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Abstract. 

In this review I will concentrate on older remnants, by which I mean those in 

which radiative cooling is important somewhere and the swept up mass is 

sufficiently large for the details of the initial explosion not to matter. For 

such remnants it is the optical emission which is crucial since it allows us 

to deduce a great deal about the physical state of the emitting gas provided 

we are careful about how we interprete it. Without discussing any particular 

remnant in detail, I will consider how large and small scale density 

variations in the ambient medium affect the appearance and energetics of such 

remnants. 

Introduction. 

For spherical remnants expanding in a uniform environment it is possible 

to divide the evolution into three phases, free expansion, Sedov-Taylor and 

radiative (Woltjer 1972). Such a simple picture ignores the fact that the 

interstellar medium is inhomogeneous on many scales , some of which correspond 

to the sizes of supernova remnants and that Type II supernovae can 

significantly modify the interstellar medium in their neighbourhood. It is 

nevertheless a useful way of classifying remnants even though there are many 

that do not fall clearly into any one category. 

For the purposes of this article, I will call a remnant old if radiative 

cooling is important somewhere, but will not insist that a significant part of 
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the explosion energy has been radiated away. Observationally this means that a 

remnant is old if it has a filamentary structure whose emission is 

characteristic of radiative shocks. Examples are the Cygnus Loop, Shan 147 and 

Vela. As far as theory is concerned we have to look at the effects of 

radiative cooling on the dynamics and appearance of the remnant. 

10' 10« 
Temperature (K) 

Figure 1. The radiative cooling rate per unit volume for an optically thin 

plasma. The straight line is the approximation (1) (Kahn 1976). 

The radiative cooling rate for an optically thin gas in the relevant 

temperature range is shown in figure 1. Although this is not the most recent 

calculation, it has a maximum at about 10 K , which is what is important as 

far as the dynamics is concerned. Note that it does not include the effect of 

dust cooling which might well dominate above 10 K, depending upon the dust to 

gas ratio (Dwek 1987). 

One of the nice things about this cooling law is that in the range 

5x10 K < T < 5x10 K it is very well approximated by T power law, 

A = Ap2 (p/p) ~1/2 (A = 3.9xl032 c.g.s) (1) 

Kahn (1976) showed that this assumption makes it possible to calculate the 

effect of radiative cooling on the overall energetics independently of the 

details of the dynamics. This can not only be applied to spherical remants, 

but also to those in a plane stratified medium (Falle ,Garlick and Pidsley 
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1984). Unfortunately this cooling curve also has some nasty features which, as 

we shall see later, makes the transition to the radiative phase 

horribly complicated. 

Spherical Remnant. 

Suppose that a supernova explosion has energy E , ejects mass M and 
0 e 

ith density p . Then there will be a o c c u r s i n a u n i form mediun 

Sedov-Taylor phase p r o v i d e d 

f E 1 
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io 5 1 
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io' 2 4 
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< 4 (2) 

This is simply the condition that the remnant enters the Sedov phase before 

radiative cooling becomes important. It is based on Gull's (1973) 

calculations, which show that it looks like a Sedov solution once it has swept 

up about 50 M , combined with Cox's (1972) estimate of when radiative cooling 
e 

becomes important. 

One would prefer a Sedov phase to exist, because then all the details of 

the original explosion can be ignored and only the energy 
0 matters. 

Condition (2) is satisfied for all plausible values of E , M and p , but 
0 e 0 

unfortunately it ignores the fact that a Type II supernova can modify its 

surroundings, either because of its ionizing radiation (Shull, Dyson, Kahn & 

West 1985), or its stellar wind (Charles, Kahn & McKee 1985). There is a good 

deal of observational evidence that this occurs (Braun 1987). 

