DERIVATIONS AND AUTOMORPHISMS OF EXTERIOR ALGEBRAS

DRAGOMIR Ž. DJOKOVIĆ
Dedicated to D. S. Mitrinović

0. Introduction. In this paper we study the Lie algebra \mathscr{D} of derivations of the exterior algebra \mathscr{O} of a vector space V over a field K of characteristic $\neq 2$, and the group A of automorphisms of \mathscr{E}.

Both \mathscr{E} and \mathscr{D} have natural \mathbf{Z}_{2}-gradings $\mathscr{D}=\mathscr{D}_{0} \oplus \mathscr{D}_{1}$ and $\mathscr{O}=\mathscr{E}_{0} \oplus \mathscr{O}_{1}$. Let A_{0} be the subgroup of A which preserves this grading of \mathscr{O}. We show that \mathscr{D}_{1} is the ideal of inner derivations of \mathscr{E} except in the case when $\operatorname{dim} V=\boldsymbol{\aleph}_{0}$.

For A we assume that $\operatorname{dim} V=n$ is finite. In the case when K is the complex field, A_{0} has been determined by F. A. Berezin $[\mathbf{1}]$. He claimed there that $A=A_{0}$, which is erroneous. In fact A is a semidirect product $A=N_{1} \not \rtimes_{1}$ where N_{1} is the group of inner automorphisms of \mathscr{E} and N_{1} is abelian. All our results are established for arbitrary K of characteristic $\neq 2$.

It is important to note that \mathscr{D} is the Lie algebra of ordinary derivations of \mathscr{O}. The case of graded derivations (also called antiderivations) is much easier and well-known. See for instance [4] or [3, p. 111-114].

1. Preliminaries. Let A be an associative algebra over a field K. With respect to the bracket operation, $[a, b]=a b-b a, A$ becomes a Lie algebra over K which we will denote by A_{L}.

Each $a \in A$ determines a derivation D_{a} of A defined by $D_{a}(x)=[a, x]$ $=a x-x a(x \in A)$. The map $A_{L} \rightarrow \operatorname{Der} A$ which sends a to D_{a} is a homomorphism of Lie algebras. The image of this homomorphism is Inder A, the Lie algebra of inner derivations of A.

If $a \in A$ and $D \in \operatorname{Der} A$ then we have $\left[D, D_{a}\right]=D D_{a}-D_{a} D=D_{b}$ where $b=D(a)$. This shows that Inder A is an ideal of $\operatorname{Der} A$.

Now let us assume that A is \mathbf{Z}_{2}-graded, i.e., $A=A_{0} \oplus A_{1}$ is a fixed direct decomposition such that $A_{i} A_{j} \subset A_{i+j}$ ($i, j=0,1$; indices are added modulo 2). Let $\operatorname{Der}_{i} A(i=0,1)$ be the subspace of $\operatorname{Der} A$ consisting of all derivations D such that $D\left(A_{j}\right) \subset A_{i+j}(j=0,1)$.

Lemma 1. With the above hypotheses we have $\operatorname{Der} A=\operatorname{Der}_{0} A \oplus \operatorname{Der}_{1} A, \operatorname{Der}_{0} A$ is a subalgebra of $\operatorname{Der} A$, and $\left[\operatorname{Der}_{0} A, \operatorname{Der}_{1} A\right] \subset \operatorname{Der}_{1} A$.

Received October 8, 1977. This work was supported in part by NRC Grant A-5285.

Proof. The last two assertions are obvious. It is also clear that $\operatorname{Der}_{0} A \cap \operatorname{Der}_{1} A=0$ and so it remains to prove that $\operatorname{Der} A=\operatorname{Der}_{0} A+\operatorname{Der}_{1} A$.

Let $p_{i}: A \rightarrow A_{i}(i=0,1)$ be the canonical projections. For $D \in \operatorname{Der} A$ we define $D_{i}(i=0,1)$ by

$$
\left.D_{i}\right|_{A_{j}}=\left.p_{i+j} \circ D\right|_{A_{j}}(j=0,1) .
$$

Clearly the linear transformations D_{i} satisfy $D_{i}\left(A_{j}\right) \subset A_{i+j}(j=0,1)$. We claim that they are derivations of A, which will complete the proof. Thus we have to show that $D_{i}(x y)=\left(D_{i} x\right) y+x\left(D_{i} y\right)$ holds for $x, y \in A$. Clearly, it suffices to prove this when x and y are homogeneous, say $x=x_{j} \in A_{j}$ and $y=y_{k} \in A_{k}(i, j, k=0,1)$. Then

$$
\begin{aligned}
D_{i}\left(x_{j} y_{k}\right) & =p_{i+j+k}\left(D\left(x_{j} y_{k}\right)\right) \\
& =p_{i+j+k}\left(\left(D x_{j}\right) y_{k}\right)+p_{i+j+k}\left(x_{j}\left(D y_{k}\right)\right) \\
& =\left(p_{i+j}\left(D x_{j}\right)\right) y_{k}+x_{j}\left(p_{i+k}\left(D y_{k}\right)\right) \\
& =D_{i}\left(x_{j}\right) y_{k}+x_{j} D_{i}\left(y_{k}\right) .
\end{aligned}
$$

