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Small Prime Solutions of Quadratic
Equations
Kwok-Kwong Stephen Choi and Jianya Liu

Abstract. Let b1, . . . , b5 be non-zero integers and n any integer. Suppose that b1 + · · · + b5 ≡ n
(mod 24) and (bi , b j ) = 1 for 1 ≤ i < j ≤ 5. In this paper we prove that

(i) if all b j are positive and n� max{|b j |}41+ε, then the quadratic equation b1 p2
1 + · · · + b5 p2

5 = n
is soluble in primes p j , and

(ii) if b j are not all of the same sign, then the above quadratic equation has prime solutions satisfying

p j �
√
|n| + max{|b j |}20+ε.

1 Introduction

For any integer n, we consider quadratic equations in the form

(1.1) b1 p2
1 + · · · + b5 p2

5 = n,

where p j are prime variables and the coefficients b j are non-zero integers. A neces-
sary condition for the solubility of (1.1) is

(1.2) b1 + · · · + b5 ≡ n (mod 24).

We also suppose

(1.3) (bi , b j) = 1, 1 ≤ i < j ≤ 5,

and write B = max{2, |b1|, . . . , |b5|}. The main results in this paper are the following
two theorems.

Theorem 1 Suppose (1.2) and (1.3). If b1, . . . , b5 are not all of the same sign, then
(1.1) has solutions in primes p j satisfying

p j �
√
|n| + B20+ε,

where the implied constant depends only on ε.
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Theorem 2 Suppose (1.2) and (1.3). If b1, . . . , b5 are all positive, then (1.1) is soluble
whenever

n� B41+ε,

where the implied constant depends only on ε.

Theorem 2 with b1 = · · · = b5 = 1 is a classical result of Hua [7] in 1938. The
quadratic equation (1.1) in general was first studied by M. C. Liu and Tsang [13],
who obtained a qualitative bound BA, in the place of B20+ε and B41+ε in Theorems 1
and 2 above, without the explicit values of the constant A.

Our investigation on (1.1) is not only motivated by [7] and [13], but also by the
following work on small prime solutions of the equation

(1.4) b1 p1 + b2 p2 + b3 p3 = n,

where b1, b2, b3, n are non-zero integers satisfying some necessary conditions. This
problem was first raised and investigated by Baker in his well-known work [1], and
was later settled qualitatively by M. C. Liu and Tsang [12]. In this problem, the con-
stant A corresponding to the 20 in our Theorem 1 is called Baker’s constant. The
first author [3] proved that Baker’s constant is≤ 4190, and M. C. Liu and Wang [14]
improved this to 45.

We prove our theorems by the circle method, and the idea will be explained in
Section 2. At this stage, we only point out that in contrast to the earlier works [3],
[12], [13], [14] which treat the enlarged major arc by the Deuring-Heilbronn phe-
nomenon, we show that in the context of this paper, the possible existence of Siegel
zero does not have special influence and hence the Deuring-Heilbronn phenomenon
can be avoided. This observation enables us to get better results without numerical
computations.

Notation As usual, ϕ(n), µ(n), and Λ(n) stand for the functions of Euler, Möbius,
and von Mangoldt respectively, d(n) is the divisor function. We use χ mod q and
χ0 mod q to denote a Dirichlet character and the principal character modulo q, and
L(s, χ) is the Dirichlet L-function. r ∼ R means R < r ≤ 2R. The letters c and c j

denote absolute positive constants, but the value of c without subscript may vary at
different places. The letter ε denotes a positive constant which is arbitrarily small.

In mathematical formulae, we will write “s.t.” for “similar terms”. For example,
“A1B2C3D4E5 + s.t.” means the sum of all possible terms AαBβCγDδEι with (α, . . . , ι)
being any permutation of (1, . . . , 5).

2 Outline of the Method

Denote by r(n) the weighted number of solutions of (1.1), i.e.,

r(n) =
∑

n=b1 p2
1+···+b5 p2

5

M<|b j |p2
j≤N

(log p1) · · · (log p5),
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where M = N/200. We will investigate r(n) by the circle method. To this end, we set

(2.1) P = (N/B)1/8−ε, Q = N/(PL9000), and L = log N.

By Dirichlet’s lemma on rational approximation, each α ∈ [1/Q, 1 + 1/Q] may be
written in the form

(2.2) α = a/q + λ, |λ| ≤ 1/(qQ)

for some integers a, q with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. We denote by M(a, q) the
set of α satisfying (2.2), and define the major arcs M and the minor arcs m as follows:

(2.3) M =
⋃
q≤P

q⋃
a=1

(a,q)=1

M(a, q), m =
[

1

Q
, 1 +

1

Q

]
\M.

It follows from 2P ≤ Q that the major arcs M(a, q) are mutually disjoint. Let

S j(α) =
∑

M<|b j |p2≤N

(log p)e(b j p2α).

Then we have

(2.4) r(n) =
∫ 1

0
S1(α) · · · S5(α)e(−nα) dα =

∫
M

+

∫
m

.

The integral on the major arcs M causes the main difficulty, which is solved by the
following:

Theorem 3 Assume (1.3). Let M be as in (2.3) with P, Q determined by (2.1). Then
we have

(2.5)

∫
M

S1(α) · · · S5(α)e(−nα) dα =
1

32
S(n, P)I(n) + O

(
N3/2

|b1 · · · b5|1/2L

)
,

where S(n, P) and I(n) are defined in (2.6) and (2.7) respectively.

The proof of this theorem forms the bulk of this paper, Sections 3–6. From (2.1)
one sees that our major arcs are quite large. Historically, enlarged major arcs are
treated by the Deuring-Heilbronn phenomenon. But here we observe that under the
assumption (1.3), we can save the factor B5/2 in Lemma 3.1 below (in Lemma 3.8
in [13], there is an extra factor of B5/2 on the right-hand side). With this saving,
(2.5) can be derived from the large sieve inequality, Gallagher’s lemma and classical
results on the distribution of zeros of L-functions. This approach has also been used
by Bauer, M. C. Liu, and Zhan [2], and by M. C. Liu, Zhan, and the second author
[10], [11].
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To derive Theorems 1 and 2 from Theorem 3, we need to bound S(n, P) and I(n)
from below. For χ mod q, we define

C(χ, a) =
q∑

h=1

χ̄(h)e
( ah2

q

)
, C(q, a) = C(χ0, a).

