BULL. AUSTRAL. MATH. Soc. 16R50
VoL. 49 (1994) [85-90]

SKEW FIELDS WITH A NON-TRIVIAL GENERALISED
POWER CENTRAL RATIONAL IDENTITY

KATsvo CHIBA

Let D be a skew field with uncountable centre K. The main result in the
present paper is as follows: If D satisfies a non-trivial generalised power central
rational identity, then D is finite dimensional over K. As a corollary we obtain

the following result. Let a be an element of D such that (a‘lz‘laz)q(z) € K for
all z € D\ {0} where g(z) is a positive integer depending on z. Then a € K.

Several authors [7, 8, 10] have studied skew fields with a certain power central
rational identity. In this paper we shall study skew fields with uncountable centre
which satisfy a general power central rational identity.

Let D be a skew field with centre K and K(X) the free K-algebra on a finite
set X = {z1, 22,..., 2n}. We denote by D(X) = D *x K(X) the free product of D
and K(X) over K and by D(X) the universal skew field of fractions of D(X). Let
d = (d;) be an element of D™ and a4: D(X) — D the D-ring homomorphism defined
by a4(zi) = di, i=1,2,...,n. We denote by X4 the set of all matrices over D(X)
which are mapped by a4 to invertible matrices over D. Let 2;1 be the set of all
entries of inverses A~! over D(X) for all A € £4. Then £ ! is a ring and it contains
D(X) as a subring. Moreover, there is a D-ring homomorphism f84: £;' — D which
extends a4 and satisfies that any element of E;l not in the kernel of 84 has an inverse
in ;! (see [4, Chapter 7]). Let f = f(z;) be an element of D(X). If f belongs
to £7', we say f is defined at (d;) and write f(d;) instead of Ba(f). We say D
satisfies a generalised power central rational identity (abbreviated GPCRI) if there is
an element f in D(X) satisfying the following condition: if f is defined at (d;) € D™
then f(d;)? € K for some positive integer ¢ which depends only on (d;). Furthermore,
if fP ¢ K for any positive integer p, we say D satisfies a non-trivial GPCRI f.

The purpose of this paper is to prove the following theorem.

THEOREM 1. Let D be a skew field with uncountable centre K. If D satisfies a
non-trivial GPCRI, then D is finite dimensional over K .

In 7] Herstein conjectured that any element a of D which satisfies (a~'z"'az) 1) ¢
K for all z € D\ {0} where g(z) depends on z must be central and in [8, p.489] he
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settled the conjecture for the case in which K is an uncountable field of characteristic
0. As a corollary of Theorem 1, we settle this conjecture here for the case in which K
is an uncountable field of arbitrary characteristic.

COROLLARY 2. Let D be a skew field with uncountable centre K. Let a be
an element of D such that (a“’z—laz)q(z) € K for all z € D\ {0} where ¢(z) is a
positive integer depending on ¢. Then a € K.

Furthermore, by Theorem 1, we obtain [10, Theorem)].

COROLLARY 3. Let D be a skew field with uncountable centre K. Suppose
that there is a non-trivial word w in a free group such that every value of w over D is
periodic over K. Then D is commutative.

NOTATIONS AND TERMINOLOGY. Let E be a skew field which contains D and the
centre of E contains K, the centre of D. Let (e;) € E™ and f = f(z;) € D(X).
In the same fashion as we previously defined, we say f is defined at (e;), we use an
expression f(e;) and we say E satisfies a GPCRI f. Let k be a field, R a k-algebra
and R*k(X) the free product of R and k(X) over k, where k(X) is a free algebra on
a finite set X = {1, 22, ..., 2n}. Let f € R* k(X). We say that f is a generalised
power central identity (abbreviated GPCI) of R if for each (r;) € R™, there exists a
positive integer g, which depends on (r;), such that f(r;)? is a central element of R.
We shall denote by D(X){t] the polynomial ring over D{X) in a central indeterminate
t and by D(X)(t) (respectively D(t)) the quotient skew field of the polynomial ring
D(X)[t] (respectively D[t]). The Laurent series skew field over D(X) (respectively
D) is denoted by D(X)((t)) (respectively D((t))). There is a natural embedding of
D(X)(t) (respectively D(t))into D(X)((t)) (respectively D((t))), so we shall think of
D(X)(t) (respectively D(t)) as a subring of D(X)((t)) (respectively D((t))). If R is
a semifir, we denote by U(R) the universal skew field of fractions of R.

To prove Theorem 1, we need several lemmas. We begin with the following.

LEMMA 4. Let D be a skew field with uncountable centre K and D(t;, t2, ..., tm)
be a quotient skew field of the polynomial ring D[t, t2,...,t,], where t;, i =
1,2, ..., m, are central indeterminates. If D satisfies a GPCRI f = f(z;) € D(X)
then D(t,, t2, ..., tm) also satisfies the GPCRI f.