Lemma 2. Assume moreover that A is anticommutative, i.e.,

$$
y x=(-1)^{i j} x y \text { for } x \in A_{i}, y \in A_{j}(i, j=0,1) .
$$

Then Inder A is an abelian ideal of $\operatorname{Der} A$ and $\operatorname{Inder} A \subset \operatorname{Der}_{1} A$.
Proof. We have mentioned before that Inder A is an ideal of $\operatorname{Der} A$. Recall that we have a surjective Lie algebra homomorphism $A_{L} \rightarrow \operatorname{Inder} A$ whose kernel is clearly the center Z_{A} of A. Thus Inder $A \cong A_{L} / Z_{A}$ as Lie algebras. Since $A_{0} \subset Z_{A}$ (by anticommutativity) and $[A, A] \subset A_{0}$ we see that A_{L} / A_{0} is abelian and also A_{L} / Z_{A} is abelian. Thus Inder A is an abelian ideal of $\operatorname{Der} A$.

If $a \in A_{0}$ then $D_{a}=0$ and if $a \in A_{1}$ then $D_{a} \in \operatorname{Der}_{1} \mathrm{~A}$. This proves that Inder $A \subset \operatorname{Der}_{1} A$.
2. Derivations of exterior algebras. Let I be a vector space over a field K and let \mathscr{E} be the exterior algebra of $V . \mathscr{E}$ has a \mathbf{Z}-grading

$$
\mathscr{C}=\oplus_{i \geqq 0} \mathscr{C}^{i}
$$

where $\mathscr{E}^{i}{ }^{i}$ is the i-th exterior power of I . In particular, $\mathscr{E}^{0}=K$ and $\mathscr{E}^{1}=\mathrm{V}$.
We shall be more interested in the induced \mathbf{Z}_{2}-grading

$$
\mathscr{E}=\mathscr{E}_{0} \oplus \mathscr{E}_{1}
$$

where

$$
\mathscr{E}_{0}=\sum_{i \geqq 0} \mathscr{E}^{\mathscr{2} i}, \quad \mathscr{O}_{1}=\sum_{i \geqq 0} \mathscr{E}^{\mathscr{2 i + 1}}
$$

If char $K=2$ then \mathscr{E} is commutative and it follows from [2, Chapter III, $\S 10$, Prop. 14] that every linear map $V \rightarrow \mathscr{E}$ extends uniquely to a derivation of \mathscr{E}.

Therefore we shall assume from now on that char $K \neq 2$.
Since \mathscr{E} is anticommutative, we have $\mathscr{E}_{0} \subset \mathscr{Z}$ where \mathscr{Z} is the center of \mathscr{O}. In fact it is known that we have equality $\mathscr{E}_{0}=\mathscr{Z}$ except in the case when $\operatorname{dim} V=n$ is finite and odd. In the exceptional case we have $\mathscr{Z}=\mathscr{E}_{0} \oplus \mathscr{E}^{n}$.

We shall write $\mathscr{D}=\operatorname{Der} \mathscr{E}, \mathscr{I}=$ Inder \mathscr{E}, and $\mathscr{D}_{i}=\operatorname{Der}_{i} \mathscr{E} \quad(i=0,1)$. We know from Lemmas 1 and 2 that $\mathscr{D}=\mathscr{D}_{0} \oplus \mathscr{D}_{1}, \mathscr{I} \subset \mathscr{D}_{1}$ and that \mathscr{I} is an abelian ideal of \mathscr{D}.

Let \mathscr{M} be the maximal ideal of \mathscr{O}, i.e.,

$$
\mathscr{M}=\sum_{i \geq 1} \mathscr{C}^{i}
$$

We shall denote by $\hat{\mathscr{O}}$ the \mathscr{M}-completion of \mathscr{O}. Clearly, $\hat{\mathscr{E}}$ inherits a \mathbf{Z}_{2} grading from $\mathscr{\mathscr { O }} ; \hat{\mathscr{O}}=\hat{\mathscr{O}}_{0} \oplus \hat{\mathscr{O}}_{1}$. In fact $\mathscr{\mathscr { O }}$ is a subalgebra of $\hat{\mathscr{O}}$ and is dense in $\hat{\mathscr{E}}$ for the \mathscr{M}-topology. $\hat{\mathscr{O}}_{i}$ is the closure of $\mathscr{E}_{i}(i=0,1)$ in $\hat{\mathscr{E}}^{\hat{E}}$ for the same topology. The elements of $\hat{\mathscr{E}}$ can be identified with the formal infinite series
(1) $x=\sum_{i \geq 0} x_{i}, \quad x_{i} \in \mathscr{O}^{i}$.