If χ1, . . . , χ5 are characters modq, then we write

B(n, q, χ1, . . . , χ5) =
q∑

h=1
(h,q)=1

e
(
−hn

q

)
C(χ1, b1h) · · ·C(χ5, b5h),

B(n, q) = B(n, q, χ0, . . . , χ0), A(n, q) =
B(n, q)

ϕ5(q)
, S(n, x) =

∑
q≤x

A(n, q).(2.6)

Lemma 2.1 Assuming (1.2), we have S(n, P) � (log log B)−c1 for some constant
c1 > 0.

Lemma 2.2 Suppose (1.3) and

(i) b j ’s are not all of the same sign and N ≥ 10|n|; or
(ii) all b j ’s are positive and n = N.

Then we have

(2.7) I(n) :=
∑

b1m1+···+b5m5=n
M<|b j |m j≤N

(m1 · · ·m5)−1/2 � N3/2

|b1 · · · b5|1/2
.

The proofs of these two lemmas will be given in Section 7.
We now derive Theorems 1 and 2 from Theorem 3 and Lemmas 2.1 and 2.2.

Proofs of Theorems 1 and 2 We start from (2.4) and let N j = N/|b j |. To estimate
the integral on m, one appeals to the estimate on p. 151 in [13]:

S5(α)� N1/2+ε
5 (|b5|P−1 + N−1/4

5 + QN−1
5 )1/4

� N1/2+ε
5 (|b5|/P)1/4 � N1/2+ε(|b5|P)−1/4.

(2.8)

Also, we have the following mean-value estimate for S j(α):∫ 1

0
|S j(α)|4 dα� L4

∑
m2

1+m2
2=m2

3+m2
4

m2
ν≤N j ,ν=1,...,4

1� N1+ε
j ,

which in combination with Hölder’s inequality gives

(2.9)

∫ 1

0
|S1(α) · · · S4(α)| dα� N1+ε

|b1 · · · b4|1/4
.
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It therefore follows from (2.8) and (2.9) that

(2.10)

∣∣∣∣∫
m

∣∣∣∣ � N3/2+ε

|b1 · · · b5|1/4P1/4
.

The contribution from the major arcs can be handled by Theorem 3, which together
with (2.10) gives

r(n) =
1

32
S(n, P)I(n) + O

(
N3/2

|b1 · · · b5|1/2L
+

N3/2+ε

|b1 · · · b5|1/4P1/4

)
.

Now assume the conditions (i) or (ii) in Lemma 2.2. Applying Lemmas 2.1 and
2.2 to the above formula, we conclude

r(n)� |b1 · · · b5|−1/2N3/2(log log B)−c1

provided that P � Nε|b1 · · · b5|, or equivalently N � B1+ε|b1 · · · b5|8. This proves
Theorems 1 and 2.

3 An Explicit Expression

In this section, we establish an explicit expression for the integral in Theorem 3 (see
Lemma 3.2 below), from which and the estimates in Sections 4–6 we can derive The-
orem 3 at the end of Section 6.

Lemma 3.1 Let χ j mod r j with j = 1, . . . , 5 be primitive characters, r0 =
[r1, . . . , r5], and χ0 the principal character modq. Then∑

q≤x
r0|q

1

ϕ5(q)
|B(n, q, χ1χ

0, . . . , χ5χ
0)| � r−1+ε

0 log215

x.

Proof Lemma 3.1(c) of [13] asserts that for any character χ mod pα with α ≥ 0,

|C(χ, a)| ≤ 2(2, p)(a, pα)1/2 pα/2.

Therefore for characters χ1, . . . , χ5 mod pα,

|B(n, pα, χ1, . . . , χ5)| ≤ pα
(

2(2, p)pα/2
) 5

5∏
j=1

(b j , pα)1/2 ≤ 210 p4α,

where in the last inequality we have used the condition (1.3); in fact∏5
j=1(b j , pα)1/2 ≤ pα/2. Since for χ1, . . . , χ5 mod q, the function

|B(n, q, χ1, . . . , χ5)| is multiplicative with respect to q (in the sense as Lemma 3.2
in [13]), we have

|B(n, q, χ1, . . . , χ5)| ≤ q4210ω(q) ≤ q4d10(q),
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where ω(q) denotes the number of distinct prime divisors of q. Thus, for the charac-
ters in the lemma, we have

∑
q≤x
r0|q

1

ϕ5(q)
|B(n, q, χ1χ

0, . . . , χ5χ
0)| �

∑
q≤x
r0|q

q4d10(q)

ϕ5(q)
� r−1+ε

0

∑
q≤x

d15(q)

q
.

The desired result now follows from Lemma 2.4 in [8].

For j = 1, . . . , 5, recall N j = N/|b j |, and set

M j = M/|b j |, V j(λ) =
∑

M<|b j |m2≤N

e(b jm
2λ),

and

(3.1) W j(χ, λ) =
∑

M<|b j |p2≤N

(log p)χ(p)e(b j p2λ)− δχ
∑

M<|b j |m2≤N

e(b jm
2λ),

where δχ = 1 or 0 according as χ is principal or not. Also, define

J j =
∑
r≤P

r−1/5+ε
∑

χ mod r

∗
max

|λ|≤1/(rQ)
|W j(χ, λ)|,

and

K j =
∑
r≤P

r−1/5+ε
∑

χ mod r

∗
(∫ 1/(rQ)

−1/(rQ)
|W j(χ, λ)|2 dλ

) 1/2

,

where
∑

χ mod r
∗ is over all the primitive characters modulo r.

Now we state the main result of this section.

