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A B S T R A C T : We present an overview of the ST Scl calibration program and 
the reduction, smoothing, and analysis capabilities we have developed to deal with 
Transfer Functions. The Transfer Function (TF) is the name for the fringe visibility 
curve produced by the Koesters prism interferometer in the Fine Guidance Sensors 
(FGSs). The TF for a single, point, monochromatic source becomes modified — in 
different ways — when we observe a real source with a typical stellar energy spectrum, 
a finite disc, or a double system. Thus, we have constructed an in depth calibration 
program and designed and developed a comprehensive set of TF analysis algorithms. 
The ST Scl calibration program includes the acquisition of reference TFs at 19 different 
places in the astrometer FGS (there are field-dependent aberrations beyond the well-
publicized spherical aberration of the primary mirror). In addition, for Cycle 2, both 
stars with finite angular diameters and minor planets will be observed. The software 
to implement our correlation-based analysis techniques has been extensively tested on 
artificial binary stars created by combining real TFs and re-introducing photon noise. 
A wide variety of synthetic binaries — with separations from 10 to 135 milli-arcseconds 
and magnitude differences from 0 to 4.2 mag — were used so that we can objectively and 
quantitatively characterize the capability of both the software and the instrument to 
resolve close pairs and to detect faint companions. Separations to a few milli-arcseconds, 
position angles to 0?1, and magnitude differences to ±0?I25 are attainable for primaries 
brighter than V — 13 mag and Am < 3 mag. The software is being incorporated into 
IRAF/STSDAS at the ST Scl. 

1. I N T R O D U C T I O N 

How is a binary star observation performed with the Fine Guidance Sensors 
(FGSs) of the HST? Under the control of the spacecraft's Pointing Control 
System the astrometer FGS 5 " x 5 " instantaneous field-of-view is swept back 
and forth across the program star. These sweeps are typically 1" long. From the 
data acquired during one sweep a 'Transfer Function' can be computed. The 
Transfer Function (TF) is the name for the fringe visibility generated by the 
Koesters prism interferometer inside an FGS: As the light bundle traverses the 
FGS optical system it encounters a 50-50% beam splitter. The two exit beams 
are linearly polarized in orthogonal directions. Hence, we speak of the x and 
y axes within an FGS. Each beam is next sent through a Koesters prism and 
thence to photomultiplier tubes for photon detection. If we denote the counts, 
on (say) the j/-axis, as Av and Bv from the two output channels of the prism, 
then the j/-axis T F (5 y ) is given by, with instrumental and scientific corrections 
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FIGURE 1. High quality, high signal-to-noise (V = 9.6 mag), empirical Transfer 
Function with a smoothed, cubic fit superimposed. The piece-wise cubics only had to 
satisfy the constraint of continuity. 

such as photomultiplier tube mismatch, star selector encoder angle systematic 
errors, velocity aberration, and so on understood, 

S = (Ay-By)/(Ay + Bv). (1) 

The expectation for a point source, monochromatic, single star TF was S(z) = 
sin2 z/z [z = 2xR$/\ where R is the radius of the primary mirror of the Optical 
Telescope Assembly (OTA), A is the wavelength, and 8 is the angle from the point 
of perfect interference]. A real TF is shown in Figure 1. 

From Figure 1 we could predict several regions of binary star separation 
(Ax) and primary-secondary magnitude difference (Am) space wherein one 
would have difficulty accurately determining Ax and Am. It is expected that 
these regions — such as small Ax and Am, or Ax ~ primary to secondary inter­
ference fringe distance — will occupy more area in the Ax Am space because 
of the OTA aberrations. Another effect that could further broaden these regions 
is the spacecraft jitter induced by the thermally stressed solar array panels. Two 
different TF jitter suppression algorithms, one discussed elsewhere at this meet­
ing (Franz et al.) and one presented in Franz et al. (AJ, 103, 190, 1992) have 
been used, with some success, to overcome this additional complication. 
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2. B I N A R Y STAR T R A N S F E R F U N C T I O N S 

