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DERIVATIONS AND AUTOMORPHISMS OF EXTERIOR
ALGEBRAS

DRAGOMIR Z. DJOKOVIC
Dedicated to D. S. Mitrinovi¢

0. Introduction. In this paper we study the Lie algebra & of derivations of
the exterior algebra ¢ of a vector space 17 over a field K of characteristic
# 2, and the group 4 of automorphisms of & .

Both ¢ and £ have natural Zs-gradings 9 = 2,® Z,and & =&, @ &1,
Let 4, be the subgroup of A which preserves this grading of ¢. We
show that &, is the ideal of inner derivations of & except in the case when
dim 7 = N,.

For 4 we assume that dim 1”7 = # is finite. In the case when K is the complex
field, 4, has been determined by F. A. Berezin [1]. e claimed there that
A = Ay, which is erroneous. In fact 4 is a semidirect product 4 = Ny X A,
where IV, is the group of inner automorphisms of ¢ and N; is abelian. All our
results are established for arbitrary K of characteristic # 2.

[t is important to note that & is the Lie algebra of ordinary derivations of & .
The case of graded derivations (also called antiderivations) is much easier and
well-known. See for instance [4] or [3, p. 111-114].

1. Preliminaries. Let 4 be an associative algebra over a field K. With
respect to the bracket operation, [«, 0] = «b — ba, A becomes a Lie algebra
over K which we will denote by 4 ;.

Each « € 4 determines a derivation D, of 4 defined by D,(x) = |«, x]
= ax — xa (x € A). The map A, — Der A which sends « to D, is a homo-
morphism of Lie algebras. The image of this homomorphism is Inder 4, the
Lie algebra of inner derivations of 4.

If a € A and D € Der 4 then we have [D,D,] = DD, — D,D = D, where
b = D(a). This shows that Inder 4 is an ideal of Der 4.

Now let us assume that A is Zs-graded, i.e., 4 = 4y ® A, is a fixed direct
decomposition such that 4,4; C A; (4,7 = 0, 1; indices are added modulo
2). Let Der;4 (1 = 0, 1) be the subspace of Der 4 consisting of all derivations
D such that D(4;) C A4, (7 =0, 1).

LemMA 1. With the above hypotheses we have Der 4 = DergA @ Deri14, DeroA
s a subalgebra of Der A, and [Dero4, DeriA] C Deri4.
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Proof. The last two assertions are obvious. It is also clear that
Dery4d M Dery4d = 0 and so it remains to prove that Der 4 = Der¢d + Der;4.
Let pi: A — A (i = 0, 1) be the canonical projections. For D ¢ Der 4 we
define D; (1 = 0, 1) by
Di'Aj = PH—]‘OD[A,' (] =0,1).
Clearly the linear transformations D, satisfy D;(4;,) C 4., (7 =0, 1). We
claim that they are derivations of 4, which will complete the proof. Thus we
have to show that D;(xy) = (Dx)y 4+ x(D,y) holds for x,y € 4. Clearly, it
suffices to prove this when x and y are homogeneous, say x = x; € 4; and
vy =19 € A (1,7, k = 0,1). Then
Di(xye) = piriia(D(x))
= P in((Dx;)yr) + pirira(x;(Dyx))
= (purs(Dx;))yr + (P (Dyr))
= Di(x )y + 4D i(yp).
LEMMA 2. Assume moreover that A 1s anticommittative, 1.e.,
vy = (—1)Yyforx € A,y € 4; (4,7 =0,1).
Then Inder 4 is un abeliun ideal of Der A und Inder A C Dery4.

Proof. We have mentioned before that Inder 4 is an ideal of Der 4. Recall
that we have a surjective Lie algebra homomorphism 4, — Inder A whose
kernel is clearly the center Z, of 4. Thus Inder 4 = A,/Z, as Lie algebras.
Since 4y C Z4 (by anticommutativity) and [4, 4] C 4, we see that A /4,
is abelian and also 4 ,/Z is abelian. Thus Inder A is an abelian ideal of Der 4.

