DERIVATIONS AND AUTOMORPHISMS OF EXTERIOR ALGEBRAS

DRAGOMIR Ž. DJOKOVIĆ

Dedicated to D. S. Mitrinović

0. Introduction. In this paper we study the Lie algebra \mathscr{D} of derivations of the exterior algebra \mathscr{E} of a vector space V over a field K of characteristic $\neq 2$, and the group A of automorphisms of \mathscr{E} .

Both \mathscr{E} and \mathscr{D} have natural \mathbb{Z}_2 -gradings $\mathscr{D} = \mathscr{D}_0 \oplus \mathscr{D}_1$ and $\mathscr{E} = \mathscr{E}_0 \oplus \mathscr{E}_1$. Let A_0 be the subgroup of A which preserves this grading of \mathscr{E} . We show that \mathscr{D}_1 is the ideal of inner derivations of \mathscr{E} except in the case when dim $V = \aleph_0$.

For A we assume that dim V = n is finite. In the case when K is the complex field, A_0 has been determined by F. A. Berezin [1]. He claimed there that $A = A_0$, which is erroneous. In fact A is a semidirect product $A = N_1 \rtimes A_0$ where N_1 is the group of inner automorphisms of \mathscr{E} and N_1 is abelian. All our results are established for arbitrary K of characteristic $\neq 2$.

It is important to note that \mathscr{D} is the Lie algebra of *ordinary derivations* of \mathscr{E} . The case of graded derivations (also called *antiderivations*) is much easier and well-known. See for instance [4] or [3, p. 111–114].

1. Preliminaries. Let A be an associative algebra over a field K. With respect to the bracket operation, [a, b] = ab - ba, A becomes a Lie algebra over K which we will denote by A_L .

Each $a \in A$ determines a derivation D_a of A defined by $D_a(x) = [a, x] = ax - xa$ ($x \in A$). The map $A_L \rightarrow \text{Der } A$ which sends a to D_a is a homomorphism of Lie algebras. The image of this homomorphism is Inder A, the Lie algebra of inner derivations of A.

If $a \in A$ and $D \in \text{Der } A$ then we have $[D, D_a] = DD_a - D_aD = D_b$ where b = D(a). This shows that Inder A is an ideal of Der A.

Now let us assume that A is \mathbb{Z}_2 -graded, i.e., $A = A_0 \oplus A_1$ is a fixed direct decomposition such that $A_iA_j \subset A_{i+j}$ (i, j = 0, 1); indices are added modulo 2). Let Der_iA (i = 0, 1) be the subspace of Der A consisting of all derivations D such that $D(A_j) \subset A_{i+j}$ (j = 0, 1).

LEMMA 1. With the above hypotheses we have $\text{Der } A = \text{Der}_0 A \oplus \text{Der}_1 A$, $\text{Der}_0 A$ is a subalgebra of Der A, and $[\text{Der}_0 A, \text{Der}_1 A] \subset \text{Der}_1 A$.

Received October 8, 1977. This work was supported in part by NRC Grant A-5285.

Proof. The last two assertions are obvious. It is also clear that $\text{Der}_0A \cap \text{Der}_1A = 0$ and so it remains to prove that $\text{Der} A = \text{Der}_0A + \text{Der}_1A$.

Let $p_i: A \to A_i$ (i = 0, 1) be the canonical projections. For $D \in \text{Der } A$ we define D_i (i = 0, 1) by

$$D_i|_{A_j} = p_{i+j} \circ D|_{A_j} \quad (j = 0, 1).$$

Clearly the linear transformations D_i satisfy $D_i(A_j) \subset A_{i+j}$ (j = 0, 1). We claim that they are derivations of A, which will complete the proof. Thus we have to show that $D_i(xy) = (D_ix)y + x(D_iy)$ holds for $x, y \in A$. Clearly, it suffices to prove this when x and y are homogeneous, say $x = x_j \in A_j$ and $y = y_k \in A_k$ (i, j, k = 0, 1). Then

$$D_{i}(x_{j}y_{k}) = p_{i+j+k}(D(x_{j}y_{k}))$$

= $p_{i+j+k}((Dx_{j})y_{k}) + p_{i+j+k}(x_{j}(Dy_{k}))$
= $(p_{i+j}(Dx_{j}))y_{k} + x_{j}(p_{i+k}(Dy_{k}))$
= $D_{i}(x_{j})y_{k} + x_{j}D_{i}(y_{k}).$

LEMMA 2. Assume moreover that A is anticommutative, i.e.,

 $yx = (-1)^{ij}xy$ for $x \in A_i$, $y \in A_j$ (i, j = 0, 1).