If $x_{i}=0$ for all i except finitely many of them, then $x \in \mathscr{E}$.
Let $\mathscr{\mathscr { E }}$ be the idealizer of \mathscr{M} in $\overline{\mathscr{E}}$, i.e., $\overline{\mathscr{E}}$ consists of all $x \in \hat{\mathscr{E}}$ such that $x \mathscr{M} \subset \mathscr{M}$ and $\mathscr{M} x \subset \mathscr{M}$. Clearly \mathscr{E} is a subalgebra of $\mathscr{\mathscr { E }}$ containing \mathscr{E}. It is easy to see that if $x \in \hat{\mathscr{O}}$ satisfies $x V \subset \mathscr{H}$ and $V x \subset \mathscr{M}$ then in fact $x \in \mathscr{\mathscr { O }}$.

Thus if x is given by (1) then $x \in \mathscr{E}$ if and only if for every $y \in V x_{i} y=0$ for all but finitely many $i \geqq 0$.

For $a \in \tilde{\mathscr{O}}$ let $D_{\text {a }}$ be the corresponding inner derivation of $\tilde{\mathscr{O}}$. From the definition of \mathscr{E} it follows that $D_{n}(\mathscr{E}) \subset \mathscr{E}$. Hence we have a restriction homomorphism Inder $\overline{\mathscr{O}} \rightarrow \mathscr{D}$. This is clearly injective and we denote by $\overline{\mathscr{I}}$ the image in \mathscr{D} of this homomorphism. It is clear that $\dot{\mathscr{I}} \subset \mathscr{D}_{1}$.

Theorem 3. We have $\mathscr{E}=\mathscr{E}$ except when a basis of V has cardinality \boldsymbol{N}_{0}.
Theorem 4. We have $\dot{\mathscr{I}}=\mathscr{D}_{1}$. Moreover, if the cardinality of a basis of V is not $\boldsymbol{\aleph}_{0}$ then $\mathscr{I}=\mathscr{D}_{1}$.

Let us first introduce some notation. Let $u_{i}(i \in I)$ be a basis of V and assume that the index set I is totally ordered. By \mathscr{F} we shall denote the set of all finite subsets of I. We have a partition of \mathscr{F} into \mathscr{F}_{0} and \mathscr{F}_{1} where \mathscr{F}_{0} (resp. \mathscr{F}_{1}) consists of those $S \in \mathscr{F}$ whose cardinality is an even (resp. odd) integer.

The algebra \mathscr{E} has a basis $\left\{a_{S} \mid S \in \mathscr{F}\right\}$ where if $S=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ with $i_{1}<i_{2} \ldots<i_{k}$ then

$$
a_{S}=a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}
$$

In particular $a_{\phi}=1$ is the identity element of \mathscr{E} and $a_{\{i\}}=a_{i}$ for $i \in I$.
Proof of Theorem 3. If I is a finite set then $\mathscr{\mathscr { E }}=\mathscr{E}$ and consequently $\mathscr{\mathscr { E }}=\mathscr{\mathscr { E }}$.
Now let us assume that I is not countable. Let $x \in \mathscr{\mathscr { C }}$ be arbitrary and write $x=x_{0}+x_{1}+x_{2}+\ldots$ with $x_{r} \in \mathscr{E}^{r}$. Let $P=\left\{r \mid x_{r} \neq 0\right\}$. For $r \in P$ let $I_{r}=\left\{i \in I \mid a_{i} x_{r}=0\right\}$. Then each I_{r} is a finite set and consequently their
union is countable. Therefore there exists an $i \in I$ such that $i \notin I_{r}$ for all $r \in P$. Then $a_{i} x_{r} \neq 0$ for all $r \in P$. Since

$$
a_{i} x=a_{i} x_{0}+a_{i} x_{1}+a_{i} x_{2}+\ldots \in \mathscr{E}
$$

and $a_{i} x_{r} \in \mathscr{\mathscr { C }}^{\grave{\mathscr{C}}}{ }^{r+i}(r \geqq 0)$, this implies that P is a finite set. Consequently $x \in \mathscr{E}$ and so $\mathscr{\mathscr { E }}=\mathscr{\mathscr { E }}$.