Lemma 3.2 Let M be as in (2.3). Then∫
M

S1(α) · · · S5(α)e(−nα) dα− 1

32
S(n, P)I(n)

� ( J1 J2 J3K4K5)Lc2 + ( J1 J2 J3K4|b5|−1/2 + s.t.)Lc2

+ ( J1 J2 J3|b4|−1/2 |b5|−1/2 + s.t.)Lc2

+ ( J1 J2N1/2
3 |b4|−1/2 |b5|−1/2 + s.t.)Lc2

+ ( J1N1/2
2 N1/2

3 |b4|−1/2 |b5|−1/2 + s.t.)Lc2

+ |b1 · · · b5|−1/2N3/2L−1,

where c2 = 215 + 1 and “s.t.” means similar terms as explained at the end of Section 1.
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Proof Introducing Dirichlet characters, we can rewrite the exponential sum S j(α)
as (see for example [4, Section 26, (2)])

S j

( h

q
+ λ
)

=
C(q, b jh)

ϕ(q)
V j(λ) +

1

ϕ(q)

∑
χ mod q

C(χ, b jh)W j(χ, λ) =: T j + U j ,

say. Thus,

(3.2)

∫
M

S1(α) · · · S5(α)e(−nα) dα = I0 + · · · + I5,

where Iν denotes the contribution from those products with ν pieces of U j and 5− ν
pieces of T j , i.e.,

Iν =
∑
q≤P

q∑
h=1

(h,q)=1

e
(
−hn

q

) ∫ 1/(qQ)

−1/(qQ)
(U1 · · ·UνTν+1 · · ·T5 + s.t.)e(−nλ) dλ.

We will prove that I0 gives the main term and I1, . . . , I5 the error term.

We begin with I5. Reducing the characters in I5 into primitive characters, we have

|I5| =
∣∣∣∣∑

q≤P

∑
χ1 mod q

· · ·
∑

χ5 mod q

B(n, q, χ1, . . . , χ5)

ϕ5(q)

∫ 1/(qQ)

−1/(qQ)
W1(χ1, λ) · · ·W5(χ5, λ)e(−nλ) dλ

∣∣∣∣
≤
∑
r1≤P

· · ·
∑
r5≤P

∑
χ1 mod r1

∗
· · ·

∑
χ5 mod r5

∗∑
q≤P
r0|q

|B(n, q, χ1χ
0, . . . , χ5χ

0)|
ϕ5(q)

×
∫ 1/(qQ)

−1/(qQ)
|W1(χ1χ

0, λ)| · · · |W5(χ5χ
0, λ)| dλ,

where χ0 is the principal character modulo q and r0 = [r1, . . . , r5]. For q ≤ P and
M < |b j |p2 ≤ N, we have (q, p) = 1. Using this and (3.1), we have W j(χ jχ

0, λ) =
W j(χ j , λ) for the primitive characters χ j above. Consequently by Lemma 3.1, we
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obtain

|I5| ≤
∑
r1≤P

· · ·
∑
r5≤P

∑
χ1 mod r1

∗
· · ·

∑
χ5 mod r5

∗
∫ 1/(r0Q)

−1/(r0Q)
|W1(χ1, λ)| · · · |W5(χ5, λ)| dλ

×
∑
q≤P
r0|q

|B(n, q, χ1χ
0, . . . , χ5χ

0)|
ϕ5(q)

� Lc2
∑
r1≤P

· · ·
∑
r5≤P

r−1+ε
0

∑
χ1 mod r1

∗
· · ·

∑
χ5 mod r5

∗

×
∫ 1/(r0Q)

−1/(r0Q)
|W1(χ1, λ)| · · · |W5(χ5, λ)| dλ.

Applying the inequality r−1+ε
0 ≤ r−1/5+ε

1 · · · r−1/5+ε
5 to the above quantity and then

using Cauchy’s inequality, we get

|I5| � Lc2

{∑
r1≤P

r−1/5+ε
1

∑
χ1 mod r1

∗
max

|λ|≤1/(r1Q)
|W1(χ1, λ)|

}
× · · · ×

{∑
r3≤P

r−1/5+ε
3

∑
χ3 mod r3

∗
max

|λ|≤1/(r3Q)
|W3(χ3, λ)|

}

×
{∑

r4≤P

r−1/5+ε
4

∑
χ4 mod r4

∗
(∫ 1/(r4Q)

−1/(r4Q)
|W4(χ4, λ)|2 dλ

) 1/2}

×
{∑

r5≤P

r−1/5+ε
5

∑
χ5 mod r5

∗
(∫ 1/(r5Q)

−1/(r5Q)
|W5(χ5, λ)|2 dλ

) 1/2}
= J1 J2 J3K4K5Lc2 .

(3.3)

To bound I4, . . . , I1, we need the estimates V j(λ)� N1/2
j and

H2
j :=

∫ 1/Q

−1/Q
|V j(λ)|2 dλ =

∑
M1/2

j <m1,m2≤N1/2
j

∫ 1/Q

−1/Q
e
(

b j(m2
1 −m2

2)λ
)

dλ

�
∑

M1/2
j <m≤N1/2

j

Q−1 + |b j |−1
∑

M1/2
j <m1 6=m2≤N1/2

j

|m2
1 −m2

2|−1

� N1/2
j Q−1 + |b j |−1L2 � |b j |−1L2.

Thus similarly to (3.3), we have

(3.4)

|I4| � ( J1 J2 J3K4H5 + s.t.)Lc2 � ( J1 J2 J3K4|b5|−1/2 + s.t.)Lc2 ,
|I3| � ( J1 J2 J3H4H5 + s.t.)Lc2 � ( J1 J2 J3|b4b5|−1/2 + s.t.)Lc2 ,

|I2| � ( J1 J2N1/2
3 H4H5 + s.t.)Lc2 � ( J1 J2N1/2

3 |b4b5|−1/2 + s.t.)Lc2 ,

|I1| � ( J1N1/2
2 N1/2

3 H4H5 + s.t.)Lc2 � ( J1N1/2
2 N1/2

3 |b4b5|−1/2 + s.t.)Lc2 .