How is a binary star Transfer Function (TF) created by the fitting software? 
Taking the combined OTA/FGS optical system to be a linear one, a binary star 
TF is a linear combination of two single star TFs. This combination involves 
a shift corresponding to the separation Ax and a diminution of the amplitude 
of the secondary's fringe visibility function by 10 - 0 - 4 A m . Thus, if S(y) is the y 
axis single star reference TF, then the y axis binary star TF B(y) is 

B(y) = [S(y) + 10-°-4Am5(2/ + Ay)]/(1 + 10-°-4Am). (2) 

Equation (2) contains several implicit assumptions including that the single 
star reference TF is from a star of the same color index (or more generally spec­
tral type/luminosity class) of both components of the binary. (The prediction of 
the effect of varying the color index is for a minor change in the slope of the TF 
at its null.) Equation (2) also assumes that S(y) is from a place very nearby 
within the FGS field-of-view to where the program star observations were per­
formed. The empirical TF rapidly changes shape with field angle, hence it is 
critical to use a local reference for analysis. Thus, the ST Scl calibration plan 
calls for observations at 19 places within the astrometer FGS. Third Equation 
(2) assumes that the x and y axes are rigidly fixed. However, (0,0) was at one 
place for S(y) and at another when the binary star observations were performed. 
Therefore, 5 in Equation (2) should be a function of another additive parameter, 
a translation or offset yo. Hence, the complete binary star analysis problem is 
not three-dimensional (i.e. Ax, Ay, and Am) but five-dimensional (i.e. Ax, Ay, 
Am, xo, and yo). More generally one could attach an x or y subscript to the 
apparent magnitude difference Am for it can be separately and independently 
determined on the two axes. The rigorous method is to force Amx to be equal 
to Am,. 

Indeed, if you think of the way that TRANSfer Mode observing will typically 
be performed — with several sweeps of the program star being acquired one after 
the other as the FGS instantaneous field-of-view is driven back and forth across 
the binary-offsets are required at the very beginning of the data analysis process 
to improve the signal-to-noise ratio by 'adding' successive sweeps. 

2.1. Transfer Function Smoothing 
The empirical curve (Figure 1) is fit piecewise to low-order polynomials via a 
constrained, non-equally weighted, least-squares algorithm. As this is a photon 
(i.e. Poisson) process we know the standard deviations of each value of S and 
can determine the weights. The polynomials — linear, quadratic, or cubic — 
are forced to obey continuity conditions at their joining points (knots in spline 
terminology). In addition, depending on the degree of the polynomial, we may 
also demand differentiability and even a higher-order degree of smoothness. The 
constraints are enforced by Lagrange multipliers acting at the joining points. 

The above discussion is formal and not the numerically most efficacious 
way to proceed. The difficulty, see Equations (3) or (4), is in the increase in 
the number of parameters. Each Lagrange multiplier has to be computed too 
— even though they are of no real interest. As more parameters are added to 
the constrained least-squares function, the statistical precision of each of them 
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decreases because the number of degrees of freedom is decreasing. Therefore, 
instead of solving for the Lagrange multipliers, we actually enforce the constraint 
conditions as additional equations of condition but we use high weights (typically 
106 : 1). 

There are two refinements. The choice of the mean width of the intervals 
is governed by a minimum number of pairs of photomultiplier tube counts con­
straint. This ensures an adequate number of data points to use to fix the local 
polynomial's coefficients. The other is that the upper limit for a particular inter­
val's width was to be governed by the curvature of the empirical TF. This was 
to ensure that we faithfully followed real, short wavelength, features in the data. 
However, because we are using low-order polynomials and the curvature depends 
on the second derivative, this has proven difficult to robustly and automatically 
implement. The piecewise cubic continuous fit is also shown in Figure 1. 

