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Faculty of Mathematics, University of Belgrade, Studentski trg 16,
11001 Beograd, PO Box 550, Serbia (pavlovic@matf.bg.ac.rs)

(Received 27 May 2011)

Abstract The following rather surprising result is noted.

(1) A function f(z) =
∑

anzn such that an ↓ 0 (n → ∞) belongs to H1 if and only if
∑

(an/(n + 1)) <

∞.

A more subtle analysis is needed to prove that assertion (2) remains true if H1 is replaced by the predual,
B1(⊂ H1), of the Bloch space. Assertion (1) extends the Hardy–Littlewood theorem, which says the
following.

(2) f belongs to Hp (1 < p < ∞) if and only if
∑

(n + 1)p−2ap
n < ∞.

A new proof of (2) is given and applications of (1) and (2) to the Libera transform of functions with
positive coefficients are presented. The fact that the Libera operator does not map H1 to H1 is improved
by proving that it does not map B1 into H1.
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1. Introduction and result

One of many important results of Hardy and Littlewood states that a function

f(z) =
∞∑

n=0

anzn

that is analytic in the unit disc D satisfies the conditions

f ∈ Hp =⇒
∞∑

n=0

(n + 1)p−2|an|p < ∞ (0 < p � 2) (1.1)

and
∞∑

n=0

(n + 1)p−2|an|p < ∞ =⇒ f ∈ Hp (2 � p < ∞). (1.2)
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624 M. Pavlović

Recall that the p-Hardy space Hp consists of those f ∈ H(D) (i.e. the set of all functions
analytic in D) for which

‖f‖p
p := sup

0<r<1
Mp

p (r, f) < ∞,

where

Mp
p (r, f) =

1
2π

∫ 2π

0
|f(reiθ)|p dθ

(see [3]). In the case when p = 2, both the relations are consequences of (and are weaker
than) Parseval’s Theorem. As noted in [14], (1.1) can easily be deduced from the impli-
cation

f ∈ Hp =⇒
∫ 1

0
Mp

2 (r, f)(1 − r)−p/2 dr < ∞ (0 < p < 2),

which is a special case of another theorem of Hardy and Littlewood [3, Theorem 5.11].
Then (1.2) is obtained from (1.1) by a duality argument. The converses of (1.1) and (1.2)
do not hold in general, but Hardy and Littlewood showed in [6] (see [23, Chapter XII,
Lemma 6.6]) that if the sequence {an} decreases to zero, then the converses hold for all
p > 1.

Theorem A. Let 1 < p < ∞. If an ↓ 0 as n → ∞, then the function f(z) =
∑

anzn

is in Hp if and only if
∞∑

n=0

(n + 1)p−2ap
n < ∞. (1.3)

The proof given in [23] and the proof that we present below depend heavily on the
hypothesis p > 1, and they suggest, perhaps, that Theorem A does not hold for p = 1.
However, we have the following.

Theorem 1.1. If an ↓ 0 as n → ∞, then f is in H1 if and only if

∞∑
n=0

an

n + 1
< ∞.

Moreover, there exists a constant C independent of {an} such that

C−1‖f‖1 �
∞∑

k=0

ak

k + 1
� C‖f‖1. (1.4)

Proof. The ‘only if’ part is contained in (1.1). To prove the ‘if’ part, write f as

f(z) =
∞∑

k=0

(ak − ak+1)
k∑

j=0

zj .
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Hence, for 0 < r < 1,

2πM1(r, f) =
∫ 2π

0
|f(reiθ)| dθ

�
∞∑

k=0

(ak − ak+1)
∫ 2π

0

∣∣∣∣
k∑

j=0

rjeijθ

∣∣∣∣ dθ

�
∞∑

k=0

(ak − ak+1)
∫ 2π

0

∣∣∣∣
k∑

j=0

eijθ

∣∣∣∣ dθ

� C

∞∑
k=0

(ak − ak+1) log(k + 2),

where we have used the following well-known estimate:

∫ 2π

0

∣∣∣∣
k∑

j=0

eijθ

∣∣∣∣ dθ � C log(k + 2),

where C is an absolute constant. Next, we use the inequality

log(k + 2) � C1

k∑
j=0

1
j + 1

to obtain

M1(r, f) � C2

∞∑
k=0

(ak − ak+1)
k∑

j=0

1
j + 1

= C2

∞∑
j=0

1
j + 1

∞∑
k=j

(ak − ak+1)

= C2

∞∑
j=0

1
j + 1

aj ,

as desired. (The existence of a constant C satisfying (1.4) follows from the proof.) �

Remark 1.2. When writing the sum in (1.3) as

( ∞∑
n=0

((n + 1)an)p(n + 1)−2
)1/p

and letting p → ∞, we get supn(n + 1)an. In this limiting case we have the following.