I am going to ignore these complications and assume that the original 

state of the ambient medium is more important than the details of the 

explosion. Then in a uniform medium radiative cooling becomes important when 

the post shock temperature is 
0.1 , ,,0.2 

T = 1.2x10 
sg 10 

51 

0 

10 
-24 

(3) 

Cox (1972) 

If we now ignore magnetic fields and assume that all shocks are strong, 
4 

then as long as T a 5x10 K everywhere, things only depend on E , p and A. 

From these we can form a characteristic mass, length and time given by 
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We e x p e c t r a d i a t i v e c o o l i n g t o become i m p o r t a n t when t h e s w e p t u p mass i s 

a b o u t m a n d t h e r a d i u s a n d a g e w i l l t h e n b e a p r o x i m a t e l y 1 a n d t 

c c c 

respectively. Notice that these numbers are about right for the Cygnus Loop 

and IC443. 

Radiative Instabilities. 

We can write the cooling rate shown in figure 1 in the form 

2 2 
A = Ap *(p/pc ) , 

where 

kT 
* 

(5) 

(6) 

and T is a reference temperature. T can be chosen to be the temperature at 

the maximum of $ (T = 10 K) . If we then set $(T ) = 1 , we get A = 2x10 

e.g.s. 

For a spherical remnant the flow is now governed by the parameters E , 
o 

p , A and c and from these we can form a dimensionless parameter 

a = 10 
10 51 

0.11 , 

10 -24 

0.22 

(7) 

Here T is the temperature defined by equation (3) . a only affects the 
sg 

evolution of the remnant if there is radiatively cooling gas at temperatures 
below T . 

* 

Let us now look at the stability of gas whose cooling rate is given by 

(5). Suppose that *(T) « T . Then if cooling occurs at constant pressure, the 
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cooling time increases with increasing temperature if s < 2, while for 

constant density this is true for s < 1. This suggests that there is 

instability if s < 2 for constant pressure cooling and s < 1 for constant 

density. 

Now the pressure will remain roughly constant if the cooling time 

t » t where t is some dynamical timescale. Conversely the density 
cool dyn dyn 

will remain constant if t « t . Suppose that a region of initial size t 
cool dyn 

begins to cool and that the resulting compression is one dimensional. Then 

£(t) *plt7-

The relevant dynamical time is obviously the sound crossing time, so 

1 X 
dyn 1/2 

C pT 

On the other hand we have for the cooling time 

1 t . 
coo l 

Hence 

t 
dyn 

coo l 

« 

ex 

—- tx 
2 m S 

p T 

T 

pT 

, (8) 

and so increases as the gas cools if s < 3/2. If t ever becomes much 
dyn 

smaller than t , then we expect a large pressure imbalance to occur which 
cool 

will lead to the formation of shocks. A necessary condition for this is s < 

3/2. For the interstellar cooling law this condition is satisfied for T > T 

and so we expect this kind of instability for spherical remnants if a > 1. 

From (7) we can see that this should happen for almost all such remnants. 

Various authors have looked at radiative instabilities. Both Avedisova 

(1974) and McCray, Stein & Kafatos (1975) carried out a linearised stability 

analysis with the post shock pressure held fixed. They found that density 

fluctuations grow if s < 3 for perturbations with wavelength much greater than 

the cooling length, while s < 2 is required if the wavelength is much shorter 

than the cooling length. However, these are isobaric instabilities and do not 

lead to the formation of additional shocks. 

In my numerical calculations of thin shell formation in spherical 

remnants (Falle 1975, 1981), I found that cooling led to the formation of 

multiple shocks which caused large variations in the speed of the primary 

shock. Langer, Chanmugam and Shaviv (1981,1982) found a similar effect in 

their calculations of radiative accretion onto white dwarfs. 
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These results have stimulated a lot of interest in such instabilities. 

Chevalier & Imamura (1982) used a linearised stability analysis to show that 

the shock speed will not be constant if s < 0.8, even if it is driven by a 

constant speed piston. To some extent this is confirmed by numerical 

calculations (Imamura, Wolff & Durisen 1984). Recently Bertschinger (1986) has 

extended this analysis to two dimensions and shown that in that case 

instability occurs if s < 1. 