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It remains to compute I0. By the partial summation formula,

V j(λ) =
∫ N1/2

j

M1/2
j

e(b jλu2) du + O(1 + |λ|N)

=
1

2

∑
M<|b j |m≤N

m−1/2e(b jmλ) + O(1 + |λ|N).

(3.5)

Also we have the following elementary bound:∑
M<|b j |m≤N

m−1/2e(b jmλ)� min(N1/2
j ,M−1/2

j |b jλ|−1)

� |b j |−1/2 min(N1/2,M−1/2|λ|−1).

(3.6)

Substituting (3.5) into I0, we have

I0 =
1

32

∑
q≤P

B(n, q)

ϕ5(q)

∫ 1/(qQ)

−1/(qQ)

5∏
j=1

{ ∑
M<|b j |m≤N

e(b jmλ)

m1/2

}
e(−nλ) dλ

+ O

{∑
q≤P

|B(n, q)|
ϕ5(q)

∫ 1/(qQ)

−1/(qQ)

( 4∏
j=1

∣∣∣∣ ∑
M<|b j |m≤N

e(b jmλ)

m1/2

∣∣∣∣ (1 + |λ|N) + s.t.

)
dλ

}
.

(3.7)

By (3.6) and Lemma 3.1 with r0 = 1,

∑
q≤P

|B(n, q)|
ϕ5(q)

∫ 1/(qQ)

−1/(qQ)

∣∣∣∣ ∑
M<|b j |m≤N

e(b jmλ)

m1/2

∣∣∣∣ 4

(1 + |λ|N) dλ

� 1

b2
j

∑
q≤P

|B(n, q)|
ϕ5(q)

{∫ 1/
√

MN

0
N2 dλ +

∫ 1/Q

1/
√

MN
M−2N|λ|−3 dλ

}
� NLc2

b2
j

.

So by Hölder’s inequality,

∑
q≤P

|B(n, q)|
ϕ5(q)

∫ 1/(qQ)

−1/(qQ)

4∏
j=1

∣∣∣∣ ∑
M<|b j |m≤N

e(b jmλ)

m1/2

∣∣∣∣ (1 + |λ|N) dλ� NLc2

|b1 · · · b4|1/2

� N3/2

|b1 · · · b5|1/2L
.

The other error terms in (3.7) can be treated similarly and they are
� |b1 · · · b5|−1/2N3/2L−1. Now we extend the integral in the main term of (3.7)
to [−1/2, 1/2]; by Lemma 3.1 and (3.6), the resulting error is

� Lc2

|b1 · · · b5|1/2

∫ 1/2

1/(PQ)
M−5/2|λ|−5 dλ� (PQ)4Lc2

|b1 · · · b5|1/2M5/2
� N3/2

|b1 · · · b5|1/2L
,
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where we have used (2.1). Thus (3.7) becomes

(3.8) I0 =
1

32
S(n, P)I(n) + O

(
N3/2

|b1 · · · b5|1/2L

)
.

Therefore, Lemma 3.2 now follows from (3.2), (3.3), (3.4), and (3.8).

4 Estimation of J

We have
J j � L max

R≤P
J j(R)

where J j(R) is defined similarly to J j except that the sum is over r ∼ R. The estima-
tion of J j(R) falls naturally into two cases according as R is small or large. For R > LC ,
where C is some positive constant, one appeals to contour integration, mean-value
estimates for the Dirichlet L-functions or their derivatives, the large sieve inequality,
and Heath-Brown’s identity. While for R ≤ LC , one uses the classical zero-density
estimates and zero-free region for the Dirichlet L-functions.

We first establish the following result for large R. In Lemma 4.3 we shall consider
small R.

Lemma 4.1 Let A > 0 be arbitrary. Then there exists a constant C = C(A) > 0 such
that when LC < R ≤ P,

J j(R)� N1/2
j L−A,

where the implied constant depends at most on A.

To prove this result, it suffices to show that

(4.1)
∑
r∼R

∑
χ mod r

∗
max

|λ|≤1/(rQ)
|W j(χ, λ)| � R1/5−εN1/2

j L−A

holds for LC < R ≤ P and arbitrary A > 0. Let

(4.2) Ŵ j(χ, λ) =
∑

M<|b j |m2≤N

(
Λ(m)χ(m)− δχ

)
e(b jm

2λ).

Then

(4.3) W j(χ, λ)− Ŵ j(χ, λ) = −
∑
m≥2

∑
M<|b j |p2m≤N

(log p)χ(p)e(b j p2mλ)� N1/4
j .

Thus (4.1) is a consequence of the estimate

(4.4)
∑
r∼R

∑
χ mod r

∗
max

|λ|≤1/(rQ)
|Ŵ j(χ, λ)| � R1/5−εN1/2

j L−A,
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where LC < R ≤ P and A > 0 is arbitrary.

Let M1/2
j < u ≤ N1/2

j , and let D1, . . . ,D10 be positive numbers such that

2−10M1/2
j ≤ D1 · · ·D10 < u, and 2D6, . . . , 2D10 ≤ u1/5.

For ν = 1, . . . , 10 let

aν(m) =


log m if ν = 1;

1 if ν = 2, 3, 4, 5;

µ(m) if ν = 6, 7, 8, 9, 10.

We define the following functions of a complex variable s:

fν(s) = fν(s, χ) =
∑

m∼Dν

aν(m)χ(m)

ms
, F(s) = F(s, χ) = f1(s) · · · f10(s).

Now we recall Heath-Brown’s identity (see Lemma 1 in [6]) for k = 5, which states
that

ζ ′

ζ
(s) =

5∑
ν=1

(
5

ν

)
(−1)ν−1ζ ′(s)ζν−1(s)Gν(s) +

ζ ′

ζ
(s)
(

1− ζ(s)G(s)
) 5
,

where ζ(s) is the Riemann zeta-function, and G(s) =
∑

m≤u1/5 µ(m)m−s. The reason
why we choose k = 5 is that the identity with k ≤ 4 will give weaker results, and
when k ≥ 6 it produces the same estimate as the case k = 5. Equating coefficients of
the Dirichlet series on both sides provides an identity for −Λ(m). Also, for m ≤ u

the coefficient of m−s in−(ζ ′/ζ)(s)
(

1− ζ(s)G(s)
) 5

is zero. Thus,

Λ(m) =
5∑

ν=1

(
5

ν

)
(−1)ν−1

∑
m1···m2ν=m

mν+1,...,m2ν≤u1/5

(log m1)µ(mν+1) · · ·µ(m2ν).