Let BMOA denote the space of analytic functions of bounded mean oscillation.

Theorem B (Xiao [22, Corollary 3.3.1]). If an ↓ 0, then f belongs to BMOA if
and only if supn(n + 1)an < ∞.
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2. Proof of Theorem A

Let
∆n(z) =

∑
k∈In

zk,

where
In = {k : 2n−1 � k < 2n+1} for n � 1, I0 = 0.

Let ∆nf denote the Hadamard product of ∆n and f :

∆nf(z) =
∑
k∈In

akzk.

The following useful fact was proved in [14]. The proof is relatively easy and is based
on the Riesz Projection Theorem and a theorem on Lp-integrability of power series with
positive coefficients [13, Theorem 1].

Theorem C. Let 1 < p < ∞ and α > −1. The following quantities are then equivalent
for g ∈ H(D):

Q1(g) =
∫

D

|g(z)|p(1 − |z|)α dA(z),

Q2(g) =
∞∑

n=0

2−n(α+1)‖∆ng‖p
p.

‘Equivalent’ means that Q1(g) < ∞ ⇐⇒ Q2(g) < ∞, and that C−1Q1(g) � Q2(g) �
CQ1(g), where C is independent of g. The latter is denoted as Q1(g) � Q2(g).

We need the following consequence of the Riesz Projection Theorem.

Lemma A. Let λ = {λn} be a monotone non-negative sequence, and let λg =∑∞
n=0 λnbnzn, where g(z) =

∑
bnzn. Then

C−1λ2n−1‖∆nf‖p � ‖∆nλf‖p � Cλ2n‖∆nf‖p if λ is non-decreasing

and

C−1λ2n‖∆nf‖p � ‖∆nλf‖p � Cλ2n−1‖∆nf‖p if λ is non-increasing.

This fact is familiar from the theory of Schauder bases. In our case the sequence
en(z) = zn is, by the Riesz Theorem, a Schauder basis of Hp for 1 < p < ∞ (but not
for p = 1). The proof of the lemma is easy and is based on summation by parts and we
therefore omit it (see [11, Proposition 1.a.3] concerning this point).

In [17], a short elementary proof, based on a simple version of Green’s formula, of the
following theorem of Littlewood and Paley [12] was given.

Theorem D. If p � 2, and f ∈ Hp, then there is a constant C such that∫
D

|f ′(z)|p(1 − |z|)p−1 dA(z) � C‖f‖p
p, (2.1)

where dA is the Lebesgue measure in the plane.
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In fact, in [17] a seemingly different result is proved: if u = Re f , then
∫

D

|∇u(z)|p(1 − |z|)p−1 dA(z) � C‖u‖p
p,

but this is the same as (2.1) since |∇u| = |f ′|, and ‖f‖p � C‖u‖p (by the Riesz Theorem).
Another useful fact is the following.

Lemma B (Mateljević and Pavlović [14, Lemma 3.1]). If g(z) =
∑n

k=m ckzk,
then

rn‖g‖p � Mp(r, g) � rm‖g‖p, 0 < r < 1, 0 < p � ∞.

Proof of Theorem A. It follows from Theorem D, via Theorem C and Lemma A
with λk = k, that

∞∑
n=0

‖∆nf‖p
p � C‖f‖p

p, 2 < p < ∞. (2.2)

This holds for all f ∈ Hp. If an ↓ 0, then we again appeal to Lemma A, with λn = an,
to obtain

C−1a2n‖∆n‖p � ‖∆nf‖p � Ca2n−1‖∆n‖p.

In order to finish the proof (for p > 2) we need to estimate ‖∆n‖p. First we have
‖∆n‖∞ = 2n−1 for n � 1. Then we use the inequality

M∞(r, g) � C(1 − r)−1/pMp(r, g), 0 < r < 1,

together with Lemma B, with r = 1− 2−n−1, to find that ‖∆n‖∞ � C2n/p‖∆n‖p, which
implies ‖∆n‖p � C−12n(1−1/p).

