-defined. We note in passing that the ϕ-image of the above X1X
3
2Y

3
2 + Y1(X4

2Y
2
2 +X2

2Y
4
2 )

defines a smooth curve on P1 × P1.

Lemma 4.1. The group PGL2 × PGL2 acts transitively on the open locus U in PV1,2 of
smooth curves. If we take C ∈ U to be X1Y

2
2 + Y1X

2
2 = 0, its stabilizer G is isomorphic to

(Z/2Z) n C×, where Z/2Z acts by [Xi, Yi] 7→ [Yi, Xi] and α ∈ C× acts by [X1, Y1] 7→ [X1, α
2Y1],

[X2, Y2] 7→ [X2, αY2].

Proof. By the birational map (3.1), U is mapped isomorphically to the space of linear embeddings
φ : P1→ PV2 such that φ(P1) is transverse to the diagonal conic Γ⊂ PV2. The first assertion holds
because the lines in PV2 transverse to Γ are all PGL2-equivalent. The stabilizer in PGL2 × PGL2

of any C ∈ U is mapped injectively by the projection to the second PGL2, and its image is the
stabilizer of the pencil φC(P1). Our second assertion follows from this observation and a little
calculation. 2
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By this lemma we may apply the slice method to ϕ. The ϕ-fiber over C(X1Y
2
2 + Y1X

2
2 ) is an

open set of the projectivization of the linear space

V = {H ∈ V1,6 | T (1,2)(H, X1Y
2
2 + Y1X

2
2 ) = 0}.

Then we have

PV1,6/PGL2 × PGL2 ∼ PV/G,
where G is as described in the above lemma. The G-action on PV is induced from the linear
G-action on V given by

α ∈ C× : P1(X1, Y1)P2(X2, Y2) 7→ α−4P1(X1, α
2Y1)P2(X2, αY2),

where P1 ∈ V1,0 and P2 ∈ V0,6.
We express elements of V1,6 asX1P + Y1Q, P =

∑6
i=0

(
6
i

)
αiX

i
2Y

6−i
2 andQ=

∑6
i=0

(
6
i

)
βiX

i
2Y

6−i
2 .

By direct calculation using (4.4) and (4.3), we see that V is defined by

αi = βi+2 for 06 i6 4.

Then we have the G-decomposition V =
⊕4

i=0 Wi, where

W0 = 〈X1X
2
2Y

4
2 + Y1X

4
2Y

2
2 〉,

W1 = 〈10X1X
3
2Y

3
2 + 3Y1X

5
2Y2, 3X1X2Y

5
2 + 10Y1X

3
2Y

3
2 〉,

W2 = 〈15X1X
4
2Y

2
2 + Y1X

6
2 , X1Y

6
2 + 15Y1X

2
2Y

4
2 〉,

W3 = 〈X1X
5
2Y2, Y1X2Y

5
2 〉,

W4 = 〈X1X
6
2 , Y1Y

6
2 〉.

For i> 1, the ith summand Wi is the induced representation of the weight-i scalar representation
of C×. The group G acts almost freely on P(W1 ⊕W2). Therefore we may apply the no-name
lemma to the projection PV 99K P(W1 ⊕W2) from W0 ⊕W3 ⊕W4, to get that

PV/G∼ C5 × (P(W1 ⊕W2)/G).

Then P(W1 ⊕W2)/G is 2-dimensional and hence rational. This finishes the proof that the
quotient PV1,6/PGL2 × PGL2 is rational.

4.3 The case (a, b) = (1, 8)
We want to show that the (1, 2)th transvectant

T (1,2) : V1,8 × V1,4→ V0,8

determines a double fibration [BK85]. Note that dimV1,4 = dimV0,8 + 1. The nondegeneracy
condition is checked, for instance, by the following lemma.

Lemma 4.2. Take H =X1X
2
2Y

6
2 + Y1X

6
2Y

2
2 ∈ V1,8 and H ′ =X1Y

4
2 + Y1X

4
2 ∈ V1,4. Then we have

T (1,2)(H, H ′) = 0, and the linear maps T (1,2)(H, •) : V1,4→ V0,8 and T (1,2)(•, H ′) : V1,8→ V0,8 are
both surjective.

Proof. This is verified by a straightforward (but lengthy) calculation using (4.4) and (4.3). We
leave it to the reader. 2

Therefore, by [BK85], the PGL2 × PGL2-equivariant map

PV1,8 99K PV1,4, CH 7→Ker(T (1,2)(H, •))
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is well-defined, dominant, and birationally a projective space bundle. Explicitly, let

H= {(H, CH ′) ∈ V1,8 × PV1,4 | T (1,2)(H, H ′) = 0}.

Then H is generically a sub-vector bundle of V1,8 × PV1,4 invariant under the SL2 × SL2-
linearization. By the above lemma, H has generically the expected rank 9, and the restriction of
the natural projection PH→ PV1,8 to the main component of PH is birational. Since SL2 × PGL2

acts linearly on V1,8, H is in fact SL2 × PGL2-linearized. On the other hand, consider the natural
hyperplane bundle OPV1,4(1) on PV1,4. The element (−1, 1) ∈ SL2 × PGL2 acts on OPV1,4(1) by
−1, so that the bundle H′ =H⊗OPV1,4(1) is PGL2 × PGL2-linearized. Then PH′ is canonically
isomorphic to PH. The group PGL2 × PGL2 acts almost freely on PV1,4, as a general rational
plane quartic has no nontrivial stabilizer in PGL3 (cf. § 3.4). Hence we may apply the no-name
lemma to H′ and see that

PH/PGL2 × PGL2 ∼ PH′/PGL2 × PGL2 ∼ P8 × (PV1,4/PGL2 × PGL2).

In § 3.4 we proved that PV1,4/PGL2 × PGL2 is rational. Therefore PV1,8/PGL2 × PGL2 is
rational.
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