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Abstract

Let μ be a Radon measure on the nth Heisenberg group H
n. In this note we prove that

if the (2n + 1)-dimensional (Heisenberg) Riesz transform on H
n is L2(μ)-bounded, and

if μ(F) = 0 for all Borel sets with dimH (F) ≤ 2, then μ must have (2n + 1)-polynomial
growth. This is the Heisenberg counterpart of a result of Guy David from [Dav91].

2010 Mathematics Subject Classification: 42B20 (Primary); 28A75 (Secondary)

1. Introduction

The motivation behind this paper is the following question: what are the measures μ on
the Heisenberg group H

n which guarantee that the (correct notion of) Riesz transform is
bounded from L2(μ) to itself? This question (or some variant of it) with R

n instead of Hn,
was one of the major starting points of the theory that came to be known as quantitative
rectifiability. This area of geometric measure theory has seen an impressive development in
the past thirty years, starting with the landmark works of Peter Jones [Jon90] and David
and Semmes [DS91], [DS93], through the solution of fundamental questions in complex
analysis, such as the Painlevé problem (see [MMV96], [Dav98], [Tol03]), to more recent
applications to harmonic analysis, see for example [NTV14] and [AHM+19].
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In the last years, there has been an increasing interest in developing such a quantitative
theory in different contexts than that of Euclidean spaces; examples of these are parabolic
spaces and Heisenberg groups, or, more generally, Carnot groups. The former appear in
the study of caloric measure. The latter arise naturally in the study of certain hypoelliptic
operators, in the sense that the natural translations and dilations for these operators are those
characterising the spaces; the Heisenberg group is the most important prototypical example,
and the related operator is the so-called Kohn Laplacian; see [BLU07] for a comprehensive
study of stratified Lie groups and the corresponding operators.

We should mention that the study of Heisenberg geometry can be approached from dif-
ferent perspectives and with different applications in mind; for example, see [NY18] for a
connection with theoretical computer science.

To be a little more specific: the starting motivation to develop a theory of quantita-
tive rectifiability connected to our initial question, is to understand basic issues such as
the removable sets for harmonic functions (with respect to the relevant sub-Laplacian), or
to give a characterisation of those domains where the Dirichlet problem (again, for the
relevant sub-Laplacian) is well-posed. We want to underline, however, that a theory of
quantitative rectifiability in the Heisenberg setting has its own, purely geometric, intrinsic
appeal.

In the last couple of years, there has been some progress towards an answer to our initial
question; see for example [CFO19], [FO18] and [Orp18]. In this note we give a necessary
condition to be imposed on a Radon measure μ on H

n for the Riesz transform to be L2(μ)
bounded. Here Rμ is the singular integral operator whose kernel is the horizontal gradient
of the fundamental solution of the Heisenberg sub-Laplacian, as defined in [CM12]. See
Section 2 for precise definitions.

THEOREM 1·1. Let μ be a Radon measure on H
n such that Rμ is bounded on L2(μ) with

norm C1, and such that μ(F) = 0 whenever dimH (F) ≤ 2. Then there exists a constant C2

such that for all balls B(x, r) ⊂H
n, we have

μ(B(x, r)) ≤ C2r2n+1. (1·1)

Here C2 depends only on n and C1, and the ball B(x,r) is defined with respect to the Korányi
metric, see Section 2.

A corresponding statement holds in the Euclidean setting, and is a result of David, [Dav91
part III, proposition 1·4]. See [Orp17, proposition 6·9] for a more detailed proof. Let Rd

μ

denote the standard d-dimensional Riesz transform in R
n.

THEOREM 1·2. Assume that μ is a non-atomic Radon measure on R
n such that Rd

μ is

bounded on L2(μ) with norm C1. Then, for all Euclidean balls BRn(x, r) ⊂R
n we have

μ(BRn(x, r)) ≤ C2rd (1·2)

Here C2 depends only on C1, n, and d.