In the other direction, let g(z) = (1 − z)−1 and gr(z) = g(rz), 0 < r < 1. By the Riesz
Theorem, we have

‖∆ngr‖p
p � C‖gr‖p

p � C(1 − r)1−p.

On the other hand, we have r2n‖∆ng‖p = r2n‖∆n‖p � ‖∆ngr‖p, from which we obtain,
by taking r = 1 − 2−n−1, that ‖∆n‖p � C2n(1−1/p). Thus,

‖∆n‖p � 2n(1−1/p), p > 1. (2.3)

Combining this with (2.2) and (2) we get

∞∑
n=1

ap
2n2n(p−1) � C‖f‖p

p,

which, together with (1.2), proves Theorem A in the case p > 2.
If 1 < p < 2, then we use the Riesz Projection Theorem and a duality argument to

show that

‖f‖p � C

∞∑
n=0

‖∆nf‖p
p, 1 < p < 2.

Then proceed as in the case p > 2 to complete the proof of Theorem A. �
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628 M. Pavlović

3. On the predual of the Bloch space: Hardy–Bloch spaces∗

Let Bp (1 � p � ∞) denote the space of all f ∈ H(D) such that

‖f‖Bp
:= |f(0)| +

( ∫
D

|f ′(z)|p(1 − |z|)p−1 dA(z)
)1/p

< ∞.

In the case p = ∞ this quantity is interpreted as

‖f‖B∞ = |f(0)| + sup
z∈D

|f ′(z)|(1 − |z|),

and hence B∞ coincides with the Bloch space B.
From Lemmas B and A we get

‖f‖p
Bp �

∞∑
n=0

‖∆nf‖p
p, 1 < p < ∞.

From this, Lemma A and (2.3) we obtain the following.

Theorem 3.1. Let 1 < p < ∞ and an ↓ 0. The function f ∈ Bp (if and only if
f ∈ Hp) if and only if

∞∑
n=0

(n + 1)p−2ap
n < ∞.

It is easily shown that if an ↓ 0, then

f ∈ B ⇐⇒ sup
n

(n + 1)an < ∞,

and so f ∈ B if and only if f ∈ BMOA. Therefore, it is natural to ask what is happening
with the space

B
1 =

{
f :

∫
D

|f ′(z)| dA(z) < ∞
}

normed by

‖f‖B1 = |f(0)| +
∫

D

|f ′| dA.

This space is the predual of the ordinary Bloch space with respect to the duality pairing

〈f, g〉 = lim
r→1−

∞∑
n=0

f̂(n)ĝ(n)rn

(see, for example, [19]). It turns out that the situation is the same as in the case of H1.

Theorem 3.2. Let f(z) =
∑∞

n=0 anzn, where an ↓ 0. Then f ∈ B1 if and only if

∞∑
n=0

an

n + 1
< ∞,

∗ This term was introduced in [5].
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and we have

‖f‖B1 �
∞∑

k=0

ak

k + 1
.

The ‘only if’ part is true because of Theorem 1.1 and the inclusion B1 ⊂ H1.
In order to prove the ‘if’ part we need a decomposition of B1. In [8], a sequence {Vn}∞

0
was constructed in the following way.

Let ω be a C∞-function on R such that

(1) ω(t) = 1 for t � 1,

(2) ω(t) = 0 for t � 2,

(3) ω is decreasing and positive on the interval (1, 2).

Let ϕ(t) = ω( 1
2 t) − ω(t), let V0(z) = 1 + z and, for n � 1, let

Vn(z) =
∞∑

k=0

ϕ(k/2n−1)zk =
2n+1−1∑
k=2n−1

ϕ(k/2n−1)zk.

These polynomials have the following properties:

g(z) =
∞∑

n=0

Vng(z) for g ∈ H(D), (3.1)

‖Vng‖p � C‖g‖p for g ∈ Hp, p > 0, (3.2)

‖Vn‖p � 2n(1−1/p) for all p > 0. (3.3)

In [9, Lemma 2.1], the following analogue of Lemma B was proved.

Lemma C. Let 0 < p < ∞, let α > −1 and let ν be a non-negative integer. A function
g ∈ H(D) satisfies the condition

K1(g) :=
ν−1∑
j=0

|g(j)(0)| +
∫

D

|g(ν)(z)|p(1 − |z|)α dA(z) < ∞

if and only if

K2(g) :=
∞∑

n=0

2n(νp−α−1)‖Vng‖p
p < ∞,

and we have K1(g) � K2(g).