Finally, let us assume that I has cardinality $\boldsymbol{\aleph}_{0}$. Then we may assume that I is the set of positive integers. It is easy to see that the element

$$
x=\sum_{i \geq 0} a_{1} a_{2} \ldots a_{i}
$$

is in \mathscr{E} but is not in \mathscr{E}.
Proof of Theorem 4. Let $D \in \mathscr{D}_{1}$ and write $D a_{i}=b_{i}$. Since $a_{i} \in \mathbb{V}=$ $\mathscr{O}^{1} \subset \mathscr{E}_{1}$ we have $b_{i} \in \mathscr{O}_{0}$. From $a_{i}{ }^{2}=0$ we obtain $\left(D a_{i}\right) a_{i}+a_{i}\left(D a_{i}\right)=0$, i.e., $b_{1} a_{1}+a_{1} b_{1}=0$. Since $b_{i} \in \mathscr{O}_{0} \subset \mathscr{Z}$ this gives $2_{a} a_{i} b_{i}=0$ and since char $K \neq 2$ we have $a_{i} b_{i}=0$.

For $i, j \in I$ let $I^{(i)}=I \backslash\{i\}$ and $I^{(i, j)}=I \backslash\{i, j\}$. We denote $V^{(i)}\left(\right.$ resp. $\left.V^{(i, j)}\right)$ the subspace of V^{\prime} spanned by a_{k} for $k \in I^{(i)}$ (resp. $k \in I^{(i, j)}$). Further, $\mathscr{E}^{(i)}$ (resp. $\mathscr{E}^{(i, j)}$) will be the exterior algebra of $\mathrm{V}^{(i)}$ (resp. $\mathrm{I}^{(i, j)}$). We also put $\mathscr{F}(i)=\{S \in \mathscr{F} \mid i \notin S\}, \mathscr{F}^{(i, j)}=\mathscr{F}^{(i)} \cap \mathscr{F}^{(j)}$. Finally, we define $\mathscr{F}_{0}{ }^{(i)}$ $=\mathscr{F}^{(i)} \cap \mathscr{F}_{0}, \mathscr{F}_{1}{ }^{(i)}=\mathscr{F}^{(i)} \cap \mathscr{F}_{1}$ and similarly $\mathscr{F}_{0}{ }^{(i, j)}$ and $\mathscr{F}_{1}{ }^{(i, j)}$.

It follows from $a_{i} b_{i}=0$ and $b_{i} \in \mathscr{E}_{0}$ that $b_{i}=a_{i} c_{i}$ where $c_{i} \in \mathscr{O}_{1}{ }^{(i)}$.
From $a_{i} a_{j}+a_{j} a_{i}=0$ we obtain

$$
\begin{aligned}
& \left(D a_{i}\right) a_{j}+a_{i}\left(D a_{j}\right)+\left(D a_{j}\right) a_{i}+a_{j}\left(D a_{i}\right)=0, \quad \text { or } \\
& b_{i} a_{j}+a_{i} b_{j}+b_{j} a_{i}+a_{j} b_{i}=0 .
\end{aligned}
$$

Since $b_{i} \in \mathscr{O}{ }_{0} \subset \mathscr{Z}$ and char $K \neq 2$ this gives $a_{i} b_{j}+a_{j} b_{i}=0$. Using $b_{i}=a_{i} c_{i}$ and $b_{j}=a_{j} c_{j}$ we obtain
(2) $a_{i} a_{j}\left(c_{j}-c_{i}\right)=0$.

Using the basis $\left\{a_{S} \mid S \in \mathscr{F}_{1}{ }^{(i)}\right\}$ of $\mathscr{O}_{1}{ }^{(i)}$, we can write

$$
\begin{equation*}
c_{i}=\sum \alpha_{S}{ }^{i} a_{S},\left(S \in \mathscr{F}_{1}{ }^{(i)}\right) . \tag{3}
\end{equation*}
$$

The coefficients $\alpha s^{i} \in K$ are defined for $S \in \mathscr{F}_{1}$ and $i \in I \backslash S$. It follows from (2) and (3) that $\alpha_{S}{ }^{i}=\alpha{ }^{j}$ whenever $S \in \mathscr{F}_{1}$ and $i, j \in I \backslash S$. Therefore for each $S \in \mathscr{F}_{1}$ there is a scalar $\alpha_{S} \in K$ such that $\alpha_{S}{ }^{i}=\alpha_{S}$ for all $i \in I \backslash S$.