Then Inder A is an abelian ideal of Der A and Inder $A \subset Der_1A$.

Proof. We have mentioned before that Inder A is an ideal of Der A. Recall that we have a surjective Lie algebra homomorphism $A_L \to \text{Inder } A$ whose kernel is clearly the center Z_A of A. Thus Inder $A \cong A_L/Z_A$ as Lie algebras. Since $A_0 \subset Z_A$ (by anticommutativity) and $[A, A] \subset A_0$ we see that A_L/A_0 is abelian and also A_L/Z_A is abelian. Thus Inder A is an abelian ideal of Der A.

If $a \in A_0$ then $D_a = 0$ and if $a \in A_1$ then $D_a \in \text{Der}_1 A$. This proves that Inder $A \subset \text{Der}_1 A$.

2. Derivations of exterior algebras. Let *V* be a vector space over a field *K* and let \mathscr{E} be the exterior algebra of *V*. \mathscr{E} has a **Z**-grading

$$\mathscr{E} = \bigoplus_{i \ge 0} \mathscr{E}^i$$

where \mathscr{E}^{i} is the *i*-th exterior power of V. In particular, $\mathscr{E}^{0} = K$ and $\mathscr{E}^{1} = V$. We shall be more interested in the induced \mathbb{Z}_{2} -grading

$$\mathscr{E} = \mathscr{E}_0 \oplus \mathscr{E}_1$$

where

$$\mathscr{E}_0 = \sum_{i \ge 0} \mathscr{E}^{2i}, \quad \mathscr{E}_1 = \sum_{i \ge 0} \mathscr{E}^{2i+1}.$$

If char K = 2 then \mathscr{C} is commutative and it follows from [2, Chapter III, §10, Prop. 14] that every linear map $V \to \mathscr{C}$ extends uniquely to a derivation of \mathscr{C} .

Therefore we shall assume from now on that char $K \neq 2$.

Since \mathscr{E} is anticommutative, we have $\mathscr{E}_0 \subset \mathscr{Z}$ where \mathscr{Z} is the center of \mathscr{E} . In fact it is known that we have equality $\mathscr{E}_0 = \mathscr{Z}$ except in the case when dim V = n is finite and odd. In the exceptional case we have $\mathscr{Z} = \mathscr{E}_0 \oplus \mathscr{E}^n$.

We shall write $\mathscr{D} = \text{Der } \mathscr{E}$, $\mathscr{I} = \text{Inder } \mathscr{E}$, and $\mathscr{D}_i = \text{Der}_i \mathscr{E}$ (i = 0, 1). We know from Lemmas 1 and 2 that $\mathscr{D} = \mathscr{D}_0 \oplus \mathscr{D}_1$, $\mathscr{I} \subset \mathscr{D}_1$ and that \mathscr{I} is an abelian ideal of \mathscr{D} .

Let \mathscr{M} be the maximal ideal of \mathscr{E} , i.e.,

$$\mathscr{M} = \sum_{i \ge 1} \mathscr{E}^{i}.$$

We shall denote by $\hat{\mathscr{E}}$ the \mathscr{M} -completion of \mathscr{E} . Clearly, $\hat{\mathscr{E}}$ inherits a $\mathbb{Z}_{2^{-2}}$ grading from \mathscr{E} ; $\hat{\mathscr{E}} = \hat{\mathscr{E}}_{q} \oplus \hat{\mathscr{E}}_{1}$. In fact \mathscr{E} is a subalgebra of $\hat{\mathscr{E}}$ and is dense in $\hat{\mathscr{E}}$ for the \mathscr{M} -topology. $\hat{\mathscr{E}}_{i}$ is the closure of \mathscr{E}_{i} (i = 0, 1) in $\hat{\mathscr{E}}$ for the same topology. The elements of $\hat{\mathscr{E}}$ can be identified with the formal infinite series

(1)
$$x = \sum_{i \ge 0} x_i, x_i \in \mathscr{E}^i.$$

If $x_i = 0$ for all *i* except finitely many of them, then $x \in \mathscr{E}$.