The analytical details are as follows: Define H(x) to be the usual Heaviside 
function; H(x) = 1 if x > 0, 0 otherwise. So, if a < b then h(x;a,b) = 
H(x - a)H(b - x) is unity for x € [a, b] and zero otherwise. Next define N joints 
2i, Z2, . . . , zjf where we will enforce continuity, smoothness, and so on. We also 
need the general polynomial of degree d; P(x) = a+bx + cx2-\ \-qxd. We need 
one rf'th order polynomial per interval (the boundaries of the intervals are defined 
by the set of joint locations {£n})> so we use a double indexing scheme for the 
coefficients in P = Pn(n = 0,1,...,7V); Pn(z) = o.n0+anix + a„2X2-\ r-amjzd. 
Pn is defined everywhere but will only be used on [^nt^n+i]-

We want to represent a function F(x) on x € [xmin = zi,Xmax — ZN] by 
a linear combination of N — 1 <f th order polynomials {Pn} which obey various 
boundary conditions at {zn}. Thus, we write 

A T - l 

F(x)= X > ( x ; z n , z n + 1 ) P n ( z ) 
n=l 

where, were we only enforcing continuity at the N — 2 interior points {z„} one 
would have the constraints Pn(zn+i) — ^n+i^n+i); n = l , - , - , JV — 2. We 
determine the {an m} based on least-squares given that we have measured F(x) 
at xmin = xi, xi, ..., xx, = xm o x . Thus, we form 

L N-i 
Rc = $ > / [ F ( x i ) - £ h(xt;zn,zn+1)Pn(xt)}

2 

1=1 n=l 
N-2 

- £ An+1 [Pn(zn+1) - Pn+1(zn+1)} (3) 
n=l 

and minimize Rc with respect to the (N — l)d values of {anm} a n d t n e N — 2 
Lagrange multipliers {An}. The weights wt are the photon-noise implied weights 
of the TF from Equation (1). There is a point of subtlety for A and B should 
be perfectly anti-correlated; thus as = (VA~+VB)/C, WS = I /05. (Correlation 
coefficients from real data are typically less than —0.9.) 

The extension to incorporate smoothness at the joints is accomplished by 
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minimizing R, [Pn(zk) means - £ p U = * J , 

N-2 

R. = RC-Y, An+1[/*(*n+1) - K+i(zn+i)}- (4) 
n=l 

3. B I N A R Y STAR T R A N S F E R F U N C T I O N ANALYSIS 

3.1. Least-Squares Approaches 
The least-squares approach is to compute the difference between the observed 
(0) quantities and their computed values [C = B from Equation (2)] i.e. 0 -C, 
square, weight, sum them, and then try and minimize the sum of the squares 
with respect to the three parameters xo, Ax, and Am,, Because C depends 
implicitly on the unknowns, no straightforward solution technique is going to 
work well. One has to perform a linearization around the current guess for 
the solution, compute new corrections using first-order Taylor series, and so on. 
Such iteration procedures are not robust — they typically need good, sometimes 
excellent, starting values. Attempts to assist the numerical process, by, for 
instance, analytically calculating higher derivatives to use a steepest descent 
technique, can represent a large amount of work because of the non-linear nature 
of the problem. Hence, we decided not to further pursue this course. 

However, a 'brute force' least-squares algorithm can be easily constructed. 
The interesting volume of x0, Ax, and Am, space is [-500,500] X [-500,500] X 
[0,4.5], where the units for xo and Ax are milli-arcseconds (mas) and those 
for Am, are magnitudes. The entire space could be explored over a multi­
dimensional grid using the sum of the squares defined above as the measure of 
success. Thus, the following scheme: 

1. Center the search region. 
2. Define initial search lengths X(xo), £(Ax), and L(Am). 
3. Define initial search steps £>(xo), D(Ax), and D(Am). 
4. Explore the ranges 2Z(xo), 2L(Ax), and 2L(Am) using step sizes D(xo), 

D(Ax), and D(Am) respectively by computing the weighted sum of the 
squares at [2L(x0)/ D(x0) + l][2L(Ax)/ D(Ax) + l][2L(Amx)/ D(Amx) + l] 
places. 