Let m be an odd positive integer and let \mathscr{F}^{m} be the set of all $S \in \mathscr{F}$ of cardinality m. We claim that $\alpha_{S} \neq 0$ for only finitely many $S \in \mathscr{F}$. . Indeed, let $i_{1}, i_{2}, \ldots, i_{m}$ be distinct elements of I. Since $c_{i_{1}} \in \mathscr{O}$ there are only finitely many $S \in \mathscr{F}^{m}$ such that $\alpha_{S} \neq 0$ and $i_{1} \notin S$. Similar statements are valid for indices i_{2}, \ldots, i_{m}. Hence there are only finitely many $S \in \mathscr{F}^{m}$ such that $\alpha_{S} \neq 0$ and $\left\{i_{1}, i_{2}, \ldots, i_{m}\right\} \not \subset S$. This proves our claim. Thus each sum

$$
\sum \alpha_{S} a_{S}\left(S \in \mathscr{F}^{m}, m \text { odd }\right)
$$

is in fact finite and so

$$
c=\sum \alpha_{S} a_{S}\left(S \in \mathscr{F}_{1}\right)
$$

is an element of $\hat{\mathscr{E}}$.
We have

$$
-c a_{i}=a_{i} c=\sum_{S \in \mathscr{F}_{1}} \alpha_{S} a_{i} a_{S}=\sum_{S \in \mathscr{F}_{1}(i)} \alpha_{S}{ }^{i} a_{i} a_{S}=a_{i} c_{i}=b_{i} \in \mathscr{O} \quad(i \in I),
$$

which proves that $c \in \mathscr{\mathscr { E }}$. The same computation gives $D_{c}\left(a_{i}\right)=-2 b_{i}=$ $-2 D\left(a_{i}\right)$, and so $D \in \dot{\mathscr{I}}$.
We have proved that $\mathscr{D}_{1} \subset \dot{\mathscr{I}}$ and since we remarked before that $\dot{\mathscr{I}} \subset \mathscr{D}_{1}$, we have $\dot{\mathscr{I}}=\mathscr{D}_{1}$. The second assertion now follows from Theorem 3 .
3. Automorphisms of exterior algebras. In this section we assume that $\operatorname{dim} \mathrm{V}^{\prime}=n$ is finite and char $K \neq 2$. As before, \mathscr{E} is the exterior algebra of J .

Let A be the group of automorphisms of \mathscr{E} (considered just as a K-algebra) and let A_{0} be the subgroup of A consisting of those automorphisms σ which preserve the \mathbf{Z}_{2}-grading of \mathscr{E}, i.e., such that $\sigma\left(\mathscr{E}_{i}\right)=\mathscr{O}_{i}(i=0,1)$.

Recall that \mathscr{E} is a local algebra with the maximal ideal $\mathscr{M}=\sum_{i \geqq 1} \mathscr{O}_{i}$ and that

$$
\mathscr{M}^{k}=\sum_{i \geqq k} \mathscr{E}^{i}(k \geqq 0)
$$

Therefore, every $\sigma \in A$ stabilizes the chain

$$
\mathscr{O}=\mathscr{M}^{0} \supset \mathscr{M}^{1} \supset \mathscr{M}^{2} \supset \ldots \supset \mathscr{M}^{n} \supset 0 .
$$

Hence every $\sigma \in A$ induces an automorphism σ_{i} of the vector space $\mathscr{M}^{i} / \mathscr{M}^{i+1}$. Since the canonical map $\mathscr{E}^{i} \rightarrow \mathscr{M}^{i} / \mathscr{M}^{i+1}$ is an isomorphism we can consider σ_{i} as operating in \mathscr{E}^{i}.

The $\operatorname{map} f_{i}: A \rightarrow \operatorname{GL}\left(\mathscr{E}^{i}\right)$ defined by $f_{i}(\sigma)=\sigma_{i}$ is clearly a homomorphism. In particular, σ_{0} is the identity for every $\sigma \in A$; i.e., f_{0} is the trivial homomorphism and it is well-known that f_{1} is surjective. In fact every automorphism τ of V extends uniquely to an automorphism $g(\tau)$ of \mathscr{O}. Thus if N $=\operatorname{ker}\left(f_{1}\right)$ than we have a short exact sequence

$$
1 \rightarrow N \rightarrow A \underset{g}{\stackrel{f_{1}}{\rightleftarrows}} G L(V) \rightarrow 1
$$

with g a section, i.e., $f_{1} \circ g=$ identity.
Let G be the image of g in A. Then A is a semidirect product $A=N \rtimes G$.
Lemma 5. If $\sigma \in N$ then σ_{i} is the identity for all i.
Proof. We always have $\sigma_{0}=$ identity and by hypothesis we also have $\sigma_{1}=$ identity. Now let $2 \leqq k \leqq n$ and let $x_{1}, \ldots, x_{k} \in V$. Then $\sigma\left(x_{i}\right)=$
$x_{i}+y_{i}$ where $y_{i} \in \mathscr{M}^{2}$ and consequently

$$
\begin{aligned}
& \sigma\left(x_{1} x_{2} \ldots x_{k}\right)-x_{1} x_{2} \ldots x_{k}=\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right) \ldots\left(x_{k}+y_{k}\right) \\
&-x_{1} x_{2} \ldots x_{k} \in \mathscr{M}^{k+1} .
\end{aligned}
$$