Let $\hat{\mathscr{E}}$ be the *idealizer* of \mathscr{M} in $\hat{\mathscr{E}}$, i.e., $\hat{\mathscr{E}}$ consists of all $x \in \hat{\mathscr{E}}$ such that $x \mathscr{M} \subset \mathscr{M}$ and $\mathscr{M} x \subset \mathscr{M}$. Clearly $\hat{\mathscr{E}}$ is a subalgebra of $\hat{\mathscr{E}}$ containing \mathscr{E} . It is easy to see that if $x \in \hat{\mathscr{E}}$ satisfies $x V \subset \mathscr{M}$ and $Vx \subset \mathscr{M}$ then in fact $x \in \hat{\mathscr{E}}$.

Thus if x is given by (1) then $x \in \mathcal{E}$ if and only if for every $y \in V x_i y = 0$ for all but finitely many $i \ge 0$.

For $a \in \mathscr{E}$ let D_a be the corresponding inner derivation of \mathscr{E} . From the definition of \mathscr{E} it follows that $D_a(\mathscr{E}) \subset \mathscr{E}$. Hence we have a restriction homomorphism Inder $\mathscr{E} \to \mathscr{D}$. This is clearly injective and we denote by \mathscr{I} the image in \mathscr{D} of this homomorphism. It is clear that $\mathscr{I} \subset \mathscr{D}_1$.

THEOREM 3. We have $\tilde{\mathscr{E}} = \mathscr{E}$ except when a basis of V has cardinality \aleph_0 .

THEOREM 4. We have $\tilde{\mathscr{I}} = \mathscr{D}_1$. Moreover, if the cardinality of a basis of V is not \aleph_0 then $\mathscr{I} = \mathscr{D}_1$.

Let us first introduce some notation. Let a_i $(i \in I)$ be a basis of V and assume that the index set I is totally ordered. By \mathscr{F} we shall denote the set of all finite subsets of I. We have a partition of \mathscr{F} into \mathscr{F}_0 and \mathscr{F}_1 where \mathscr{F}_0 (resp. \mathscr{F}_1) consists of those $S \in \mathscr{F}$ whose cardinality is an even (resp. odd) integer.

The algebra \mathscr{C} has a basis $\{a_S \mid S \in \mathscr{F}\}$ where if $S = \{i_1, i_2, \ldots, i_k\}$ with $i_1 < i_2 \ldots < i_k$ then

$$a_S = a_{i_1}a_{i_2}\ldots a_{i_k}.$$

In particular $a_{\phi} = 1$ is the identity element of \mathscr{E} and $a_{\{i\}} = a_i$ for $i \in I$.

Proof of Theorem 3. If I is a finite set then $\hat{\mathscr{O}} = \mathscr{O}$ and consequently $\hat{\mathscr{O}} = \mathscr{O}$. Now let us assume that I is not countable. Let $x \in \hat{\mathscr{O}}$ be arbitrary and write $x = x_0 + x_1 + x_2 + \ldots$ with $x_r \in \mathscr{O}^r$. Let $P = \{r \mid x_r \neq 0\}$. For $r \in P$ let $I_r = \{i \in I \mid a_i x_r = 0\}$. Then each I_r is a finite set and consequently their union is countable. Therefore there exists an $i \in I$ such that $i \notin I_r$ for all $r \in P$. Then $a_i x_r \neq 0$ for all $r \in P$. Since

$$a_i x = a_i x_0 + a_i x_1 + a_i x_2 + \ldots \in \mathscr{E}$$

and $a_i x_r \in \tilde{\mathcal{E}}^{r+i}$ $(r \ge 0)$, this implies that P is a finite set. Consequently $x \in \mathcal{E}$ and so $\tilde{\mathcal{E}} = \mathcal{E}$.