PROOF: We first show that D(?,) satisfies the GPCRI f. Suppose f = f(z:) is
defined at (hi(t1)) € D(¢1)". Since K is uncountable, f is defined at (h;(u)) € D™
for uncountably many elements u € K. Then, by the Pigeon-Hole Principle we can
find a positive integer g such that f(k;(u))? € K for infinitely many elements u € K.
By [10, Lemma 1], f(hi(t1))? is central in D(t,). Thus D(¢,) satisfies the GPCRI f.
Since D(t1,ta, ..., tiz1) = D(t1, ta, ..., ti)(ti+1), by induction on m it follows that
D(ty, t2, ..., tm) satisfies the GPCRI f. This completes the proof. 1]
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LEMMA 5. Let D be a skew field with uncountable centre K and L a field
containing K. Suppose g = g(z;) € D xx K(X) = D(X) is a GPCI of D. Then g is
also a GPClof D@y L.

PROOF: Let a; € Dk L, 1 =1,2,...,n. Then there are a polynomial ring
D[ty,t2,...,tm], n elements h; € D[t;, t2,...,tm], 1 = 1,2,...,n, and a D-ring
homomorphism ¢: D[t, ¢z, ..., tm] = D ®k L such that ¢(¢;) € L, j=1,2,...,m,
and ¢(h;) = e;, 1 = 1,2,...,n. It is clear that g is a GPCRI of D. Hence, by
Lemma 4, D(t,, t3, ..., t,;) satisfies the GPCRI g. Therefore we can find a positive
integer ¢ such that g(k;)? € Kl[t, ¢,, ..., tm], the centre of D[t;, ¢3, ..., tm], and
hence g(a:)? = ¢(g(h:)?) € L. Thus D @k L satisfies the GPCI g. 0

LEMMA 6. Let D be a skew field with uncountable centre K. If D satisfies a
GPCI in D{X)\ D, then D is finite dimentional over K.

PROOF: Let g = g(z;) € D(X)}\ D be a GPCI of D, let the X-degree of g be m,
and let D(X}[t] be the polynomial ring over D(X) in a central indeterminate ¢. Then
we can express g(z;t) € D(X)[t] in the form

9(zit) = gm(z)t™ + gm-1(z: )™ + ... + go

where g;(z;) € D(X) is homogeneous and of X-degree j for j =0,1,2,...,m. Let
(d:) € D™. Since K is uncountable, by the Pigeon-Hole Principle, we can find a positive
integer ¢ such that g(d;u)? € K for infinitely many elements u € K. By a van der
Monde determinant argument, we have that g,,(d;)® € K. Thus we may assume that
g is homogeneous. Let us write g in the following form:

g=Xieizanduzpdin...Timd;

where z;; € {21, 22, ..., Za}, {€i, dij} C D and e; # 0. Let us denote the elements
dij by dy,ds, ..., dy. We may assume that d;, ds,...,ds are K-linearly indepen-
dent. Now, let L be a maximal commutative subfield of D. Then R = DQx L is
a dense ring of linear transformations on D considered as a right vector space over
L. Assume [D : K] = oo. Then, by [1, Corollary 8*], D ®x L has no finite ranked
transformation. By [1, Lemma 11] we obtain m + 1 elements vy, v1, v2, ..., v, in D
such that the elements of V = {divj:+=1,2,...,h, j=0,1,2,...,m} are right
L-linearly independent. Consider the finite set of the z’s which appear in the monomial
e1z11d11212d12 - . - Z1md1m . Without loss of generality we may assume that these are
Ty, T3, ...y 2Zyu. Since R = D ®g L acts densely on D, we can find u elements ci
k=1,2,...,u,in R which act on V such that

(1) cxduvy = e oy if 21y = 24,

(2) cedijvj=vj_y ifzyj=24 for j=2,...,m,

(3) cadrv, =0 otherwise.

https://doi.org/10.1017/5S00049727000167117 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700016117

88 K. Chiba [4]

Let ¢ = g(e1, €25 .445 €4y 0,...,0). Then we have cvyy = vy By Lemma 5, g is a
GPCI of R. Hence there is a positive integer s such that ¢* = 1. On the other hand,
by the definitions of ¢x, k=1, 2, ..., u, it follows that cvg = 0, a contradiction. Thus
[D : K] < co. This proves the lemma. 0

LEMMA 7. If f = f(z;) € D(X)\ D is defined at (d;) € D™, then f is defined
at (d; + z;t) € D(X)((t))" and f(d; + zit) has the representation:

fldi +zit) = fo + fit + fut? + ...

where fo = f(d;), fi € D{X) is homogeneous with X-degree i for i 2 1. Moreover,
there exists 1 2 1 such that f; #0.