This proves that $\sigma_{k}=$ identity.
Lemma 6. N is a unipotent group.
Proof. Let 1 be the identity map of \mathscr{E}. It follows from Lemma 5 that for $\sigma \epsilon N$ we have $(\sigma-1)\left(\mathscr{M}^{i}\right) \subset \mathscr{M}^{i+1}(i \geqq 0)$ and so $\sigma-1$ is nilpotent, i.e., σ is unipotent.
Let $N_{0}=N \cap A_{0}$. Since $A=N \rtimes G$ and $G \subset A_{0}$ it follows that A_{0} $=N_{0} \times G$.
Recall that every inner derivation of \mathscr{E} is of the form $D_{a}\left(a \in \mathscr{O}_{1}\right)$.
Lemma 7. If $a, b \in \mathscr{E}{ }_{1}$ then $D_{a} D_{b}=0$.
Proof. It suffices to check that $D_{a} D_{b}(x)=0$ for $x \in \mathscr{E}_{i}(i=0,1)$. Indeed

$$
\begin{aligned}
D_{a} D_{b}(x) & =a(b x-x b)-(b x-x b) a \\
& =(a b x+x b a)-(a x b+b x a) .
\end{aligned}
$$

This is zero because $x b a=b a x=-a b x$ and $b x a=(-1)^{i+1} x a b=-a x b$.
In particular, it follows from this lemma that $D_{a}{ }^{2}=0$ for $a \in \mathscr{E} \mathscr{O}_{1}$ and so $\exp \left(D_{a}\right)=1+D_{a} \in A$. Since for $a \in \mathscr{E}_{1}$

$$
\left(1+D_{a}\right)(x)=x+a x-x a \quad(x \in \mathscr{E})
$$

it is clear that $1+D_{a} \in N$.
If $a, b \in \mathscr{E}_{1}$ then by Lemma 7

$$
\left(1+D_{a}\right)\left(1+D_{b}\right)=1+D_{a+b}=\left(1+D_{b}\right)\left(1+D_{a}\right) .
$$

Hence, the automorphisms $1+D_{n}\left(w \in \mathscr{E}_{1}\right)$ form an abelian subgroup of N which we will denote by N_{1}. The map $\mathscr{O}_{1} \rightarrow N_{1}$ sending a to $1+D_{a}$ is a homomorphism of the additive group of \mathscr{O}_{1} onto N_{1} with kernel $\mathscr{E}_{1} \cap \mathscr{Z}$.

For $k \geqq 1$ let M_{k} be the subgroup of N_{1} consisting of all automorphisms $1+D_{a}$ with $a \in \mathscr{E}^{2 k-1}$.

Theorem 8. For each $k \geqq 1$ the product $M^{(k)}=M_{k} M_{k+1} \ldots$ is a normal subgroup of A. In particular, $N_{1} \triangleleft A$.

Proof. For $a \in \mathscr{E}$ and $\sigma \in A$ we have $\sigma D_{\|} \sigma^{-1}=D_{\sigma(n)}$. It remains to notice that $M^{(k)}$ consists of all $1+D_{a}$ with $a \in \mathscr{M}^{2 k-1}$, and that $\mathscr{M}^{2 k-1}$ is σ-stable.

Now let us define for $k \geqq 1$ the subgroup $N^{(k)}$ of N. It consists of all $\sigma \in N$ such that

$$
\sigma(x) \in \mathscr{P}_{k}=\mathscr{E}_{1}+\mathscr{M}^{2 k} \quad \text { for } x \in V
$$

It is clear that

$$
N=N^{(1)} \supset N^{(2)} \supset \ldots \supset N^{(m)} \supset N^{(m+1)}=N_{0}
$$

where $m=\left[\begin{array}{l}n \\ 2\end{array}\right]$, and that

$$
N^{(k)} \cap N_{1}=M^{(k)} \quad(k \geqq 1) .
$$

Theorem 9. We have
(i) $N^{(k)}=N^{(k+1)} \times M_{k} \quad(k \geqq 1)$,
(ii) $N=N_{1} \rtimes N_{0}$,
(iii) $A=N_{1} \rtimes A_{0}$.