Finally, let us assume that I has cardinality \aleph_0 . Then we may assume that I is the set of positive integers. It is easy to see that the element

$$x = \sum_{i \ge 0} a_1 a_2 \dots a_i$$

is in & but is not in &.

Proof of Theorem 4. Let $D \in \mathscr{D}_1$ and write $Da_i = b_i$. Since $a_i \in V = \mathscr{E}^1 \subset \mathscr{E}_1$ we have $b_i \in \mathscr{E}_0$. From $a_i^2 = 0$ we obtain $(Da_i)a_i + a_i(Da_i) = 0$, i.e., $b_1a_1 + a_1b_1 = 0$. Since $b_i \in \mathscr{E}_0 \subset \mathscr{X}$ this gives $2a_ib_i = 0$ and since char $K \neq 2$ we have $a_ib_i = 0$.

For $i, j \in I$ let $I^{(i)} = I \setminus \{i\}$ and $I^{(i,j)} = I \setminus \{i, j\}$. We denote $V^{(i)}$ (resp. $V^{(i,j)}$) the subspace of V spanned by a_k for $k \in I^{(i)}$ (resp. $k \in I^{(i,j)}$). Further, $\mathscr{E}^{(i)}$ (resp. $\mathscr{E}^{(i,j)}$) will be the exterior algebra of $V^{(i)}$ (resp. $V^{(i,j)}$). We also put $\mathscr{F}^{(i)} = \{S \in \mathscr{F} \mid i \notin S\}, \ \mathscr{F}^{(i,j)} = \mathscr{F}^{(i)} \cap \mathscr{F}^{(j)}$. Finally, we define $\mathscr{F}_0^{(i)}$ $= \mathscr{F}^{(i)} \cap \mathscr{F}_0, \ \mathscr{F}_1^{(i)} = \mathscr{F}^{(i)} \cap \mathscr{F}_1$ and similarly $\mathscr{F}_0^{(i,j)}$ and $\mathscr{F}_1^{(i,j)}$.

It follows from $a_i b_i = 0$ and $b_i \in \mathscr{E}_0$ that $b_i = a_i c_i$ where $c_i \in \mathscr{E}_1^{(i)}$. From $a_i a_j + a_j a_i = 0$ we obtain

$$(Da_i)a_j + a_i(Da_j) + (Da_j)a_i + a_j(Da_i) = 0$$
, or
 $b_ia_j + a_ib_j + b_ja_i + a_jb_i = 0$.

Since $b_i \in \mathscr{E}_0 \subset \mathscr{Z}$ and char $K \neq 2$ this gives $a_i b_j + a_j b_i = 0$. Using $b_i = a_i c_i$ and $b_j = a_j c_j$ we obtain

(2)
$$a_i a_j (c_j - c_i) = 0.$$

Using the basis $\{a_S \mid S \in \mathscr{F}_1^{(i)}\}$ of $\mathscr{E}_1^{(i)}$, we can write

(3)
$$c_i = \sum \alpha_S{}^i a_S, (S \in \mathscr{F}_1{}^{(i)}).$$

The coefficients $\alpha_S{}^i \in K$ are defined for $S \in \mathscr{F}_1$ and $i \in I \setminus S$. It follows from (2) and (3) that $\alpha_S{}^i = \alpha_S{}^j$ whenever $S \in \mathscr{F}_1$ and $i, j \in I \setminus S$. Therefore for each $S \in \mathscr{F}_1$ there is a scalar $\alpha_S \in K$ such that $\alpha_S{}^i = \alpha_S$ for all $i \in I \setminus S$.