If « € Ag then D, = 0 and if « € 4, then D, € Der,A. This proves that
Inder 4 C Der;4.

2. Derivations of exterior algebras. Let 1" be a vector space over a field K
and let & be the exterior algebra of 1. ¢ has a Z-grading

& =@ &

where ¢ 7 is the i-th exterior power of 17, In particular, ¢® = K and &' = T,
We shall be more interested in the induced Z.-grading

&= 8o &,
where

&y = SP&, = &

If char K = 2 then & is commutative and it follows from [2, Chapter
[II, §10, Prop. 14] that every linear map 1" — & extends uniquely to a deri-
vation of & .
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Therefore we shall assume from now on that char K # 2.

Since ¢ is anticommutative, we have &y C Z where Z is the center of
¢ . In fact it is known that we have equality ¢y = Z except in the case when
dim 17 = n is finite and odd. In the exceptional case we have Z° = & @ &

We shall write & = Der &, . = Inder &, and Z; = Der;& (i =0, 1).
We know from Lemmas 1 and 2 that Z = 2, ® &4, F C &, and that .f is
an abelian ideal of 9.

Let -# be the maximal ideal of &, i.e.,

=T &

iz1
We shall denote by ¢ thc //fcompletlon of &. Clearly, & inherits a Z.-
grmdmgr from & ; & =&, @ & In fact & is a subalgebra of ¢ and is dense
in & for the A- topology. & K is the closure of &’ ; (i = 0, 1) in & for the same
topology. The elements of & can be identified with the formal infinite series
(1) x= 2, &y x,6 8N

=0
If x; = 0 for all 7 except finitely m(my of them, thenx € ¢&.

Let & be the idealizer of M in & B i.e. o(’a consists of all xe & such that
xM C Mand Mx C M.C ledrly & isa sul)(llgd)rd of ¢ containing & It is
casy to see that if v ¢ ¢ satisfies x I C M and Vx C A thenin fact x ¢ &,

Thus if x is given by (1) then x ¢ & if and only if for every y € Vx;y = 0
for all but finitely many ¢ = 0. i

For « ¢ & let D, be the corrcsponding‘ inner derivation of & . From the
definition of & it follows that D (&) C & . lence we have a restriction homo-
morphism Inder ¢ — . This is clearly injective and we denote by .# the
image in 2 of this homomorphism. It is clear that & C Z,.

THEOREM 3. We have & = & except when a basis of 1 has cardinality R.

TueoreM 4. We have
not Ko then I = D1,

Let us first introduce some notation. Let «; (¢ € T) be a basis of T7and assume
that the index set [ is totally ordered. By % we shall denote the set of all finite
subsets of 1. We have a partition of F into # yand & i where %, (resp. F)
consists of those .S ¢ % whose cardinality is an even (resp. odd) integer.

Il

D1. Moreover, if the cardinality of « basis of V 1s

The algebra ¢ has a basis {as| S € Z#} where if S = {4, 15, . . ., 1} with
17 < 19 ... < 1z then
g = QyQiy o o o Agpe
In particular ag = 1 is the identity element of & and a;,; = a, for i € 1.

Proof of Theorem 3. 1f I is a finite set then & = & and consequently &=,
Now let us assume that I is not countable. Let x € & be arbitrary and write
¥ =x0+ X1+ xe+ ... with x, € &7 Let P ={r|x, # 0}. For r ¢ P let
I, =1{i € I|ax, =0}. Then each I, is a finite set and consequently their
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union is countable. Therefore there exists an 7 € I such that 7+ ¢ I, for all
r ¢ P. Then ayx, # 0forall r € P. Since

ax = axo+axi+Faxe+... 68

and ax, € 6;@”’}' (r 2 0), this implies that P is a finite set. Consequently
¥ C & andso & = &.
Finally, let us assume that [ has cardinality Wo. Then we may assume that
1 is the set of positive integers. It is easy to see that the clement
X = D, as. .. ay

=0

.. @ . . @
is1In ¢ butis notin & .