Proof. By Theorem 8, $N_{1} \triangleleft A$. If $a \in \mathscr{E}_{1}$ and $1+D_{a} \in A_{0}$ then for $x \in V$ we must have $D_{a}(x)=0$. Thus $D_{a}=0$ and so $N_{1} \cap A_{0}=1$. Hence in order to prove (ii) and (iii) it suffices to show that $N=N_{1} N_{0}$ and $A=N_{1} A_{0}$. Since $A=N G$ and $G \subset A_{0}$ it suffices to prove only that $N=N_{1} N_{0}$. This last equality clearly follows from (i), which we now proceed to prove.

If $a \in \mathscr{E}^{2 k-1}$ then for $x \in V$ we have $\left(1+D_{a}\right) x-x=D_{a} x \in \mathscr{E}^{2 k}$. Thus if $1+D_{a} \in N^{(k+1)}$ then $D_{a} x=0$ for all $x \in V$, i.e., $D_{a}=0$. Therefore $N^{(k+1)} \cap M_{k}=1$.

We claim that M_{k} normalizes $N^{(k+1)}$. For this purpose let $\sigma \in N^{(k+1)}$, $a \in \mathscr{C}^{2 k-1}, x \in V$. Then we have to show that

$$
\left(1-D_{a}\right) \sigma\left(1+D_{a}\right) x \in \mathscr{P}_{k+1} .
$$

We have

$$
\left(1-D_{a}\right) \sigma\left(1+D_{a}\right) x=x+(\sigma x-x)-D_{a} \sigma D_{a} x+\left(\sigma D_{a}-D_{a} \sigma\right) x .
$$

Since $x \in \mathscr{P}_{k+1}, \sigma x-x \in \mathscr{P}_{k+1}$ and $D_{l} \sigma D_{l} x \in \mathscr{M}^{2 k+1} \subset \mathscr{P}_{k+1}$ we need only show that $\left(\sigma D_{a}-D_{n} \sigma\right) x \in \mathscr{P}_{k+1}$. This is so because $D_{a}(\sigma x-x) \in D_{a}\left(\mathscr{M}^{2}\right)$ $\subset \mathscr{M}^{2 k+1} \subset \mathscr{P}_{k+1}$ and $\sigma D_{d x} x-D_{k x} \in \mathscr{P}_{k+1}$. This last relation holds because $D_{k} x \in \mathscr{M}^{2 k}$ and $\sigma_{2 k}=$ identity.

It remains to show that $N^{(k)}=M_{k} N^{(k+1)}$. Let $\sigma \in N^{(k)}$. For $x \in V$ we can write uniquely

$$
\sigma(x)=x+\tau(x)+z
$$

where $\tau(x) \in \mathscr{E}^{2 k}$ and $z \in \mathscr{M}^{2} \cap \mathscr{P}_{k+1}$.
Since $x^{2}=0$ we have

$$
0=(\sigma x)^{2}=(x+\tau(x)+z)^{2}=2 x \tau(x)+u
$$

where $u \in \mathscr{M}^{2 k+2}$. Thus $x \tau(x)=0$ for all $x \in V$. By [$\mathbf{2}$, Chapter III, § 10 , Prop. 14] τ extends to a unique derivation D of \mathscr{E}. Clearly $D \in D_{1}$ and since $\mathscr{D}_{1}=\mathscr{I}$ by Theorem 4, there exists an $a \in \mathscr{E}_{1}$ such that $D_{a}=D$. Since $\tau(x)=D x=D_{a} x=a x-x a \in \mathscr{E}^{2 k}$ for all $x \in V$, we may assume that $a \in \mathscr{E}^{2 k-1}$.

We finish the proof by showing that $\left(1-D_{a}\right) \sigma \in N^{(k+1)}$. This is equivalent to

$$
\left(1-D_{a}\right) \sigma x \in \mathscr{P}_{\boldsymbol{k}+1} \quad \text { for } x \in V
$$

We have

$$
\begin{aligned}
\left(1-D_{a}\right) \sigma x & =x+\tau(x)+z-D_{a}(x)-D_{a} \tau(x)-D_{a} z \\
& =x+z-D_{a} z
\end{aligned}
$$

because $D_{l \prime}(x)=\tau(x)$ and $D_{l \prime} \tau(x)=D_{a}{ }^{2}(x)=0$ by Lemma 7 . Since $x \in \mathscr{E}_{1}$, $z \in \mathscr{P}_{k+1}$ and $D_{a} z \in D_{a}\left(\mathscr{M}^{2}\right) \subset \mathscr{M}^{2 k+1} \subset \mathscr{P}_{k^{k+1}}$, the proof is complete.
4. Inner automorphisms of \mathscr{E}. Our hypotheses about K, V, \mathscr{E} will be the same as in the preceding section.