A measure satisfying (1·2) (or (1·1)) is said to have polynomial growth. Let us give a
couple of remarks.
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Remark 1·3. Although the result itself (both in the Euclidean and Heisenberg case) is neither
hard nor deep, it is nevertheless very useful. For example, most tools developed in the last
two decades that take quantitative rectifiability beyond Ahlfors regular measures still need
polynomial growth1 (see for example the book by Tolsa [Tol14]). Thus, we expect that our
result will be quite useful, too.

Remark 1·4. While the two results above look similar, there is actually a difference, in the
sense that, in the Heisenberg case, there actually exist lower dimensional measures which
give a bounded Riesz transform, but are not atomic.

This is not a byproduct of the proof, but rather a fact of the Heisenberg geometry. Indeed,
the 2-dimensional t-axis (or any Heisenberg translate of it) gives a bounded (2n + 1)-
dimensional Riesz transform; this is simply because on these sets the kernel vanishes
identically, see (2·4).

One can construct a more interesting example in the vertical plane of the one dimensional
Heisenberg group H, say. Consider a tube of height 1 and radius ε2

1 around the t-axis, and
take the intersection with the vertical plane. Call the resulting rectangle R1,1. Cut out from
R1 two smaller rectangles R2,1 and R2,2, one in the top right corner and one in the bottom
left corner, both of height ε2 and width ε2

2, for some ε2 ≤ ε1/4. We proceed in this way, so
that after k steps we have 2k−1 disjoint rectangles {Rk,i}i of height εk and width ε2

k . Consider
the natural probability measure μ on the Cantor-like set C =⋂

k
⋃

i Rk,i. It is not difficult to
show that, if εk → 0 are small enough, the Heisenberg Riesz transform is bounded on L2(μ);
the idea is that the set is concentrated along the t-axis, and thus the kernel is very small (see
(2·4) below). Depending on the choice of (εk) we have dimH (C) ∈ [0, 2].

Organisation of the paper. In Section 2 we briefly recall basic facts about Heisenberg groups
and the Riesz transform. We also introduce a family of “dyadic cubes” suitable to our setting.

Section 3 is dedicated to Lemma 3·1, our main technical lemma. Roughly speaking, we
show that if a measure μ is such that Rμ is bounded on L2(μ), and there is some cube Q0

with a very high concentration of μ (i.e. μ(Q0) � �(Q0)2n+1), then we can find a family
HD(Q0) of much smaller cubes, contained in Q0, such that:

(a) a very large portion of measure μ on Q0 is concentrated on the cubes from HD(Q0);

(b) the family HD(Q0) is relatively small, in the sense that it consists of few cubes.

In Section 4 we show that if the polynomial growth condition (1·1) is not satisfied, then
we can find a cube satisfying the assumptions of our main lemma. This in turn allows us to
start an iteration algorithm, consisting of using the main lemma countably many times, that
results in constructing a set Z with μ(Z) > 0 and dimH (Z) ≤ 2. This completes the proof of
Theorem 1·1.

2. Preliminaries

In our estimates we will often use the notation f � g which means that there exists some
absolute constant C for which f ≤ Cg. If the constant C depends on some parameter t, we
will write f �t g. Notation f ≈ g will stand for f � g � f , and f ≈t g is defined analogously.
For simplicity, in our estimates we will suppress the dependence on dimension n and on
absolute constant λ, � (see (2·7)).

1 With some exceptions, see for example [AS18], or [BS15].
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2·1. Heisenberg group

In this paper we consider the nth Heisenberg group with exponential coordinates (see
[CDPT07] or [Fas19] for a swift introduction to the Heisenberg group in a context
close to ours). In practice, we will denote a point p ∈H

n as (z, t) ∈R
2n ×R, and z =

(x1, ..., xn, y1, ..., yn). In these coordinates the group law in H
n takes the form

p · q =
(

z + z′, t + t′ + 1

2

n∑
i=1

(xiy′
i − yix′

i)

)
,

where p = (z, t) and q = (z′, t′). The identity element is the origin (0,0) and the inverse is
given by p−1 = (−z, −t). We make H

n into a metric space by setting d(p, q) := ‖q−1 · p‖H,
where

‖p‖4
H

:= |z|4 + 16t2, (2·1)

and |z| denotes the Euclidean norm of z ∈R
2n.