PROOF: It is easy to show that f is defined at (d; +z;t) € D(X)((¢))" and
F(d; + z;t) has the above representation. We show that f; # 0 for some i = 1.
Let

Ry = {q(t)p(t)_l € D(X)(t); p(t), q(t) € D(X)[t] and p(1) invertible in D(X)} .

Then, by (2, Lemma 5], R; is a subring of D(X)(t) and there is a ring homomorphism
¢: R; — D(X) such that ¢(q(t)p(t)_1) = ¢(1)p(1)"!. Clearly we have f(d; + z;t) €
R;. Let ¥: D(X) —» D(X) be the D-automorphism defined by ¥(z;) = =z; — d;,
i=1,2,...,n. Suppose f(d; +zit) = fo € D. Then we have ¥¢(f(d; + z;t)) =
f(z:) = fo € D, a contradiction. This proves the lemma. 1]

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1: Assume to the contrary that [D : K] = co. Let f =
f(zi) € D(X)\ D be a non-trivial GPCRI of D. Then by [5, Theorem 7.2.7] we
can find an element (d;) € D™ such that f is defined at (d;) and f(d;) # 0. Since
f is a GPCRI of D, there is a positive integer p such that f(d;)’ € K. We show
f(zi)? ¢ D. Suppose f(z:)’ € D. Since f(z;)? is defined at (d;), it follows that
f(z:)? = f(d:;)* € K, contradicting the fact that f(z;) is a non-trivial GPCRI of D.
Hence, by Lemma 7 we have the representation in D(X)((t)):

F(di + 2it)? = fo + ft™ + frnprt™ +...

where fo = f(d:)* #0, 0 # fm = fm(z:) € D(X) with f,, homogeneous of X-degree
m. It is easy to see that f(z;) is defined at (d; + e;t) € D(t)" for any (e;) € D™.
By Lemma 4 D(t) satisfies the GPCRI f, so for each (e;) € D™ we can find an
integer 7 such that f(d; +e;t)’” € K. If the characteristic of D is zero, then the
first two terms in f(d; + eit)”” = {fo + fm(ei)t™ + ...}  are f§ + vf77 fm(e)t™,
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so that fn(e;) must be central. If the characteristic of D is x # 0, then we write
r = kN where k is a power of £ and N is prime to k. Then the first two terms in
F(di + €t)™ = {fo + fm(e)t™ +...}" are fI + NfI* fm(es)*t™* so that fi(e:)" is
central. Thus f,,(z;) is a GPCI of D. By Lemma 6, D is finite dimensional over K,
a contradiction. This completes the proof. 1]

For the proof of Corollaries 2 and 3, we recall

LEMMA 8. Let F be a free group on the set X = {z,, z2, ..., zn} and K[F] the
group algebra over K. Then there is a natural isomorphism D(X) = U(D *x K{X)) ~
U(D *x K[F)).

ProOOF: Let K(X) = U(K(X)) and K(F) = U(D[F]). Then, by [9, Theo-
rem 2| we have a natural isomorphism K(X) ~ K(F). By [5, Lemma 5.4.1 (ii)], we
have natural isomorphisms U(D xx K(X)) ~ U(D *x K(X)) and U(D *x K[F]) ~
U(D *x K(F)). Thus we have a natural isomorphism U(D *x K(X)) =~
U(D XK K[F])

PROOF OF COROLLARY 2: Assume a ¢ K. Then also a~! ¢ K. By Lemma 8
and {3, Corollary 8.1) a~'z;az; is a non-trivial GPCRI of D. Then [D : K] < o
by Theorem 1. Hence [D(t) : K(t)] < oo, where K(t) is the centre of D(t), as is
well known. By Lemma 4, D(t) satisfies the GPCRI a~'z;'az,;, and hence, by [7,
Sublemma] for each d € D we can find a positive integer g, which depends on d,
such that {a*(1 4+ dt)"'a(1 +dt)}? = {1 + (d —a~'da)t +....}9 = 1. By the same
argument as in the proof of Theorem 1, we obtain a positive integer N such that
(d- a"lda)N = 0. Hence d — a~'da = 0. Therefore we have a € K, a contradiction.
This completes the proof. 1]

PROOF OF COROLLARY 3: Let w be a non-trivial word in a free group of rank n
such that every value of w over D is periodic over K. By Lemma 8, w is a non-trivial
GPCRI of D. Then, by Theorem 1 [D : K| < co. Suppose D is not commutative.
Then, by [6, Theorem 2.1] D\ {0} contains a free subgroup G of rank two. As is well-
known, G contains a free subgroup of rank n, which is a contradiction. This completes
the proof. 0
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