(In the case ν = 0, the sum
∑−1

j=0 is interpreted as zero.)

Proof of Theorem 3.2. We have to prove that

‖f‖B1 � Ca0 + C

∞∑
n=1

a2n−1 .

https://doi.org/10.1017/S001309151200003X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151200003X


630 M. Pavlović

By Lemma C,

‖f‖B1 � |a0| +
∞∑

n=1

‖Vnf‖1.

Let n � 1, let m = 2n−1 and let Qk =
∑k

j=m ϕ(j/m)ej . Since Q4m−1 = Vn, we have

Vnf =
4m−1∑
k=m

ϕ(k/m)akek

=
4m−1∑
k=m

(ak − ak+1)Qk + a4mQ4m−1

=
4m−1∑
k=m

(ak − ak+1)Qk + a4mVn.

On the other hand, Qk = Vn∆n,k, where

∆n,k =
k∑

j=2n−1

zk, 2n−1 � k � 2n+1.

By (3.2), with g = ∆n,k, we have

‖Qk‖1 � C‖∆n,k‖1 � C log(k + 1 − 2n−1) � C(n + 1).

Combining these inequalities we get

‖Vnf‖1 � C

4m−1∑
k=m

(ak − ak+1)(n + 1) + Ca4m‖Vn‖1

� C(n + 1)(am − a4m) + Ca4m

= C(n + 1)(a2n−1 − a2n+1) + Ca2n+1 .

Here we have used the relation ‖Vn‖1 � C (see (3.3))! Thus,

‖Vnf‖1 � C(n + 1)(a2n−1 − a2n) + C(n + 1)(a2n − a2n+1) + Ca2n+1 ,

and therefore it remains to compute the sums

S1 =
∞∑

n=1

(n + 1)(a2n−1 − a2n) and S2 =
∞∑

n=1

(n + 1)(a2n − a2n+1).

In order to compute S1, observe that from the convergence of
∑

(ak/(k + 1)) and the
monotonicity of {an} it follows that

0 ←−−−−
n→∞

∑
2n/2<k�2n

ak

k + 1
� a2n

∑
2n/2<k�2n

1
k + 1

� c(n + 1)a2n (c = const. > 0),
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and hence
lim

n→∞
(n + 1)a2n = 0.

Using this and the formula
∞∑

n=1

(cn − cn+1) = c1 if cn → 0,

with cn = na2n−1 , we get

S1 =
∞∑

n=1

(na2n−1 − (n + 1)a2n) + a2n−1 = a1 +
∞∑

n=1

a2n−1 .

In a similar manner we get

S2 =
∞∑

n=1

(na2n − (n + 1)a2n+1) + a2n = a2 +
∞∑

n=1

a2n ,

which completes the proof. �

Remark 3.3. The main points in the above proof are the relations Q2n+1−1 = Vn and
‖Vn‖1 � 1. It is interesting to try to use the inequality

‖f‖B1 � C

∞∑
n=0

‖∆nf‖1.

Then, working as above, we get

∆nf =
2n−1∑

k=2n−1

(ak − ak+1)
k∑

j=2n−1

ek + a2n∆n.

Now, instead of Vn we have ∆n at the end, and application of the triangle inequality
only yields

‖∆nf‖p � C(n + 1)(a2n−1 − a2n) + Ca2n(n + 1).

The extra factor n + 1 makes this attempt unsuccessful. Thus, in a sense, the above proof
of Theorem 3.2 is accidental.

Remark 3.4. Lemma C was deduced in [9] from the case ν = 0 (which is relatively
easy to discuss) by using some non-trivial results of Hardy and Littlewood [7] and of
Flett [4]. A simpler deduction is possible: see [16, Exercise 7.3.5].

Remark 3.5. The space B1 is closely related to H1 in that H1 ⊗ H1 = B1, where
X ⊗ Y denotes the set of all g ∈ H(D), which can be represented as

g =
∞∑

n=0

hn ∗ kn, hn ∈ X, kn ∈ Y,

with
∑

‖hn‖X‖kn‖Y < ∞ (see [1]).
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4. Libera transform of functions with positive coefficients

In [10], Libera introduced the operator

g(z) �→ 2
z

∫ z

0
g(ζ) dζ

and demonstrated its importance in the theory of univalent functions. In particular, it
was shown in [10] that this operator transforms the class of starlike functions into itself.
The ‘generalized’ Libera operator

Λag(z) =
1

a − z

∫ a

z

g(ζ) dζ, where |a| � 1,

was introduced and studied from the functional analytic point of view by Siskakis in
[20,21], and was then studied further in [2,15,18] and other papers. The case |a| < 1 is
not interesting because Λa is then defined on H(D) and, on classical spaces, has almost
the same linear topological properties as the integration operator f(z) �→

∫ z

0 f(ζ) dζ.
Therefore, we can assume that a = 1. Define L = Λ1, i.e.