Note that ‖·‖H is 1-homogeneous with respect to the anisotropic dilation p �→ λp =
(λz, λ2t), λ > 0. The metric d is sometimes called the Korányi metric.

Given p ∈H
n and r > 0 we set

B(p, r) = {q | d(p, q) ≤ r} , U(p, r) = {q | d(p, q) < r} .

For α > 0 we will write Hα to denote the usual α-dimensional Hausdorff measure with
respect to metric d. For A ⊂H

n we set dimH (A) to be the Hausdorff dimension of A.
It follows easily from the definition of the Korányi metric that for all p ∈H

n and r > 0 we
have

H2n+2(B(p, r)) =H2n+2(B(0, 1)) r2n+2. (2·2)

Thus, even though the topological dimension of Hn is 2n + 1, the Hausdorff dimension of
H

n is equal to 2n + 2. For the sake of brevity we set D := 2n + 2. Usually one denotes the
Hausdorff dimension of Hn by Q, but we have decided to save that letter for cubes; hence
the non-standard notation.

It is also easy to check that if L2n+1 denotes the usual Lebesgue measure on R
2n+1 �H

n,
then we have a constant C > 0 such that

L2n+1 = CHD. (2·3)

2·2. Heisenberg Riesz transform

Recall that, for a function u : Hn →R, the horizontal gradient of u is given by

∇Hu := (X1u, ..., Xnu, Y1u, ..., Ynu) ,

where the vector fields X1, . . . , Xn, Y1, . . . , Yn and ∂/∂t represent the left invariant translates
of the canonical basis at the identity. In particular, X1, . . . , Xn, Y1, . . . , Yn span the horizontal
distribution in H

n.
The Heisenberg sublaplacian �H is given by

∑n
i=1 X2

i + Y2
i , and its fundamental

solution is

G(p) := cn‖p‖2−D
H

.
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The (D − 1)-dimensional Riesz kernel in H
n, first considered in [CM12], is given by K(p) =

∇HG(p). The Riesz transform is formally defined as

Rμf (p) =
∫
Hn

K(q−1 · p)f (q) dμ(q).

Since it is not clear whether the integral above converges, one considers the truncated Riesz
transform given by the formula

Rμ,δf (p) =
∫
Hn\B(p,δ)

K(q−1 · p)f (q) dμ(q),

for δ > 0. We say that Rμ is bounded on L2(μ) if the truncated operators Rμ,δ are bounded
on L2(μ) uniformly in δ > 0.

One can easily check that the Riesz kernel is actually equal to

K(z, t)

= n

(
−2x1|z|2 + 8y1t

‖(z, t)‖2n+4
H

, · · · ,
−2xn|z|2 + 8ynt

‖(z, t)‖2n+4
H

,
−2y1|z|2 − 8x1t

‖(z, t)‖2n+4
H

, · · · ,
−2yn|z|2 − 8xnt

‖(z, t)‖2n+4
H

)
.

Hence,

|K(z, t)|2 = n2 4|z|2
(|z|4 + 16t2)n+1

. (2·4)

This implies the curious fact that |K(z, t)| ≤ C whenever

|z| ≤ 16|t|n+1, (2·5)

which is a ‘paraboloidal’ double cone around t-axis with vertex at the origin. This fact will
play a key role in the subsequent analysis.

Chousionis and Mattila showed in [CM12, proposition 3·11] that the Riesz kernel is
a standard kernel. In particular, it satisfies the following continuity property: whenever
q1, q2 �= p ∈H

n, we have

|K(p−1 · q1) − K(p−1 · q2)|� max

{
d(q1, q2)

d(p, q1)D
,

d(q1, q2)

d(p, q2)D

}
.