Let *m* be an odd positive integer and let \mathscr{F}^m be the set of all $S \in \mathscr{F}$ of cardinality *m*. We claim that $\alpha_S \neq 0$ for only finitely many $S \in \mathscr{F}^m$. Indeed, let i_1, i_2, \ldots, i_m be distinct elements of *I*. Since $c_{i_1} \in \mathscr{C}$ there are only finitely many $S \in \mathscr{F}^m$ such that $\alpha_S \neq 0$ and $i_1 \notin S$. Similar statements are valid for indices i_2, \ldots, i_m . Hence there are only finitely many $S \in \mathscr{F}^m$ such that $\alpha_S \neq 0$ and $i_1 \notin S$. Similar statements are valid for indices i_2, \ldots, i_m . Hence there are only finitely many $S \in \mathscr{F}^m$ such that $\alpha_S \neq 0$ and $\{i_1, i_2, \ldots, i_m\} \not\subset S$. This proves our claim. Thus each sum

$$\sum \alpha_{S} a_{S}(S \in \mathscr{F}^{m}, m \text{ odd})$$

1339

is in fact finite and so

$$c = \sum \alpha_S a_S(S \in \mathscr{F}_1)$$

is an element of $\hat{\mathscr{C}}$.

We have

$$-ca_{i} = a_{i}c = \sum_{S \in \mathscr{F}_{1}} \alpha_{S}a_{i}a_{S} = \sum_{S \in \mathscr{F}_{1}(i)} \alpha_{S}^{i}a_{i}a_{S} = a_{i}c_{i} = b_{i} \in \mathscr{E} \quad (i \in I),$$

which proves that $c \in \mathscr{E}$. The same computation gives $D_c(a_i) = -2b_i = -2D(a_i)$, and so $D \in \mathscr{I}$.

We have proved that $\mathscr{D}_1 \subset \mathscr{\tilde{I}}$ and since we remarked before that $\mathscr{\tilde{I}} \subset \mathscr{D}_1$, we have $\mathscr{\tilde{I}} = \mathscr{D}_1$. The second assertion now follows from Theorem 3.

3. Automorphisms of exterior algebras. In this section we assume that dim V = n is finite and char $K \neq 2$. As before, \mathscr{E} is the exterior algebra of V.

Let A be the group of automorphisms of \mathscr{E} (considered just as a K-algebra) and let A_0 be the subgroup of A consisting of those automorphisms σ which preserve the \mathbb{Z}_2 -grading of \mathscr{E} , i.e., such that $\sigma(\mathscr{E}_i) = \mathscr{E}_i$ (i = 0, 1).

Recall that \mathscr{E} is a local algebra with the maximal ideal $\mathscr{M} = \sum_{i \ge 1} \mathscr{E}_i$ and that

$$\mathscr{M}^k = \sum_{i \ge k} \mathscr{E}^i (k \ge 0).$$

Therefore, every $\sigma \in A$ stabilizes the chain

$$\mathscr{E} = \mathscr{M}^0 \supset \mathscr{M}^1 \supset \mathscr{M}^2 \supset \ldots \supset \mathscr{M}^n \supset 0.$$

Hence every $\sigma \in A$ induces an automorphism σ_i of the vector space $\mathcal{M}^i/\mathcal{M}^{i+1}$. Since the canonical map $\mathscr{E}^i \to \mathcal{M}^i/\mathcal{M}^{i+1}$ is an isomorphism we can consider σ_i as operating in \mathscr{E}^i .

The map $f_i: A \to \operatorname{GL}(\mathscr{E}^i)$ defined by $f_i(\sigma) = \sigma_i$ is clearly a homomorphism. In particular, σ_0 is the identity for every $\sigma \in A$, i.e., f_0 is the trivial homomorphism and it is well-known that f_1 is surjective. In fact every automorphism τ of V extends uniquely to an automorphism $g(\tau)$ of \mathscr{E} . Thus if N $= \ker(f_1)$ than we have a short exact sequence

$$1 \to N \to A \xleftarrow{f_1}{\underset{g}{\longleftrightarrow}} GL(V) \to 1$$

with g a section, i.e., $f_1 \circ g = \text{identity}$.

Let G be the image of g in A. Then A is a semidirect product $A = N \rtimes G$.

LEMMA 5. If $\sigma \in N$ then σ_i is the identity for all *i*.