Applying this identity to the sum

(4.5)
∑

M1/2
j <m≤u

Λ(m)χ(m),

one finds that (4.5) is a linear combination of O(L10) terms, each of which is of the
form

σ(u; D) =
∑

m1∼D1

· · ·
∑

m10∼D10

M1/2
j <m1···m10≤u

a1(m1)χ(m1) · · · a10(m10)χ(m10)
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where D denotes the vector (D1, . . . ,D10). By using Perron’s summation formula
(see for example, Lemma 3.12 in [16]) and then shifting the contour to the left, the
above σ(u; D) is

=
1

2πi

∫ 1+1/L+iT

1+1/L−iT
F(s, χ)

us −Ms/2
j

s
ds + O

(
N1/2

j L2

T

)

=
1

2πi

{∫ 1/2−iT

1+1/L−iT
+

∫ 1/2+iT

1/2−iT
+

∫ 1+1/L+iT

1/2+iT

}
+ O

(
N1/2

j L2

T

)
,

where T is a parameter satisfying 2 ≤ T ≤ N1/2
j . The integral on the two horizontal

segments above can be easily estimated as

� max
1/2≤σ≤1+1/L

|F(σ ± iT, χ)|u
σ

T
� max

1/2≤σ≤1+1/L
N(1−σ)/2

j L
uσ

T
�

N1/2
j L

T

on using the trivial estimate

F(σ ± iT, χ)� | f1(σ ± iT, χ)| · · · | f10(σ ± iT, χ)|

� (D1−σ
1 L)D1−σ

2 · · ·D1−σ
10 � N(1−σ)/2

j L.

Thus,

σ(u; D) =
1

2π

∫ T

−T
F

(
1

2
+ it, χ

)
u

1
2 +it −M

1
2 ( 1

2 +it)
j

1
2 + it

dt + O

(
N1/2

j L2

T

)
.

Since R > LC (so χ 6= χ0), we have in (4.2) that

Ŵ j(χ, λ) =
∑

M<|b j |m2≤N

Λ(m)χ(m)e(b jm
2λ)

=
∫ N1/2

j

M1/2
j

e(b ju
2λ) d

{ ∑
M1/2

j <m≤u

Λ(m)χ(m)
}
,

and consequently Ŵ (χ, λ) is a linear combination O(L10) terms, each of which is of
the form∫ N1/2

j

M1/2
j

e(b ju
2λ) dσ(u; D) =

1

2π

∫ T

−T
F

(
1

2
+ it, χ

) ∫ N1/2
j

M1/2
j

u−1/2+it e(b ju
2λ) du dt

+ O

(
N1/2

j L2

T
(1 + |λ|N)

)
.
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By taking T = N1/2
j and changing variables in the inner integral, we deduce from the

above formulae that

|Ŵ j(χ, λ)| � L10 max
D

∣∣∣∣∫ T

−T
F

(
1

2
+ it, χ

) ∫ N j

M j

v−3/4e

(
t

4π
log v + b jλv

)
dv dt

∣∣∣∣
+ PL9012,

(4.6)

where the maximum is taken over all D = (D1, . . . ,D10). Since

d

dv

(
t

4π
log v + b jλv

)
=

t

4πv
+ b jλ,

d2

dv2

(
t

4π
log v + b jλv

)
= − t

4πv2
,

by Lemmas 4.4 and 4.3 in [16], the inner integral in (4.6) can be estimated as

� M−3/4
j min

{
N j

(|t| + 1)1/2
,

N j

min
M j<v≤N j

|t + 4πb jλv|

}

�

{
N1/4

j (|t| + 1)−1/2 if |t| ≤ T0;

N1/4
j |t|−1 if T0 < |t| ≤ T;

(4.7)

where T0 = 8πN/(RQ). Here the choice of T0 is to ensure that |t + 4πb jλv| > |t|/2
whenever |t| > T0; in fact,

|t + 4πb jλv| ≥ |t| − 4π|b jv|/(rQ) > |t|/2 + T0/2− 4πN/(RQ) = |t|/2.

It therefore follows from (4.6) and (4.7) that the lemma (more precisely, (4.4)) is a
consequence of the following two estimates: For 0 < T1 ≤ T0, we have

(4.8)
∑
r∼R

∑
χ mod r

∗
∫ 2T1

T1

∣∣∣∣F( 1

2
+ it, χ

)∣∣∣∣ dt � R1/5−εN1/4
j (T1 + 1)1/2L−A,

while for T0 < T2 ≤ T, we have

(4.9)
∑
r∼R

∑
χ mod r

∗
∫ 2T2

T2

∣∣∣∣F( 1

2
+ it, χ

)∣∣∣∣ dt � R1/5−εN1/4
j T2L−A.

Both (4.8) and (4.9) are deduced from the following bound, which is Lemma 5.2
in [10].

Lemma 4.2 Let F(s, χ) be defined as above. Then for any R ≥ 1 and T3 > 0,

∑
r∼R

∑
χ mod r

∗
∫ 2T3

T3

∣∣∣∣F( 1

2
+ it, χ

)∣∣∣∣ dt � (R2T3 + RT1/2
3 N3/20

j + N1/4
j )Lc.
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Now we can complete the proof of Lemma 4.1 immediately.

Proof of Lemma 4.1 By taking T3 = T1 in Lemma 4.2, the left-hand side of (4.8) is
now

� (R2T1 + RT1/2
1 N3/20

j + N1/4
j )Lc � R1/5−εN1/4

j (T1 + 1)1/2L−A,

provided that LC < R ≤ P = (N/B)1/8−ε with a sufficiently large C . Here LC < R

guarantees that N1/4
j Lc is dominated by the quantity on the right-hand side. This

establishes (4.8). Similarly we can prove (4.9) by taking T3 = T2 in Lemma 4.2.
Lemma 4.1 now follows.