5. Find the global minimum, over this grid, of the weighted sum of the squares 
of the 0 - C's. 

6. Place the new search center at this location. 
7. Decrease the current search ranges and current step sizes by a factor of 2 

(say). 
8. Repeat steps 4, 5, 6, and 7 until the step sizes are driven to an agreed 

upon minimum; for instance 1 mas and 0.05 mag. 

There is one necessary criterion; the solution must always lie within the 
new search volume. If, the earlier search steps were too large or the sum of 
the squares surface has a lot of structure, we fix on a secondary minimum, 
then this algorithm will converge, with high precision, to an inaccurate answer. 
Ensuring that this does not happen brings us back to one of the objections we 
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brought up with regard to the non-linear least-squares method. However, in this 
case, there is a purely computational insurance policy available — we just use 
values of the step sizes so small that the global minimum must be encountered. 
The real advantage of this technique is, that given a good initial guess, so that 
both the starting volume and the original step sizes can be relatively small, the 
right answer will be accurately obtained very quickly. Hence, we searched for a 
computationally efficient algorithm which could provide this initial information 
in a robust fashion. The one we have used is described in the next subsection. 
Another idea (Hershey 1992, PASP, in press), based on Fourier Transforms and 
an analog with deconvolution techniques, holds promise for providing initial 
guesses more rapidly. 

3.2. Correlation Integral Approaches 
The model in Equation (2) is fitted to the observed TF and the parameters Ax 
and Am, derived. As before, this is performed by generating a grid of models 
by varying Ax, x0, and Amx. Each model is cross-correlated with the observed 
TF by computing the correlation integral 

c(x) = J B{t - x)0(t)dt. (5a) 

The ideal binary star function B is cross-correlated with the empirical Koesters 
prism fringe visibility function 0. The sought-for value of x, x„, such that 

c(x0) = maximum (56) 

represents the shift along this axis between the two functions as discussed in the 
previous section. 

Next, the best-fit model is determined as the one with parameters which 
minimize the sum of the squares of the differences between B and O, viz. 

j[B(t - x0) - 0(t)]2dt = minimum. (6) 

The polynomial smoothing not only increases the resolution of the subsequent 
cross-correlation but makes it possible to compute the correlation integral c in 
Equation (5a), as well as the sum of squares, to be minimized in Equation (6), 
analytically. The accuracy of the fit can be improved, now using the answers from 
the correlation technique as initial guesses for the final least-squares adjustment. 
All possible options of correlation/least-squares fitting are currently supported 
in our software. 

4. N U M E R I C A L T E S T I N G 

There are several different issues that have to be treated. First, given that 
we have a set of reference curves, and given that we have noisy observational 
data, can our method(s) deduce the correct answers for the triplet of offset (xo), 
separation (Ax) and magnitude difference (Am,)? Can they do so without the 
necessity of providing them with a reasonably close initial guess (that is do they 
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have global convergence properties)? Can they do so with good accuracy (that 
is can they find the correct solution set)? Second, is there repeatability? In 
particular, if the same binary system is repeatedly observed, will any of our 
methods converge to the same solution set? If not the identical solution set, 
then what is the dispersion of the results (as this determines the true precision 
of the algorithm)? Can we characterize the standard deviations of the results in a 
simple way in terms of the signal-to-noise ratio? Third, are there values of offset, 
separation, or magnitude difference which these techniques can not adequately 
deal with? If so, how does the precision decrease as the edge of the resolvability 
surface in offset/separation/magnitude difference space is approached? What 
role does the total magnitude of the binary play in all this? Finally, although 
our concentration in this paper is on binary stars, can the same software be 
used for triple star analysis? Angular diameter analysis? Does it have the same 
global convergence properties? Repeatability properties? and so on. 

In this section we describe the beginning of an extensive set of numeri­
cal experiments we are performing to thoroughly and completely answer these 
questions. 