Taking p = 0 and q1 = q̃1
−1 · p̃, q2 = q̃2

−1 · p̃, one gets immediately that for all q̃1, q̃2 �=
p̃ ∈H

n

|K(q̃1
−1 · p̃) − K(q̃2

−1 · p̃)|� max

{
d(q̃1, q̃2)

d(p̃, q̃1)D
,

d(q̃1, q̃2)

d(p̃, q̃2)D

}
. (2·6)

2·3. Dyadic cubes

We are going to use a family of decompositions of Hn into subsets that share many prop-
erties with the standard dyadic cubes from R

n. The most classical constructions of this kind
are due to Christ [Chr90] and David [Dav88], but for us it will be more convenient to use
the “cubes” constructed in [KRS12].

First, note that given any ball B(p, 2r), one may use the 5r-covering lemma and the prop-
erty (2·2) to conclude that there exists some absolute constant m such that B(p, 2r) may be
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covered by m balls B(pi, r), where {pi}m
i=1 are points in B(p, 2r). That is, Hn is geometrically

doubling. In particular, we can use [KRS12, theorem 2·1, remark 2·2].

LEMMA 2·1 ([KRS12]). For all k ∈Z there exists a family of subsets of Hn, denoted by
Dk, such that:

(i) H
n =⋃

Q∈Dk
Q;

(ii) if k ≥ l, and Q ∈Dk, P ∈Dl, then either Q ∩ P =∅ or Q ⊂ P;

(iii) for every Q ∈Dk there exists pQ ∈ Q such that

U(pQ, λ2−k) ⊂ Q ⊂ B(pQ, �2−k) (2·7)

for some absolute constants λ, � > 0.

Let us stress once more that we will not keep track of how various parameters appearing
in the proof depend on λ and �.

We set D =⋃
k Dk. For Q ∈Dk we define the sidelength of Q as �(Q) = 2−k. Clearly, by

(2·2) and (2·7), for Q ∈D we have

HD(Q) ≈ �(Q)D.

It follows that if Q ∈D, then for k ≥ 0

#
{

P ∈D | P ⊂ Q, �(P) = 2−k�(Q)
}

≈ 2kD. (2·8)

Given a Radon measure μ and Q ∈D we will denote the (D − 1)-dimensional density of μ

in Q by


μ(Q) = μ(Q)

�(Q)D−1
.

For simplicity, we will suppress the dependence on μ and simply write 
(Q).

3. Main lemma

Our main tool in the proof of Theorem 1·1 is the following lemma.

LEMMA 3·1. Let μ be a Radon measure on H
n such that Rμ is bounded on L2(μ) with

norm C1. There exist constants A = A(n) > 1, s = s(A, n) ∈ (0, 1/2) and M = M(C1, n) >

100 such that the following holds.
Suppose that Q0 ∈D satisfies 
(Q0) ≥ M. Set2 N = ⌊

A−2 log(
(Q0))
⌋

. Then, the family
of high density cubes

HD(Q0) = {
Q ∈D | Q ⊂ Q0, �(Q) = 2−N�(Q0), 
(Q) > 2 
(Q0)

}
satisfies ∑

Q∈HD(Q0)

μ(Q) ≥ (1 − 
(Q0)−s)μ(Q0). (3·1)

2 Log here is base 2 logarithm.
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Moreover, we have ∑
Q∈HD(Q0)

�(Q)2 ≤ Cp �(Q0)2 (3·2)

for some dimensional constant Cp (“p” stands for “packing”).