Now we treat the case R ≤ LC .

Lemma 4.3 Let A > 0 and C > 0 be arbitrary. Then for R ≤ LC , we have

J j(R)� N1/2
j L−A,

where the implied constant depends at most on C.

Proof We use the explicit formula (see [4, pp. 109 and 120])

(4.10)
∑
m≤u

Λ(m)χ(m) = δχu−
∑
|γ|≤T

uρ

ρ
+ O

{(
u

T
+ 1

)
log2(quT)

}

where ρ = β + iγ is a non-trivial zero of the function L(s, χ), and 2 ≤ T ≤ u is a

parameter. Taking T = N1/6
j in (4.10), and then inserting it into Ŵ j(χ, λ), we get by

M1/2
j < u ≤ N1/2

j , M j = N j/200, and (4.2) that

Ŵ j(χ, λ) =
∫ N1/2

j

M1/2
j

e(b ju
2λ) d

{∑
n≤u

(
Λ(m)χ(m)− δχ

)}

= −
∫ N1/2

j

M1/2
j

e(b ju
2λ)

∑
|γ|≤N1/6

j

uρ−1 du + O
(

N1/3
j (1 + |λ|N)L2

)
� N1/2

j

∑
|γ|≤N1/6

j

N(β−1)/2
j + O(N1/3

j PL9002).

Now we need Satz VIII.6.2 in Prachar [15], which states that
∏

χ mod q L(s, χ) is
zero-free in the region σ ≥ 1 − η(T), |t| ≤ T except for the possible Siegel zero,

where η(T) = c3 log−4/5 T. But by Siegel’s theorem (see for example [4, Section 21])
the Siegel zero does not exist in the present situation, since r ≤ LC . We also need the
zero-density estimate (see e.g. Huxley [9]):

N∗(α, q,T)� (qT)12(1−α)/5 logc(qT),
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where N∗(α, q,T) denotes the number of zeros of
∏∗

χ mod q L(s, χ) in the region
Re s ≥ α, | Im s| ≤ T. Thus,

∑
|γ|≤N1/6

j

N(β−1)/2
j � Lc

∫ 1−η(N1/6
j )

0
(N1/6

j )12(1−α)/5N(α−1)/2
j dα

� LcN
−η(N1/6

j )/10

j � exp(−c4L1/5).

Consequently,

(4.11)
∑
r∼R

∑
χ mod r

∗
max

|λ|≤1/(rQ)
|Ŵ j(χ, λ)| � N1/2

j L−A,

where R ≤ LC , and A > 0 is arbitrary. Lemma 4.3 now follows from (4.11) and (4.3).

5 Estimation of K

In this section, we estimate K by establishing the following Lemma 5.1. We remark
that in proving Lemma 5.1 we need not distinguish the two cases R > LC and R ≤ LC

as in Lemmas 4.1 and 4.3, since we need not save a factor L−A on the right-hand side
of (5.1).

Lemma 5.1 We have

(5.1) K j � |b j |−1/2Lc

where c > 0 is some absolute constant.

Proof By the definition of K j and (4.3), we have

K j � L max
R≤P

∑
r∼R

r−1/5+ε
∑

χ mod r

∗
(∫ 1/(rQ)

−1/(rQ)
|W j(χ, λ)|2 dλ

) 1/2

� L max
R≤P

∑
r∼R

r−1/5+ε
∑

χ mod r

∗
(∫ 1/(rQ)

−1/(rQ)
|Ŵ j(χ, λ)|2 dλ

) 1/2

+ |b j |−1/2.

Thus to establish (5.1), it suffices to show that

(5.2)
∑
r∼R

∑
χ mod r

∗
(∫ 1/(rQ)

−1/(rQ)
|Ŵ j(χ, λ)|2 dλ

) 1/2

� |b j |−1/2R1/5−εLc

holds for R ≤ P and some c > 0.
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By Gallagher’s lemma (see [5, Lemma 1]), we have

∫ 1/(rQ)

−1/(rQ)
|Ŵ j(χ, λ)|2 dλ�

( 1

RQ

) 2
∫ ∞
−∞

∣∣∣ ∑
v<|b j |m2≤v+rQ

M<|b j |m2≤N

(
Λ(m)χ(m)− δχ

) ∣∣∣ 2
dv

�
( 1

RQ

) 2
∫ N

M−rQ

∣∣∣ ∑
v<|b j |m2≤v+rQ

M<|b j |m2≤N

(
Λ(m)χ(m)− δχ

) ∣∣∣ 2
dv.

(5.3)

Let X = max(v,M)/|b j | and Y = min(v + rQ,N)/|b j |. Then the sum in (5.3) can be
written as

(5.4)
∑

X<m2≤Y

(
Λ(m)χ(m)− δχ

)
.

Before estimating (5.4), we observe first that, for any 0 < β < 1,

(5.5) Y β − Xβ � (v + rQ)β − vβ

|b j |β
=

vβ{(1 + rQ/v)β − 1}
|b j |β

� rQ

|b j |βM1−β ,

where in the last step we have used M − rQ ≤ v ≤ N and rQ ≤ 2RQ ≤ 2PQ �
ML−9000.

In the case χ = χ0 mod 1, the quantity in (5.4) is

� Y 1/2 − X1/2 � |b j |−1/2M−1/2Q

by (5.5) with r = 1. This contributes to (5.3) acceptably.
For other χ, we have δχ = 0 in (5.4). Using Heath-Brown’s identity to this sum,

and applying Perron’s formula as before, we see that (5.4) is a linear combination of
O(L10) terms, each of which has the form

1

2π

∫ T

−T
F

(
1

2
+ it, χ

)
Y

1
2 ( 1

2 +it) − X
1
2 ( 1

2 +it)

1
2 + it

dt + O

(
N1/2

j L2

T

)
,

where D, F(s, χ) are as in Section 4, and T is a parameter satisfying 2 ≤ T ≤ N1/2
j .