First we wanted to demonstrate convergence of the correlation technique 
in a global sense. We also wanted to show that the least-squares algorithm, 
commencing from the correlation answer, could then rapidly approach the true 
answer. In all instances the offset (i.e. xo) is a minor issue. We have developed 
a separate method designed to find an approximate value of the offset which 
the correlation technique then refines. It does so by exploiting a rough value for 
the null of the TF leaving, typically, ±10 mas uncertainty. Thus, while we shall 
report on the results for the offset, we shall not further dwell on them. 

The correlation part of the software looks for the minimum in Equation 
(6) integral can attain by searching through Ax and Am space with a fixed 
(an arbitrary) spacing. For each Ax, Am pair, Equation (5b) is first satisfied 
with respect to x„. Typically we use a value of 5 mas for Ax and 0.1 mag for 
Am,. Therefore, using a test value for the separation or magnitude difference 
that is an integral multiple of these spacings would be unconvincing. A matrix 
of ten separations (Ax = 10.2, 27.9, 38.4, 45.7, 64.9, 79.9, 81.6, 103.0, 124.8, 
and 135.1 mas) and ten magnitude differences (Am = 0.000, 0.234, 0.456,1.567, 
2.222, 2.617, 2.987, 3.210, 3.540, and 4.170 mag) were chosen. They have been 
slightly weighted towards zero separation, zero magnitude difference, and large 
magnitude differences as these form the stressing cases. For these 100 values the 
full software set was allowed complete freedom with respect to the initial values. 
The results of the intermediate correlation results and the final least-squares 
results are given in Figures 2 and 3. By and large the true values are faithfully 
reproduced. 

The errors are largest, in Ax and Am, space, where we already knew there 
would be problems. The difficulty with fainter secondaries is a lack of signal-
to-noise ratio in the TFs compounded by a less than perfect form for the single 
star curves and spacecraft jitter. As the separation between the pair approaches 
zero, these same confounding issues limit our ability to tell that there are in 
fact two stars there as opposed to a photon-noise deformed, single-star TF (of 
V = 12.7 mag in these cases). Results for different magnitude primaries (9.6 
and 14.8 mag) and for Monte Carlo simulations involving photon noise will be 
reported on over the course of time. 
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' * * * * * * & 

FIGURE 2. Errors in separation (Ax) in arc seconds as a function of separation 
and magnitude difference for a V = 12.7 mag primary. Note the poor results for 
zero separation and for the faintest secondaries when the separation is equal to the 
primary/secondary peak difference in the TF. 

5. SUMMARY 

This paper has reported on the first realistic simulations of the precision and 
accuracy of binary star reconstruction from the Fine Guidance Sensor TRANSfer 
function observing mode. We expect to be able to retrieve a few milli-arcseconds 
for the separation for separations beyond ~ 10-15 mas, a tenth of degree for 
the position angle for similar separations (which is partially dependent on the 
reconstructed attitude of the spacecraft), and a few tenths of a magnitude for 
the primary/secondary magnitude difference for magnitude differences less than 
3 mag. All of this refers to systems wherein the primary is brighter than 14th 

magnitude. This level of performance will deteriorate with increasing magnitude 
difference, decreasing separation, and decreasing magnitude of the primary. 
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FIGURE 3. As in Figure 2 but errors in the magnitude difference. 

7. DISCUSSION 

FRANZ: The fact that the "bump" due to a binary component may coincide 
with the secondary "bump" in the transfer function is not necessarily of practical 
importance. You observe the object at a different roll angle and thus at a 
different projected separation, avoiding the coincidence. 

TAFF: This is absolutely correct for a binary with a known orbit. However, 
I still hope that the HST Telescope Allocation Committee will grant sufficient 
observing time to the FGS's to go on a "fishing" expedition for binary stars. 
Then this becomes a consideration. 

McALISTER: Do you have any way to externally calibrate Am to add 
confidence to your simulations? 

TAFF: There is a separate photometric calibration of the FGS's. This should 
produce a ±0.01 mag calibration for photometry. Calibrating Am will come 
from the Monte Carlo simulations I alluded to and this will be much larger, 
±0.3 mag at Am = 1.5 mag. 
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