Proof of Theorem 4. Let D ¢ &, and write Du; = b, Since a, ¢ 17 =
&1 C &ywehave b, € &y From «;* = 0 we obtain (Da)e; + a(Day) = 0,
ie., buwr 4+ asby = 0. Since b, € & CZ this gives 2a;0; = 0 and since
char K # 2 we have «b; = 0.

Fori,j ¢ Ilet IV = I\{i} and 1" = I\{4, j}. We denote 177 (resp. V(09)
the subspace of 17 spanned by «y, for & ¢ I® (resp. b € I¢9). Further, &
(resp. &9 will be the exterior algebra of 17 (resp. 1"%9), We also put
F = (S FlidS), FOh = FO N FI, Finally, we define # "
= FON F,, Fi =F O N Fand similarly F (09 and F 09,

It follows fromad; = Oand b, € §othatb, = wic, wherec; € &0,

From ¢ ; 4+ a0, = 0 we obtain

(Dagya; + a;(Da;) + (Daj)a; + «;(Day) =0, or
bi{Lj + ¢ ibj + b]'(lri "‘i" (iji = (.

Since b; ¢ &y C Z and char K # 2 this gives a; + a,b; = 0. Using
b; = axc;and b; = w;c; we obtain

(2) ww(c; —ci) =0,

S ¢ F 1) of &Y, we can write

Using the basis {« s

(3) ci= 2 asus, (SE€F,).

The coefficients a5’ € K are defined for S € %, and 7 € T\S. It follows from
(2) and (3) that as’ = ag’ whenever S ¢ %, and 4, j € I\S. Therefore for
each S ¢ % thereisascalaras ¢ K such that ag? = asforalli ¢ I\S.

Let m be an odd positive integer and let .# ™ he the set of all S € % of
cardinality m. We claim that ag # 0 for only finitely many S € %" Indeed,
let i1, 72, ..., 1, be distinct elements of 1. Since ¢;, ¢ ¢ there are only finitely
many S € %™ such that as # 0 and 4; ¢ S. Similar statements are valid for
indices s, ..., 7,. Hence there are only finitely many S ¢ #™ such that
as # 0and {71,172, . .., 7,} & S. This proves our claim. Thus each sum

> asas(S €.F ™, modd)

https://doi.org/10.4153/CJM-1978-111-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-111-5

1340 DRAGOMIR Z. DJOKOVIC

is in fact finite and so

c = Z asas(SEg‘vl)

is an element of &.
We have

—Cy = A€ = Z sty = Z as‘aas = ac; =0, 6 & (G €I,

SEF1 SE.‘?l(i)
. & . .
which proves that ¢ € ¢". The same computation gives D (a¢;) = —2b; =

—2D(a;), and so D € g. ) .
We have proved that 2, C .# and since we remarked before that .# C &,
we have f = Z,. The second assertion now follows from Theorem 3.

3. Automorphisms of exterior algebras. In this section we assume that
dim 17 = n is finite and char K # 2. As before, ¢ is the exterior algebra of 1",

Let A be the group of automorphisms of ¢ (considered just as a K-algebra)
and let 4, be the subgroup of A consisting of those automorphisms ¢ which
preserve the Zy-grading of & i.e., such that (&) = &, (1 = 0, 1).

Recall that ¢ is a local algebra with the maximal ideal # = 3 ;»; ¢ ; and
that

M =3 Ek=0).

i=k
Therefore, every ¢ € A stabilizes the chain

& =MD M D MDD M DO

S

[lence every ¢ € A induces an automorphism ¢ ; of the vector space &/ M.
Since the canonical map &7 — 4/ #"* is an isomorphism we can consider
o as operating in & .

The map f: 4 — GL(&?) defined by f;(¢) = o, is clearly a homomorphism.
In particular, o is the identity for every ¢ € A4; i.e., fy is the trivial homo-
morphism and it is well-known that f; is surjective. In fact every automor-
phism 7 of 17 extends uniquely to an automorphism g(r) of ¢. Thus if NV
= ker(f1) than we have a short exact sequence

Ji

1-N—4 ?GL(V)HI

with g a section, i.e., f1 0 ¢ = identity.
Let G be the image of g in 4. Then A4 is a semidirect product 4 = N X G.