One easily sees that

Y
1
2 ( 1

2 +it) − X
1
2 ( 1

2 +it)

1
2 + it

=
1

2

∫ Y

X
u−3/4+it/2 du =

1

2

∫ Y

X
u−3/4e

(
t

4π
log u

)
du.

The integral can be easily estimated by (5.5) as� Y 1/4 − X1/4 � |b j |−1/4M−3/4RQ.
On the other hand, one has trivially

Y
1
2 ( 1

2 +it) − X
1
2 ( 1

2 +it)

1
2 + it

� Y 1/4

|t|
�

N1/4
j

|t|
.
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Collecting the two upper bounds, we get

Y
1
2 ( 1

2 +it) − X
1
2 ( 1

2 +it)

1
2 + it

� min

(
RQ

M3/4|b j |1/4
,

N1/4
j

|t|

)
� 1

|b j |1/4
min

(
RQ

N3/4
,

N1/4

|t|

)
.

Taking T = N1/2
j and T0 = N/(QR), we see that

σ(u; D)� RQ

|b j |1/4N3/4

∫
|t|≤T0

∣∣∣∣F( 1

2
+ it, χ

)∣∣∣∣ dt

+
N1/4

|b j |1/4

∫
T0<|t|≤T

∣∣∣∣F( 1

2
+ it, χ

)∣∣∣∣ dt

|t|
+ O(L2).

And consequently (5.3) becomes∫ 1/(rQ)

−1/(rQ)
|Ŵ (χ, λ)|2 dλ

� L20

|b j |1/2N1/2
max

D

(∫
|t|≤T0

∣∣∣∣F( 1

2
+ it, χ

)∣∣∣∣ dt

) 2

+
N3/2L20

|b j |1/2(QR)2
max

D

(∫
T0<|t|≤T

∣∣∣∣F( 1

2
+ it, χ

)∣∣∣∣ dt

|t|

) 2

+
NL24

(QR)2
.

Now the left-hand side of (5.2) is

� L10

|b j |1/4N1/4
max

D

∑
r∼R

∑
χ mod r

∗
∫
|t|≤T0

∣∣∣∣F( 1

2
+ it, χ

)∣∣∣∣ dt

+
N3/4L10

|b j |1/4RQ
max

D

∑
r∼R

∑
χ mod r

∗
∫

T0<|t|≤T

∣∣∣∣F( 1

2
+ it, χ

)∣∣∣∣ dt

|t|
+

N1/2RL12

Q
.

Thus, to prove (5.2) it suffices to show that the estimate

(5.6)
∑
r∼R

∑
χ mod r

∗
∫ 2T1

T1

∣∣∣∣F( 1

2
+ it, χ

)∣∣∣∣ dt � R1/5−εN1/4
j Lc

holds for R ≤ P and 0 < T1 ≤ T0, and

(5.7)
∑
r∼R

∑
χ mod r

∗
∫ 2T2

T2

∣∣∣∣F( 1

2
+ it, χ

)∣∣∣∣ dt � R1/5−ε
(

RQ

|b j |1/4N3/4

)
T2Lc

holds for R ≤ P and T0 < T2 ≤ T.
The estimates (5.6) and (5.7) follows from Lemma 4.2. The proof of Lemma 5.1 is

complete.

Proof of Theorem 3 Collecting Lemmas 3.2, 4.1, 4.3 and 5.1, we get Theorem 3.

https://doi.org/10.4153/CJM-2002-004-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-004-4


88 Kwok-Kwong Stephen Choi and Jianya Liu

6 Necessary and Sufficient Condition for Congruent Solubility

In this section, we suppose only that (b1, . . . , b5) = 1 but b j may not be pairwisely
relative prime. For any q ≥ 1, we define

N(q) = Card{(m1, . . . ,m5) :1 ≤ mi ≤ q, (mi , q) = 1,

b1m2
1 + · · · + b5m2

5 ≡ n (mod q)}.

A necessary condition for the solubility of the equation (1.1) is the congruence sol-
ubility that N(q) > 0 for all integer q ≥ 1. In this section, we prove the neces-
sary and sufficient condition for the congruence solubility below. It will follow that
the condition (1.2) is actually sufficient for the congruence solubility under our as-
sumption (1.3). Moreover, we will also obtain an asymptotic estimation for N(p) in
Proposition 4 which is useful and essential to the proofs in Section 7.

It is known (see [13, Section 3]) that N(q) is a multiplicative function of q and
N(pα) ≥ 1 if and only if N(p) ≥ 1 for odd prime p and α ≥ 1 and N(2α) ≥ 1 if and
only if N(8) ≥ 1 for α ≥ 3. Thus, it only needs to consider N(2), N(4), N(8) and
N(p) for odd prime p.

It is straightforward to verify that

N(2l) =

{
ϕ(2l)5 if b1 + · · · + b5 ≡ b (mod 2l);

0 otherwise;

for l = 1, 2, 3 and

N(3) =

{
25 if b1 + · · · + b5 ≡ b (mod 3);

0 otherwise.

Thus it remains to consider p ≥ 5. We are going to show:

Proposition 4 Let b1, . . . , b5 and n be any integers. For convenience, we let b6 = −n.
For p ≥ 7, N(p) = 0 if and only if

(i) p divides exactly 5 of b1, . . . , b6; or

(ii) p divides exactly 4 of b1, . . . , b6 (say p - bi , b j) and
(

bi
p

)
= −

( −1
p

)( b j

p

)
.

For the case p = 5, N(5) = 0 if and only if (i) or (ii) or

(iii) 5 divides exactly 3 of b1, . . . , b6 (say 5 - bi , b j , bk) and

( bi

5

)
=
( b j

5

)
=
( bk

5

)
.