The rest of this section is dedicated to proving the lemma above. For brevity of notation,
we set 
0 = 
(Q0). Observe that the integer N was chosen in such a way that

2A2N ≈ 
0 ≥ M. (3·3)

In particular, we have N ≥ N0 for some very big N0 depending on M and A.
We split the proof of Lemma 3·1 into several steps.
First, note that by the pigeonhole principle and (2·8), we can find a cube Q1 ∈D with

sidelength �(Q1) = 2−AN�(Q0), Q1 ⊂ Q0, and such that

μ(Q1) � μ(Q0)

2AND
. (3·4)

Without loss of generality, by applying the appropriate translation, we can assume that Q1

is centred at the origin, i.e. pQ1 = 0. Set

T := {
(z, t) ∈ Q0 | |z| ≤ 2−N�(Q0)

}
and for any κ > 0 set

Tκ := {
(z, t) ∈ Q0 | |z| ≤ κ 2−N�(Q0)

}
.

Observe that Q1 ⊂ T . In a sense, T can be seen as a tube with vertical axis passing through
pQ1 = 0. Note also that for any cube Q ⊂ Q0 \ T we have dist (Q, Q1) � 2−N�(Q0).

We start by proving a few preliminary results.

LEMMA 3·2. There are at most C(κ) 22N cubes of sidelength 2−N�(Q0) contained in Tκ .

Proof. Observe that since 0 ∈ Q0, and by (2·7) Q0 ⊂ B(pQ0 , ��(Q0)), we have Q0 ⊂
B(0, 2��(Q0)). Hence,

Tκ ⊂ {
(z, t) ∈ B(0, 2��(Q0)) | |z| ≤ κ 2−N�(Q0)

}
⊂
{

(z, t) ∈H
n | |z| ≤ κ 2−N�(Q0), 16|t|2 ≤ (2��(Q0))4

}
=: T̃κ .

By (2·3),

HD(̃Tκ ) = CL2n+1(̃Tκ ) ≈ (κ2−N�(Q0))2n(2��(Q0))2 ≈κ 2−2nN�(Q0)D.

It follows that HD(Tκ ) �κ 2−2nN�(Q0)D. On the other hand, recall that for any cube Q
with sidelength �(Q) = 2−N�(Q0) we have HD(Q) ≈ 2−ND�(Q0)D. Since all such cubes are
pairwise disjoint, we get

#
{
Q ∈D | �(Q) = 2−N�(Q0), Q ⊂ Tκ

}
� HD(Tκ )

2−ND�(Q0)D
�κ

2−2nN�(Q0)D

2−N(2n+2)�(Q0)D
= 22N .
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LEMMA 3·3. Let Q ∈D satisfy Q ⊂ Q0 \ T and �(Q) = �(Q1) = 2−AN�(Q0). Then

μ(Q) ≤ μ(Q0)


0 2AND
. (3·5)

Proof. We argue by contradiction. To this end, let us assume that there exists a cube
Q2 ⊂ Q0 \ T with �(Q2) = 2−AN�(Q0) such that (3·5) does not hold - that is

μ(Q2) ≥ μ(Q0)


0 2AND
. (3·6)

Let 0 < δ < dist (Q1, Q2), let p ∈ Q2 be arbitrary, and consider

Rμ,δ(1Q1)(p) =
∫

Q1

K(q−1 · p) dμ(q).

By triangle inequality,

|Rμ,δ(1Q1)(p)| ≥
∣∣∣∣∫

Q1

K(p) dμ(q)

∣∣∣∣− ∣∣∣∣∫
Q1

K(q−1 · p) − K(p) dμ(q)

∣∣∣∣ . (3·7)

We estimate the first term as follows. Note that, since p ∈ Q2 and Q2 lies outside T , then,
writing p = (z, t) and using (2·4), we have

|K(p)|2 ≈ |z|2
(|z|4 + 16t2)n+1

� |z|2
�(Q0)4(n+1)

≥ 2−2N�(Q0)−4n−2 = 2−2N�(Q0)−2D+2.