Proof. We always have σ_0 = identity and by hypothesis we also have σ_1 = identity. Now let $2 \leq k \leq n$ and let $x_1, \ldots, x_k \in V$. Then $\sigma(x_i) =$

1340

 $x_i + y_i$ where $y_i \in \mathcal{M}^2$ and consequently

$$\sigma(x_1x_2...x_k) - x_1x_2...x_k = (x_1 + y_1)(x_2 + y_2)...(x_k + y_k) - x_1x_2...x_k \in \mathcal{M}^{k+1}.$$

This proves that σ_k = identity.

LEMMA 6. N is a unipotent group.

Proof. Let 1 be the identity map of \mathscr{E} . It follows from Lemma 5 that for $\sigma \in N$ we have $(\sigma - 1)(\mathscr{M}^i) \subset \mathscr{M}^{i+1}$ $(i \geq 0)$ and so $\sigma - 1$ is nilpotent, i.e., σ is unipotent.

Let $N_0 = N \cap A_0$. Since $A = N \rtimes G$ and $G \subset A_0$ it follows that $A_0 = N_0 \times G$.

Recall that every inner derivation of \mathscr{E} is of the form D_a $(a \in \mathscr{E}_1)$.

LEMMA 7. If $a, b \in \mathscr{E}_1$ then $D_a D_b = 0$.

Proof. It suffices to check that $D_a D_b(x) = 0$ for $x \in \mathscr{E}_i$ (i = 0, 1). Indeed

$$D_a D_b(x) = a(bx - xb) - (bx - xb)a$$

= $(abx + xba) - (axb + bxa)$

This is zero because xba = bax = -abx and $bxa = (-1)^{i+1}xab = -axb$.

In particular, it follows from this lemma that $D_a^2 = 0$ for $a \in \mathscr{E}_1$ and so $\exp(D_a) = 1 + D_a \in A$. Since for $a \in \mathscr{E}_1$

 $(1+D_a)(x) = x + ax - xa \quad (x \in \mathscr{E})$

it is clear that $1 + D_a \in N$.

If $a, b \in \mathscr{E}_1$ then by Lemma 7

$$(1 + D_a)(1 + D_b) = 1 + D_{a+b} = (1 + D_b)(1 + D_a).$$

Hence, the automorphisms $1 + D_a$ ($a \in \mathscr{E}_1$) form an abelian subgroup of N which we will denote by N_1 . The map $\mathscr{E}_1 \to N_1$ sending a to $1 + D_a$ is a homomorphism of the additive group of \mathscr{E}_1 onto N_1 with kernel $\mathscr{E}_1 \cap \mathscr{Z}$.

For $k \ge 1$ let M_k be the subgroup of N_1 consisting of all automorphisms $1 + D_a$ with $a \in \mathscr{E}^{2k-1}$.

THEOREM 8. For each $k \ge 1$ the product $M^{(k)} = M_k M_{k+1} \dots$ is a normal subgroup of A. In particular, $N_1 \triangleleft A$.

Proof. For $a \in \mathscr{E}$ and $\sigma \in A$ we have $\sigma D_a \sigma^{-1} = D_{\sigma(a)}$. It remains to notice that $M^{(k)}$ consists of all $1 + D_a$ with $a \in \mathcal{M}^{2k-1}$, and that \mathcal{M}^{2k-1} is σ -stable.

Now let us define for $k \ge 1$ the subgroup $N^{(k)}$ of N. It consists of all $\sigma \in N$ such that

$$\sigma(x) \in \mathscr{P}_{k} = \mathscr{E}_{1} + \mathscr{M}^{2k} \text{ for } x \in V.$$

It is clear that

$$N = N^{(1)} \supset N^{(2)} \supset \ldots \supset N^{(m)} \supset N^{(m+1)} = N_0$$

where $m = \begin{bmatrix} n \\ 2 \end{bmatrix}$, and that

 $N^{(k)} \cap N_1 = M^{(k)} \quad (k \ge 1).$

THEOREM 9. We have (i) $N^{(k)} = N^{(k+1)} \times M_k$ $(k \ge 1)$, (ii) $N = N_1 \rtimes N_0$, (iii) $A = N_1 \rtimes A_0$.