Moreover, if N(p) > 0 then N(p) = p4 + O(p3) except when p divides exactly 4 of

b1, . . . , b6 (say p - bi , b j) and
(

bi
p

)
=
( −1

p

)( b j

p

)
, N(p) = 2(p− 1)4. Here

( ·
p

)
is the

Legendre symbol.
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Proof Among the numbers b1, . . . , b6, let m of them be divisible by p and k (respec-
tively l) of them be quadratic residues (respectively non-residues) modulo p. Then
from the proof of Lemma 3.6 and (3.8) in [13], we have

(6.1) ϕ(p)−5 pN(p) = 1 + A(n, p),

m + k + l = 6 and

(6.2) A(n, p) =
1

2
ϕ(p)m−5{(λ− 1)k(−λ− 1)l + (λ− 1)l(−λ− 1)k}

where λ =
√

p if p ≡ 1 (mod 4) and λ = i
√

p if p ≡ −1 (mod 4). In view of
(6.1), N(p) = 0 if and only if A(n, p) = −1. It has been proved in Lemma 3.6 of [13]
that if p ≥ 7 (respectively p = 5) and p does not divide more than 3 (respectively
2) of the six numbers b1, . . . , b6 then N(p) ≥ 1 and when N(p) ≥ 1, by direct
computation of the term A(n, p) using (6.2), we can prove that |A(n, p)| � p−1 and
hence N(p) = p4 + O(p3) by (6.1). It remains to consider cases (ii) and (iii) in the
proposition (case (i) is trivial). For case (ii), m = 4 and k + l = 2 and from (6.2)

A(n, p) =
1

2
(p − 1)−1{(λ− 1)k(−λ− 1)l + (λ− 1)l(−λ− 1)k}

=


p+1
p−1 if p ≡ 1 (mod 4) and (k, l) = (0, 2) or (2, 0);

−1 if p ≡ 1 (mod 4) and (k, l) = (1, 1);
p+1
p−1 if p ≡ −1 (mod 4) and (k, l) = (1, 1);

−1 if p ≡ −1 (mod 4) and (k, l) = (0, 2) or (2, 0).

Thus A(n, p) = −1 if and only if
(

bi
p

)
= −

( −1
p

)( b j

p

)
and when N(p) ≥ 1, then

N(p) = 2(p − 1)4. For case (iii), p = 5, m = k + l = 3 and from (6.2) we have

A(n, 5) =
1

32
{(
√

5− 1)k(−
√

5− 1)l + (
√

5− 1)l(−
√

5− 1)k}

=

{
−1 if (k, l) = (0, 3) or (3, 0);
1
4 if (k, l) = (1, 2) or (2, 1).

Thus N(5) = 0 if
(

bi
5

)
=
( b j

5

)
=
(

bk
5

)
.

7 Proofs of Lemmas 2.1 and 2.2

Lemma 2.1 is a consequence of the following:

Lemma 7.1

(i) For x > 0, ∑
q>x

|A(n, q)| � x−1Bε log60(x + 2).

So the singular series S(n) := S(n,∞) is absolutely convergent.
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(ii) We have S(n)� (log log B)−c5 for some constant c5 > 0.

Proof Let σ =
(

log(x + 2)
)−1

. From Lemma 3.2 and Corollary 3.5 (a) in [13], we
have ∑

q>x

|A(n, q)| ≤
∞∑

q=1

( q

x

) 1−σ
|A(n, q)| = x−1+σ

∞∑
q=1

q1−σ|A(n, q)|

� x−1
∏

p

(
1 + p1−σ|A(n, p)|

)(7.1)

because xσ � 1. Using Lemma 3.7 (a) in [13], we have∏
p-b1···b5

(
1 + p1−σ|A(n, p)|

)
≤

∏
p-b1···b5

(
1 +

60

p1+σ

)
≤
∏

p

(1− p−1−σ)−60

= ζ(1 + σ)60 � σ−60 = log60(x + 2).

(7.2)

Using (1.3), (6.1) and Proposition 4, we get

(7.3)
∏

p|b1···b5

(
1 + p1−σ|A(n, p)|

)
≤

∏
p|b1···b5

(1 + cp−σ) ≤ d(b1 · · · b5)log2(1+c) � Bε.

Now (i) follows from (7.1), (7.2) and (7.3).
Using (1.3) and Proposition 4, we have N(p) = p4 + O(p3). It follows from this

and Lemma 3.7 (a) of [13] that, for some large constant c > 60,

S(n) =
∏

p

(
1 + A(n, p)

)
�

∏
p|b1···b5

p>c

(1− cp−1)
∏

p-b1···b5
p>c

(1− 60p−2)

�
∏

p|b1···b5
p>c

(1− cp−1)�
∏

p|b1···b5

(1 + p−1)−(1+c).

The desired estimate in (ii) now follows from the well-known estimate∏
p|x(1 + p−1)� log log x.

Proof of Lemma 2.2 We easily derive the following inequalities:∑
b1m1+···+b5m5=n

M<|b j |m j≤N

1 ≤
∑

n−(b1m1+···+b4m4)≡0 (mod |b5|)
M<|b j |m j≤N, j=1,...,4

1

=
∑

M j<m j≤N j

j=1,2,3

∑
m4≡b4(n−(b1m1+···+b3m3)) (mod |b5|)

M4<m4≤N4

1

� N1N2N3
N4

|b5|
� N4

|b1 · · · b5|
,
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where b4b4 ≡ 1 (mod |b5|).
To establish inequalities in the other direction, we first consider case (ii) in which

all b j are positive and n = N. If M < b jm j ≤ N/5 for j = 1, . . . , 4, then

M < N/5 = N − 4(N/5) ≤ N − (b1m1 + · · · + b4m4) = b5m5 < N.

It follows that ∑
b1m1+···+b5m5=n

M<b j m j≤N

1 ≥
∑

n−(b1m1+···+b4m4)≡0 (mod b5)
M<b j m j≤N/5, j=1,...,4

1� N4

b1 · · · b5
.

The case (i) can be treated similarly. We therefore conclude that∑
b1m1+···+b5m5=n

M<|b j |m j≤N

1 � N4

|b1 · · · b5|
,

from which and the definition of I(n) (in (2.7)) the desired result follows.
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