LEmMMA 5. If ¢ € N then o, 1s the identity for all 1.

Proof. We always have ¢, = identity and by hypothesis we also have
o1 = identity. Now let 2 <k < #n and let xy, ..., x, € V. Then o(x;) =
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x;+ vy where v; € #*and consequently
a(X1Xs . .. X)) — XXe ... X = (X1 1) (ve ) oL (X k)
— XX ... &y & ML
This proves that o, = identity.
LeMMA 6. N s a unipolent group.

Proof. Let 1 be the identity map of &. It follows from Lemma 5 that for
o eN we have (¢ — 1) (M) C M+ (1 = 0) and so ¢ — 1 is nilpotent, i.e.,
¢ is unipotent.

Let No = NN A4, Since 4 = N X G and G C 4, it follows that 4,
= Ny X G. ‘
Recall that every inner derivation of & is of the form D, (¢« ¢ &).

LeEMMA 7. If a, b € &y then DD, = 0.
Proof. It suffices to check that D,D,(x) = 0 for x € &, (i = 0, 1). Indeed
D.Dy(x) = a(bx — xb) — (bx — xb)a
= (abx + xba) — (axb + bxa).

This is zero because xbu = bax = —abx and bxa = (—1)"*'xab = —axb.

In particular, it follows from this lemma that D,> = 0 for « € ¢, and so
exp(D,) =1+ D, € A. Since fora € &,
14+D)x) =x+ax —x¢ (x€8)
it is clear that 1 + D, € N.
If a, b € &, then by Lemma 7

(1 + Du)<1 + Dh) = ] + Dulh = <1 _I" Db)(l + Du)-

. —- cl .
Hence, the automorphisms 1 + D, (¢« € &) form an abelian subgroup of N
. . T @ . .
which we will denote by N;. The map &1 — N, sending « to 1 + D, is a
. " @ . @
homomorphism of the additive group of ¢ ; onto N, with kernel &'y NZ .

For k = 1 let M} be the subgroup of N, consisting of all automorphisms
1 + Da with « c (_,)(‘721\'_1.

THEOREM 8. For cach k=1 the product M™ = My My 1. . .15 « normal
subgroup of A. In particular, Nv < A.

Proof. For « ¢ & and ¢ ¢ 4 we have ¢D,o! = Dy. It remains to notice
that M/ ® consists of all 1 + D, with « € #*=' and that 4>~ is g-stable.

Now let us define for £ = 1 the subgroup N® of N. It consists of all ¢ € N
such that

o(x) € Py =&+ M* forx V.
It is clear that

N = NO DN(Q) ... :)N('") DN("1+1) = N
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7
where m = [ 2] , and that

NOMNN, =MD (b z1).

THEOREM 9. We have

(i) N® = NED X I, (B = 1),
(11) N =N X IV(),
(iii) 4 = N X A,.

Proof. By Theorem 8, Ny < A. If a« ¢ &yand 1 + D, ¢ Agthen forx ¢ 17
we must have D,(x) = 0. Thus D, = 0 and so N; M 4, = 1. IHence in order
to prove (ii) and (iii) it suffices to show that N = NNyand 4 = N:4,. Since
A4 = NG and G C 4, it suffices to prove only that N = NN, This last
equality clearly follows from (i), which we now proceed to prove.

If « € &¥=1then forx € T we have (1 4+ D,)x —x = D € &%, Thus if
14+ D, € N then Dx = 0 for all x € V, i.e., D, = 0. Therefore
NED M A = 1.

We claim that 1/ normalizes N*+V, For this purpose let ¢ € N&+D,
@ € &?=1 5 € V. Then we have to show that

(1 - DG)U(I + D(,)x c @kﬁ-l‘
We have
1—-=Dye(l+D,)x =x+ (ox — x) — DyoDx + (6D, — Dyo)x.