Proof. By Theorem 8, $N_1 \triangleleft A$. If $a \in \mathscr{O}_1$ and $1 + D_a \in A_0$ then for $x \in V$ we must have $D_a(x) = 0$. Thus $D_a = 0$ and so $N_1 \cap A_0 = 1$. Hence in order to prove (ii) and (iii) it suffices to show that $N = N_1N_0$ and $A = N_1A_0$. Since A = NG and $G \subset A_0$ it suffices to prove only that $N = N_1N_0$. This last equality clearly follows from (i), which we now proceed to prove.

If $a \in \mathscr{C}^{2k-1}$ then for $x \in V$ we have $(1 + D_a)x - x = D_a x \in \mathscr{C}^{2k}$. Thus if $1 + D_a \in N^{(k+1)}$ then $D_a x = 0$ for all $x \in V$, i.e., $D_a = 0$. Therefore $N^{(k+1)} \cap M_k = 1$.

We claim that M_k normalizes $N^{(k+1)}$. For this purpose let $\sigma \in N^{(k+1)}$, $a \in \mathscr{E}^{2k-1}$, $x \in V$. Then we have to show that

 $(1 - D_a)\sigma(1 + D_a)x \in \mathscr{P}_{k+1}.$

We have

$$(1 - D_a)\sigma(1 + D_a)x = x + (\sigma x - x) - D_a\sigma D_ax + (\sigma D_a - D_a\sigma)x.$$

Since $x \in \mathscr{P}_{k+1}$, $\sigma x - x \in \mathscr{P}_{k+1}$ and $D_a \sigma D_a x \in \mathscr{M}^{2k+1} \subset \mathscr{P}_{k+1}$ we need only show that $(\sigma D_a - D_a \sigma) x \in \mathscr{P}_{k+1}$. This is so because $D_a(\sigma x - x) \in D_a(\mathscr{M}^2)$ $\subset \mathscr{M}^{2k+1} \subset \mathscr{P}_{k+1}$ and $\sigma D_a x - D_a x \in \mathscr{P}_{k+1}$. This last relation holds because $D_a x \in \mathscr{M}^{2k}$ and σ_{2k} = identity.

It remains to show that $N^{(k)} = M_k N^{(k+1)}$. Let $\sigma \in N^{(k)}$. For $x \in V$ we can write uniquely

$$\sigma(x) = x + \tau(x) + z$$

where $\tau(x) \in \mathscr{E}^{2k}$ and $z \in \mathscr{M}^2 \cap \mathscr{P}_{k+1}$. Since $x^2 = 0$ we have

Since $x^2 = 0$ we have

$$0 = (\sigma x)^2 = (x + \tau(x) + z)^2 = 2x\tau(x) + u$$

where $u \in \mathscr{M}^{2k+2}$. Thus $x\tau(x) = 0$ for all $x \in V$. By [2, Chapter III, §10, Prop. 14] τ extends to a unique derivation D of \mathscr{E} . Clearly $D \in D_1$ and since $\mathscr{D}_1 = \mathscr{I}$ by Theorem 4, there exists an $a \in \mathscr{E}_1$ such that $D_a = D$. Since $\tau(x) = Dx = D_a x = ax - xa \in \mathscr{E}^{2k}$ for all $x \in V$, we may assume that $a \in \mathscr{E}^{2k-1}$.

1342

We finish the proof by showing that $(1 - D_a)\sigma \in N^{(k+1)}$. This is equivalent to

$$(1 - D_a)\sigma x \in \mathscr{P}_{k+1}$$
 for $x \in V$.

We have

$$(1 - D_a)\sigma x = x + \tau(x) + z - D_a(x) - D_a\tau(x) - D_az = x + z - D_az$$

because $D_a(x) = \tau(x)$ and $D_a\tau(x) = D_a^2(x) = 0$ by Lemma 7. Since $x \in \mathscr{E}_1$, $z \in \mathscr{P}_{k+1}$ and $D_a z \in D_a(\mathscr{M}^2) \subset \mathscr{M}^{2k+1} \subset \mathscr{P}_{k+1}$, the proof is complete.

4. Inner automorphisms of \mathscr{E} **.** Our hypotheses about K, V, \mathscr{E} will be the same as in the preceding section.