Since \mathscr{E} is a local algebra, an element $x \in \mathscr{E}$ is invertible if and only if $x \notin \mathscr{M}$. We shall denote by U the group of units of \mathscr{E}, i.e., $U=\mathscr{E} \backslash \mathscr{M}$. Clearly $U_{0}=U \cap \mathscr{E}_{0}$ is a subgroup of U. We put

$$
U_{1}=U \cap\left(1+\mathscr{O}_{1}\right)=1+\mathscr{O}_{1} .
$$

Of course, U_{1} is not a subgroup (in general) but we have

$$
a U_{1} a^{-1}=U_{1} \quad \text { for } a \in U_{0}
$$

The center Z of U is contained in the center \mathscr{Z} of \mathscr{E} and so we have

$$
Z=U \cap \mathscr{Z} .
$$

Since $\mathscr{E}_{0} \subset \mathscr{Z}$ we have $U_{0} \subset Z$. In fact $U_{0}=Z$ except when $\operatorname{dim} V=n$ is odd. In the exceptional case we have

$$
Z=U_{0} \cdot\left(1+\mathscr{C}^{n}\right)
$$

Theorem 10. U_{1} is a system of coset representatives of U_{0} in U.
Proof. Let $x, y \in \mathscr{O}_{1}$. Then $1+x, 1+y$ are in U_{1} and

$$
(1+x)^{-1}(1+y)=(1-x)(1+y)=1-x+y-x y .
$$

If this product belongs to U_{0} then since $1-x y \in \mathscr{O}_{0}$ and $y-x \in \mathscr{E}_{1}$ we must have $y-x=0$, i.e., $y=x$. This shows that if $x \neq y$ then $(1+x) U_{0}$ $\neq(1+y) U_{0}$.

It remains to show that $U=U_{0} U_{1}$. Letting $a \in U$ we have to show that $a \in U_{0} U_{1}$. Clearly we may assume that $a=1+b$ with $b \in \mathscr{M}$. If $b \in \mathscr{E}_{1}$ then $a \in U_{1}$ and there is nothing to prove. So let $b=b_{0}+b_{1}$ with $b_{i} \in \mathscr{E}{ }_{i} \cap \mathscr{M}$, and $b_{0} \neq 0$. We can write

$$
b_{0}=c_{2 k}+c_{2 k+2}+\ldots
$$

where $c_{2 i} \in \mathscr{O}^{2 i}$ and $c_{2 k} \neq 0(k \geqq 1)$. We shall say that $2 k$ is the order of the element a. Now it is clear that $\left(1-c_{2 k}\right) a$ has order $>2 k$ and our claim follows by induction.

The automorphisms of \mathscr{E} of the form $x \rightarrow a x a^{-1}(a \in U, x \in \mathscr{E})$ are called inner. The inner automorphisms of \mathscr{E} form a group Inaut \mathscr{E} and we have a short exact sequence

$$
1 \rightarrow Z \rightarrow U \rightarrow \text { Inaut } \mathscr{E} \rightarrow 1
$$

Theorem 11. Let N_{1} be the group defined in the previous section. We have

$$
N_{1}=\text { Inaut } \mathscr{E} .
$$

Proof. Let $a \in U$. By Theorem 10 we can write $a=(1+b) c$ with $b \in \mathscr{O}_{1}$ and $c \in U_{0}$. Since $U_{0} \subset Z \subset \mathscr{Z}$ we have, for $x \in \mathscr{E}$,

$$
\begin{aligned}
a x a^{-1} & =(1+b) c x c^{-1}(1-b)=(1+b) x(1-b) \\
& =x+b x-x b=\left(1+D_{b}\right)(x)
\end{aligned}
$$

Note that $b x b=0$ for all $x \in \mathscr{E}$ because $b \in \mathscr{E}_{1}$.
This proves that Inaut $\mathscr{O} \subset N_{1}$.
Conversely, if $a \in \mathscr{O}_{1}$ then $1+D_{a}$ is simply conjugation by $1+u \in U$.
This Theorem gives an alternative proof of the assertion $N_{1} \triangleleft A$.

References

1. F. A. Berezin, Automorphisms of a Grassman algebra, Mathematičeskie Zametki 1 (1967), 269-276.
2. N. Bourbaki, Algèbre (Chap. 1-3, Hermann, Paris, 1970).
3. IV. H. Greub, Multilinear aigebra (Springer, 1967).
4. V. G. Kac, Lie superalgebras, Advances in Mathematics, 26 (1977), 8-96.

University of Waterloo, Waterloo, Ontario