And thus we also have∣∣∣∣∫
Q1

K(p) dμ(q)

∣∣∣∣= |K(p)| μ(Q1) � 2−N μ(Q1)

�(Q0)D−1
. (3·8)

For the second term in (3·7) we use the continuity of the kernel K (2·6) and the fact that
d(p, q) ≈ ‖p‖H ≥ 2−N�(Q0) (because p ∈ Q2 ⊂ Q0 \ T):

|K(q−1 · p) − K(p)|� ‖q‖
min (‖p‖H, d(p, q))D

� 2−AN�(Q0)

(2−N�(Q0))D
= 2−AN+DN

�(Q0)D−1
. (3·9)

Taking A ≥ 2D we get∣∣∣∣∫
Q1

K(q−1 · p) − K(p) dμ(q)

∣∣∣∣� 2−AN/2 μ(Q1)

�(Q0)D−1
.

Together with (3·8) and (3·7), assuming N0 bigger than some absolute constant (recall that
N ≥ N0), this gives

|Rμ,δ(1Q1 )(p)|� 2−N μ(Q1)

�(Q0)D−1

for all p ∈ Q2.
Now, we use the estimate above and the L2(μ) boundedness of Rμ to get

2−N μ(Q1)

�(Q0)D−1
μ(Q2)

1
2 �

(∫
|Rμ,δ(1Q1 )(p)|2 dμ(p)

) 1
2 ≤ C1μ(Q1)

1
2 .
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Our assumptions on Q1 (3·4) and Q2 (3·6) yield

C1 � 2−N μ(Q1)
1
2 μ(Q2)

1
2

�(Q0)D−1
� 2−N μ(Q0)

2AND�(Q0)D−1



−1/2
0 = 2−AND−N


1/2
0

(3·3)≈ 2−AND−N 2A2N/2.

Taking A ≥ 5D we can bound the last term from below in the following way:

2−AND−N+A2N/2 ≥ 2A2N/4
(3·3)
� M1/4.

Putting together the estimates above gives C1 � M1/4, which is a contradiction for M =
M(C1, n) big enough.

We immediately get the following corollary.

COROLLARY 3·4. We have

μ(T2) ≥ (1 − 
−1
0 )μ(Q0). (3·10)

Proof. Observe that if Q ∈D satisfies �(Q) = �(Q1) = 2−AN�(Q0) and Q �⊂ T2, then we
have Q ∩ T =∅ (assuming A large enough with respect to �). It follows that Q satisfies the
assumptions of Lemma 3·3, and so

μ(Q) ≤ 2−AND
−1
0 μ(Q0).

Summing over all such Q and using (2·8) yields

μ(Q0 \ T2) ≤ 
−1
0 μ(Q0).

Recall that

HD(Q0) = {
Q ∈D | Q ⊂ Q0, �(Q) = 2−N�(Q0), 
(Q) > 2
0

}
,

and that � is the absolute constant such that Q ⊂ B(pQ, ��(Q)). Without loss of generality,
we may assume � > 2.

We are ready to prove the first part of Lemma 3·1, the estimate (3·1).

LEMMA 3·5. There exists s = s(A, n) ∈ (0, 1/2) such that∑
Q∈HD(Q0)

μ(Q) ≥ (1 − 
−s
0 )μ(Q0). (3·11)

Proof. We will prove (3·11) by contradiction. Suppose that∑
Q∈HD(Q0)

μ(Q) < (1 − 
−s
0 )μ(Q0). (3·12)

Set

LD(Q0) = {
Q ∈D | Q ⊂ T2�, �(Q) = 2−N�(Q0), 
(Q) ≤ 2
0

}
.
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It is easy to see that the cubes from HD(Q0) ∪ LD(Q0) cover T2. If we assume 
0 ≥ M >

100, and s < 1/2, then 
−s
0 /2 ≥ 
−1

0 , and so by (3·10) and (3·12) we get∑
Q∈LD(Q0)

μ(Q) ≥ 
−s
0

2
μ(Q0). (3·13)

On the other hand, recall from Lemma 3·2 that there are at most C22N cubes of sidelength
2−N�(Q0) contained in T2�, where C = C(�, n). Moreover, for any Q ∈ LD(Q0) we have

μ(Q) ≤ 2
0�(Q)D−1 = 2 μ(Q0)
�(Q)D−1

�(Q0)D−1
= 2−N(D−1)+1μ(Q0).