It has become common practice to deduce the velocity of radiative shocks 

by comparing the observed optical and UV line ratios with those predicted by 

steady shock models with various shock speeds (e.g. Raymond et.al. 1980). 

Unfortunately the above considerations suggest that radiative shocks will not 

be steady if the shock speed is high enough for cooling to occur in the 

unstable region of the cooling curve. 

(b) 
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j 
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D 

-

100 150 200 
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Figure 2. Instantaneous [OIII]5008/[Oil]3728 line ratio for an unsteady shock 

whose mean speed is 175 km s . The solid line is the ratio for a steady shock 

(Innes, Giddings & Falle 1987) . 

Recently Innes, Giddings & Falle 1987 have shown that, if the detailed 

atomic physics is included, then radiative shocks will be unsteady if their 

speed is greater than 130 km s . The line ratios then do not correlate with 

the primary shock speed, nor even with the mean fluid speed, but vary 

dramatically on the cooling timescale. This effect can be seen in figure 2 
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which shows the instantaneous [OIII]5008/[Oil]3728 line ratio plotted against 

the instantaneous primary shock speed for a shock driven by a constant speed 

piston such that the mean shock speed is 175 km s . The variations in shock 

speed were induced by a single sinusoidal density perturbation upstream. The 

perturbation had an amplitude of 50% of the upstream density and a wavelength 

1.4 times the thickness of the cooling region. 

Small Scale Inhomogeneities. 

The appearance of remnants like the Cygnus Loop suggests that the blast 

wave is interacting with irregularities with quite small scales. Indeed McKee 

& Cowie (1975) have argued that in the Cygnus Loop we only see optical 

filaments when shocks propagate into small clouds. 

The interaction of a plane shock with density inhomogeneities has been 

looked at by many authors (e.g. Sgro 1975; Chevalier & Theys 1975; Woodward 

1976; Nittmann, Falle & Gaskell 1982; Hamilton 1985; Heathcote & Brand 1983) . 

Although we have a rough idea of what happens, at least in the adiabatic case, 

there are a number of important details which are not clear. 

Rather than looking at deformable clouds, I will consider what happens 

when a shock hits a rigid object. Of course supernova remnants do not 

encounter rigid objects, at least not of significant size, but from pressure 

balance we have 

t \1/2 

V = V — , (9) 
e I Pc ) 

where V is a shock velocity and the subscripts e and c refer to the exterior 

and cloud respectively. So if the cloud is much denser than its surroundings, 

it deforms slowly compared to the timescale of the exterior flow. The cloud 

therefore behaves like a rigid body, at least as far as the transient stage of 

•the exterior flow is concerned. 

Because of this it makes sense to treat clouds which are much denser than 

the ambient medium as rigid bodies. This is more efficient from a 

computational point of view since it avoids the large disparity in timescales 

between the interior and exterior flows. Another advantage is that there is a 

wealth of experimental data upon which we can draw. 

An obvious case to look at is that of a plane shock hitting a rigid 

sphere. Figures 3 and 4 show the results obtained with a second order Eulerian 
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Godunov scheme on a high resolution spherical polar grid. The advantages of 

such a grid are that not only can the sphere be represented exactly, but also 

that the highest resolution is near the surface of the sphere where most of 

the action takes place. There is, however, some degradation of the solution 

due to the non-uniformity of the grid. 

Figure 3 shows the sequence of events. Initially there is a regular 
0 

reflection at the surface which evolves into a Mach reflection at 6 * 135 

(here 0 = 0 corresponds to the direction of motion of the incident shock). The 

reflected shock associated with this eventually becomes a stationary bow shock 

in this case since the flow behind the incident shock is supersonic in the 

frame of the obstacle. 