Lf(z) =
1

1 − z

∫ 1

z

f(ζ) dζ.

The integral is not defined on H(D): for example, f(z) = 1/(1 − z). However, if f(z) =∑
anzn and

∞∑
n=0

|an|
n + 1

< ∞, (4.1)

then the integral exists as

lim
D�w→1

∫ w

z

f(ζ) dζ

(see [15]) and we have

Lf(z) =
∞∑

n=0

bnzn,

where

bn =
∞∑

k=n

ak

k + 1
.

Condition (4.1) is satisfied if f ∈ H1 (Hardy’s inequality) and consequently if f ∈ Hp,
p > 1. Since B1 ⊂ H1, (4.1) is satisfied if f ∈ B1.

If an � 0, then bn ↓ 0, and we can apply Theorems 1.1 and 3.2 to Lf .

Theorem 4.1. Let an � 0 for all n. The following three conditions are then equivalent.

Lf ∈ H1, (4.2)

Lf ∈ B
1, (4.3)

∞∑
n=0

an log(n + 2)
n + 1

< ∞. (4.4)

The proof is straightforward and is omitted here.
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It is known (and is easy to check) that L does not map H1 into H1 (see, for example,
[15]). Moreover, we have the following corollary.

Corollary 4.2. The operator L does not map B1 (� H1) into H1.

Proof. By Theorem 3.2, the function

f(z) =
∞∑

n=0

anzn, where an =
1

log2(n + 2)
,

belongs to B1. On the other hand, by Theorem 4.1, the function Lf is not in H1. �

Theorem 4.3. Let an � 0, and let 1 < p < ∞. Then Lf is in Hp if and only if

∞∑
n=0

2−n

( ∑
k∈In

ak

)p

< ∞. (4.5)

For the proof we need a lemma.

Lemma 4.4. Let {dn}∞
0 be a non-negative sequence, let β > 0 and let γ � 1. Then

∞∑
n=0

2nβ |dn|γ �
∞∑

n=0

2nβ

∣∣∣∣
∞∑

k=n

dk

∣∣∣∣
γ

� C

∞∑
n=0

2nβ |dn|γ ,

where C is a constant independent of {dn}.

Proof. The left inequality is clear. Let γ � 1. The other inequality is equivalent to
the following:

∞∑
n=0

2nαγ

∣∣∣∣
∞∑

k=n

2−kαsk

∣∣∣∣
γ

� C

∞∑
n=0

|sn|γ , (†)

where α > 0 and {sn} is a sequence of complex numbers.
To prove this inequality we define the operator T by

T ({sn}∞
0 ) = {2αntn}∞

0 , where tn =
∞∑

k=n

2−αksk,

and consider the action of T on the spaces Lγ(µ, N), where N is the set of all positive
integers and µ({n}) = 2nα. It is easy to show that T acts as a bounded operator from
Lγ(N, µ) to �γ , for γ = 1. The same holds for γ = ∞. Therefore, by the Riesz–Thorin
Theorem, T maps �γ into �γ for 1 < γ < ∞. Since the norms are independent of {cn},
we get (†), which completes the proof. �

Remark 4.5. If
∑

n |sn|γ < ∞, then
∑

n 2−nα|sn| < ∞ by Hölder’s inequality.
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Proof of Theorem 4.3. By Theorem A, the function Lf belongs to Hp if and only
if

∞∑
n=0

2n(p−1)bp
2n < ∞. (‡)

Since

b2n =
∞∑

k=2n

ak

k + 1
=

∞∑
j=n

cj ,

where
cj =

∑
k∈Ij

ak

k + 1
,

condition (‡) is, by Lemma 4.4 with β = p − 1 and γ = p, equivalent to

∞∑
n=0

2n(p−1)cp
n < ∞,

which is equivalent to
∞∑

n=0

2n(p−1)
(

2−n
∑
k∈In

ak

)p

< ∞.

This is obviously equivalent to (4.5), which was to be proved. �
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