In consequence, ∑
Q∈LD(Q0)

μ(Q) ≤ C22N2−N(D−1)+1μ(Q0).

This contradicts (3·13) because

C 2−ND+3N+1 = 2 C (2−A2N)(−D+3)A−2 (3·3)≤ C̃(n)
(−D+3)A−2

0 ≤ 
−s
0

2
,

choosing s = s(A, n) small enough.

We move on to the second part of Lemma 3·1, i.e. the packing estimate (3·2).

LEMMA 3·6. We have ⋃
Q∈HD(Q0)

Q ⊂ T2�. (3·14)

In consequence, ∑
Q∈HD(Q0)

�(Q)2 � �(Q0)2. (3·15)

Proof. We will prove that for Q ∈ HD(Q0) we have Q ∩ T2 �=∅. Then, since �(Q) =
2−N�(Q0), it follows easily from (2·7) that indeed Q ⊂ T�+2(Q0) ⊂ T2�(Q0).

We argue by contradiction. Suppose that Q ∈ HD(Q0) and Q ∩ T2 =∅. Consider the cubes
{Pi}i∈I with �(Pi) = 2−AN�(Q0) = 2−(A−1)N�(Q) and Pi ⊂ Q. Then, Q =⋃

i Pi, for all i ∈ I
we have Pi ∩ T2 =∅, and #I ≈ 2(A−1)ND by (2·8).

We use Lemma 3·3 to conclude that for all i ∈ I

μ(Pi) ≤ μ(Q0)


0 2AND
.

Summing over i ∈ I yields

μ(Q) =
∑
i∈I

μ(Pi) ≤ #I · μ(Q0)


0 2AND
≈ 2(A−1)ND μ(Q0)


0 2AND
= μ(Q0)


0 2ND
,

so that


(Q) = μ(Q)

(2−N�(Q0))D−1
� μ(Q0)


0 2ND
· 1

2−N(D−1)�(Q0)D−1
= 
0


0 2N
= 2−N ≤ 1.
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But this contradicts the assumption Q ∈ HD(Q0):


(Q) ≥ 2
0 ≥ 2M > 1,

and so the proof of (3·14) is finished.
Concerning (3·15), note that by (3·14) and Lemma 3·2 we have

#HD(Q0) � 22N . (3·16)

Hence, ∑
Q∈HD(Q0)

�(Q)2 = �(Q0)2 2−2N
∑

Q∈HD(Q0)

1 � �(Q0)2.

4. Iteration argument

To complete the proof of Theorem 1·1, we assume that the measure μ does not satisfy the
polynomial growth condition (1·1). Then we will use Lemma 3·1 countably many times to
construct a set Z with positive μ-measure and with Hausdorff dimension at most 2.

Suppose that there exists a ball B(x, r) with μ(B(x, r)) ≥ C2r2n+1; if C2 is big enough, we
can find a cube Q0 ∈D, Q ⊂ B(x, r) such that


(Q0) ≥ M,

where M is the constant from Lemma 3·1.
Let A > 1 be as in Lemma 3·1. Following the notation of Lemma 3·1, for an arbitrary cube

Q ∈D with 
(Q) ≥ M, set

N(Q) :=
⌊

A−2 log(
(Q))
⌋

and

HD(Q) :=
{

P ∈D | P ⊂ Q, �(P) = 2−N(Q)�(Q), 
(P) > 2
(Q)
}

.

Put Z0 := Q0, HD0 := {Q0}, HD1 := HD(Q0), and Z1 := ⋃
Q∈HD1

Q. Proceeding induc-
tively, for all j ≥ 2 we define

HDj :=
⋃

Q∈HDj−1

HD(Q),

Zj :=
⋃

Q∈HDj

Q.