Since x € Py, ox — & € Py and DoDyx € M C Pryy we need only
show that (¢D, —D,o)x € Py This is so because D,(ox — x) € D, (M?)
C M C Py and ¢Dx — Do € Pria. This last relation holds because
Dy € A and oy = identity.

It remains to show that N® = M N® D Let ¢ € N® For x € 1V we can
write uniquely

g(x) = x4+ 7(x) + 2
where 7(x) € & and z € M* N\ Py

Since x2 = 0 we have
0 = (x)? = (x + 7(x) +2)? = 2x7(x) + u

where 1 € #?+2, Thus x7(x) = 0 for all x € V. By [2, Chapter III, §10,
Prop. 14] 7 extends to a unique derivation D of &. Clearly D ¢ D and since
2, = 9 by Theorem 4, there exists an a« € &y such that D, = D. Since
7(x) = Dx = Dix = ax — xa € &% for all x € V, we may assume that

a € &1
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We finish the proof by showing that (1 — D,)e € N®tD, This is equivalent

to
(1 — D)ox € Py forx € V.
We have
(1 —-—D)ox =x+7kx)+2z—D,(x) — D,7(x) — D,z
=x+4+2 — Dz

because D, (x) = 7(x) and D,r(x) = D,2(x) = 0 by Lemma 7. Since x € &1,
2 € Pryyand Dz € D (M?) C MM C Py, the proof is complete.

4. Inner automorphisms of <. Our hypotheses about K, 17, ¢ will be
the same as in the preceding section.
Since ¢ is a local algebra, an element x € & is invertible if and only if
x ¢ M. We shall denote by U the group of units of &, ie., U = &\.A.
Clearly Uy = UM & is a subgroup of U. We put
U, = Um(1+(96)1)=1+()m1
Of course, Uy is not « siubgroup (in general) but we have
«aU,a=t = U, fora € U,
The center Z of U is contained in the center 2 of ¢ and so we have

Z=UNZ.

Since ¢ C Z we have Uy C Z. In fact Uy = Z except when dim 17 =
is odd. In the exceptional case we have

Z="U,- (14 &m).
TureoreM 10. Uy is « system of coset representatives of Ugin U.
Proof. Let x, vy € & 1. Then 1 + x, 1 4+ y are in U, and
A4+x)7M1+y)=0-x)0+y)=1—x+y —xy.

If this product belongs to U, then since 1 — xy € ¢yand v —x € &4 we
must have vy — x = 0, i.e., ¥y = x. This shows that if x # y then (1 4+ x) U,
# (1 + y) U

It remains to show that U = U,U,. Letting « € U we have to show that
a € UyU,. Clearly we may assume that « = 1 + b with b € 4. If b € &,
then « € U; and there is nothing to prove. So let b = by + by with
b, € &, M M, and by # 0. We can write

1)0=C2k+62k+2+~-

where ¢o; € &27and ca, # 0 (B = 1). We shall say that 2k is the order of the
element «. Now it is clear that (1 — c¢g;)a has order > 2k and our claim follows
by induction.
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™ . @ _ o 2
The automorphisms of & of the form x — axa=! (¢ € U, x € &) are called
. . . . G @
inner. The inner automorphisms of ¢ form a group Inaut ¢ and we have a
short exact sequence

1—Z— U-—Inaut & — 1.
TueorEM 11. Let Ny be the group defined in the previous section. We have
N; = Inaut &.
Proof. Let « ¢ U. By Theorem 10 we can write « = (1 + b)c with b € &,
and ¢ € U,. Since Uy C Z C % we have, forx € &,
axa=t = (1 + 0)exc™*(1 —b) = (1 4+ b)x(1 — b)
=ux+ bx —xb = (1 4+ D) (x).
Note that bxb = 0 for all x ¢ & because b € & .

This proves that Inaut & C N
Conversely, if « ¢ &1 then 1 + D, is simply conjugation by 1 4+ « € U.

This Theorem gives an alternative proof of the assertion Ny <1 4.
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