Since \mathscr{E} is a local algebra, an element $x \in \mathscr{E}$ is invertible if and only if $x \notin \mathscr{M}$. We shall denote by U the group of units of \mathscr{E} , i.e., $U = \mathscr{E} \setminus \mathscr{M}$. Clearly $U_0 = U \cap \mathscr{E}_0$ is a subgroup of U. We put

 $U_1 = U \cap (1 + \mathscr{E}_1) = 1 + \mathscr{E}_1.$

Of course, U_1 is not a subgroup (in general) but we have

 $a U_1 a^{-1} = U_1$ for $a \in U_0$.

The center Z of U is contained in the center \mathscr{Z} of \mathscr{E} and so we have

 $Z = U \cap \mathscr{Z}.$

Since $\mathscr{E}_0 \subset \mathscr{L}$ we have $U_0 \subset Z$. In fact $U_0 = Z$ except when dim V = n is odd. In the exceptional case we have

 $Z = U_0 \cdot (1 + \mathscr{E}^n).$

THEOREM 10. U_1 is a system of coset representatives of U_0 in U.

Proof. Let $x, y \in \mathscr{E}_1$. Then 1 + x, 1 + y are in U_1 and

 $(1 + x)^{-1}(1 + y) = (1 - x)(1 + y) = 1 - x + y - xy.$

If this product belongs to U_0 then since $1 - xy \in \mathscr{E}_0$ and $y - x \in \mathscr{E}_1$ we must have y - x = 0, i.e., y = x. This shows that if $x \neq y$ then $(1 + x)U_0 \neq (1 + y)U_0$.

It remains to show that $U = U_0 U_1$. Letting $a \in U$ we have to show that $a \in U_0 U_1$. Clearly we may assume that a = 1 + b with $b \in \mathcal{M}$. If $b \in \mathscr{E}_1$ then $a \in U_1$ and there is nothing to prove. So let $b = b_0 + b_1$ with $b_i \in \mathscr{E}_i \cap \mathcal{M}$, and $b_0 \neq 0$. We can write

 $b_0 = c_{2k} + c_{2k+2} + \ldots$

where $c_{2i} \in \mathscr{E}^{2i}$ and $c_{2k} \neq 0$ $(k \geq 1)$. We shall say that 2k is the *order* of the element *a*. Now it is clear that $(1 - c_{2k})a$ has order > 2k and our claim follows by induction.

The automorphisms of \mathscr{E} of the form $x \to axa^{-1}$ $(a \in U, x \in \mathscr{E})$ are called *inner*. The inner automorphisms of \mathscr{E} form a group Inaut \mathscr{E} and we have a short exact sequence

 $1 \to Z \to U \to \text{Inaut } \mathscr{E} \to 1.$

THEOREM 11. Let N_1 be the group defined in the previous section. We have

 $N_1 = \text{Inaut } \mathscr{E}.$

Proof. Let $a \in U$. By Theorem 10 we can write a = (1 + b)c with $b \in \mathscr{E}_1$ and $c \in U_0$. Since $U_0 \subset Z \subset \mathscr{Z}$ we have, for $x \in \mathscr{E}$,

$$axa^{-1} = (1+b)cxc^{-1}(1-b) = (1+b)x(1-b)$$
$$= x + bx - xb = (1+D_b)(x).$$

Note that bxb = 0 for all $x \in \mathscr{E}$ because $b \in \mathscr{E}_1$.

This proves that Inaut $\mathscr{E} \subset N_1$.

Conversely, if $a \in \mathscr{E}_1$ then $1 + D_a$ is simply conjugation by $1 + a \in U$.

This Theorem gives an alternative proof of the assertion $N_1 \triangleleft A$.

References

- 1. F. A. Berezin, Automorphisms of a Grassman algebra, Mathematičeskie Zametki 1 (1967), 269–276.
- 2. N. Bourbaki, Algèbre (Chap. 1-3, Hermann, Paris, 1970).
- 3. W. H. Greub, Multilinear algebra (Springer, 1967).
- 4. V. G. Kac, Lie superalgebras, Advances in Mathematics, 26 (1977), 8-96.

University of Waterloo, Waterloo, Ontario