Note that for each j the cubes in HDj form a disjoint family. Moreover, {Zj}j≥0 form a
decreasing sequence of sets, that is Zj+1 ⊂ Zj. Define

Z :=
⋂
j≥0

Zj.

Claim 4·1. We have

μ(Z) �M,s μ(Q0).
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Proof. Observe that for Q ∈ HDj we have


(Q) ≥ 2j
(Q0) ≥ 2jM. (4·1)

In particular, 
(Q) ≥ M and so we may apply Lemma 3·1 to Q. It follows that for any j ≥ 0
we have

μ(Zj+1) =
∑

Q∈HDj+1

μ(Q) =
∑

Q∈HDj

∑
P∈HD(Q)

μ(P)
(3·1)≥

∑
Q∈HDj

(1 − 
(Q)−s)μ(Q)

(4·1)≥
∑

Q∈HDj

(1 − 2−jsM−s)μ(Q) = (1 − 2−jsM−s)μ(Zj).

Using this estimate (j + 1) times we arrive at

μ(Zj+1) ≥
j∏

i=0

(1 − 2−isM−s)μ(Q0). (4·2)

Since Zj form a sequence of decreasing sets, we get by the continuity of measure

μ(Z) = lim
j→∞ μ(Zj) ≥

∞∏
i=0

(1 − 2−isM−s)μ(Q0) = C(s, M)μ(Q0),

where C(s, M) is positive and finite because
∑∞

i=0 2−is < ∞.

Claim 4·2. We have

dimH(Z) ≤ 2.

Proof. Recall that N(Q) = ⌊
A−2 log(
(Q))

⌋
. It follows from (4·1) that for Q ∈ HDj we

have N(Q) ≥ C3jA−2 for some absolute constant C3 > 0. Thus, for Q ∈ HDj and P ∈ HD(Q)

�(P) = 2−N(Q)�(Q) ≤ 2−C3jA−2
�(Q).

Using this observation j times we get that for P ∈ HDj+1

�(P) ≤ 2−C4j(j+1)A−2
�(Q0),

where C4 = C3/2. Hence, the cubes from HDj form coverings of Z with decreasing
diameters, well suited for estimating the Hausdorff measure of Z.

Let 0 < ε < 1, 0 < δ < 1 be small. Let j ≥ 0 be so big that for Q ∈ HDj we have diam(Q) ≤
��(Q) ≤ δ. Then,

H2+ε
δ (Z) ≤ �2+ε

∑
Q∈HDj

�(Q)2+ε ≤ �2+ε(2−C4j(j−1)A−2
�(Q0))ε

∑
Q∈HDj

�(Q)2. (4·3)

It follows by (3·2) that∑
Q∈HDj

�(Q)2 =
∑

P∈HDj−1

∑
Q∈HD(P)

�(Q)2 ≤ Cp

∑
P∈HDj−1

�(P)2.
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Using the estimate above j times, and putting it together with (4·3) we arrive at

H2+ε
δ (Z) ≤ �2+ε(Cp)j 2−εC4j(j−1)A−2

�(Q0)2+ε.

The right hand side above converges to 0 as j → ∞ (just note that the exponent at Cp is
linear in j while the exponent at 2 is quadratic in j). Hence, H2+ε

δ (Z) = 0. Letting δ → 0 we
get H2+ε(Z) = 0. Since this is true for arbitrarily small ε > 0, it follows that

dimH (Z) = inf{t ≥ 0 : Ht(Z) = 0} ≤ 2.

Proof of Theorem 1·1. We have found a set Z ⊂H
n of dimension smaller than or equal to

2 (Claim 4·2) but which nevertheless has positive μ-measure (Claim 4·1). This contradicts
the assumptions of Theorem 1·1. Thus, there exists C2 = C2(n, C1) such that μ(B(x, r)) ≤
C2r2n+1 for all x ∈H

n and r > 0.
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