Further round the sphere the incident shock is diffracted into a funnel 

Shape before reflecting off the symmetry axis. Because of the axial symmetry 

this is a Mach reflection from the very beginning. The Mach disc which moves 

down the axis initially has zero size, but it grows enough to become 

significant before the triple point associated with it disappears and it 

merges with the incident shock. 

The solution at the latest time is shown in greater detail in figure 4. 

This should be compared with the experimental results obtained by Bryson & 

Gross (1961) for shock interaction with a rigid sphere in air. Most of the 

features of the experiment are well reproduced by the simulation, the 

exception being the vortex formed when the slip line produced by the first 

Mach reflection rolls up. It would, however, be too much to expect to get this 

sort of thing right at this resolution. 

We must now consider how much of this is relevant to supernova remnants. 

Clearly the flow is the essentially the same as the one that arises when a 

non-radiative shock encounters a very dense spherical cloud and so our results 

can be used to interpret observations of such shocks (Raymond, Davis, Gull & 

Parker 1980) . The first thing to note is that large portions of both the 

reflected and diffracted shocks are oblique. This means that the usual 

practice of interpreting the observations in terms of normal shocks can be 

very misleading. Fortunately, for non-radiative shocks it is possible to 

calculate the flow as we have done here and then use the appropriate physics 

to deduce the spectrum and velocity dispersion. In this way we ought to be 

able to get a good idea of the nature of some of the filaments in, for 

example, the Cygnus Loop. 

If the shocks are radiative, then life becomes much more difficult. Raga 

& Bohm (1987) have computed the flow past a hemisphere using a McCormack 
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Figure 3. Pressure contours for a plane shock with an initial Mach number of 

2.81 interacting with a rigid sphere (y = 5/3). Calculated on spherical polar 

grid with 100 cells in the radial direction and 180 in polar angle. 

scheme. Since they had a priori knowledge of where the radiative shock would 

be, they were able to resolve the cooling region by an ingenious choice of 

grid so that their results are almost certainly reliable. Clearly this kind of 

thing is much harder to do for unsteady problems and for the moment it is 

probably better to try and guess how cooling modifies the flow. We have little 

chance of doing this if the cooling length is of the same order as the size of 

the obstacle or if the shock speeds are in the range in which the radiative 

instability is important, but we can do something if the cooling length is 

very short and the shock is stable. The shocks are then isothermal and to some 

extent one can get an idea of the trends by looking at lower values of the 

ratio of specific heats y. Reducing f increases the shock compression so that 

the bow shock is closer to the surface of the sphere. Its shape is therefore 

similar to that of the obstacle and, since this is true generally, we should 

be able to deduce something about the shape of a dense cloud if we can 

identify the bow shock. Another consequence of the greater compression is that 

the transition to Mach reflection is less likely. For a sphere a Mach shock 

will always occur both on the surface and on the axis downstream, but as the 
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Pressure Contours 

Density Contours 

Velocity Vectors 

Figure 4. Details of the flow at the latest time calculated. 

shock compression tends to infinity the point at which Mach reflection starts 
0 

approaches 6 = 90 and the size of the Mach disc on axis tends to zero. 

Conclusions. 

I have discussed some of the effects that radiative cooling and density 

inhomogeneities can have on the evolution of supernova remnants. I have 

indicated that radiative instabilities must exist in radiative remnants and 

that these make it very difficult to interpret the spectra of radiative 

shocks. They may also be responsible for at least some of the complex 

structure seen in old remnants. 
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Interactions with small scale inhomogeneities are more difficult to deal 

with, but we can use laboratory experiments, numerical simulations and perhaps 

Whitham's area rule (Whitham 1974) to deduce how clouds of various sizes and 

densities affect the appearance of remnants. We clearly need a reliable 

quantitative theory of such interactions in order to make the proper use of 

the detailed observations that are now possible. 

References. 

Avedisova, V.S. 1974. Sov. Astron.,18,283. 

Bertschinger, E. 1986. Astrophys. J.,304,154. 

Braun, R. 1987. IAU Colloquium 101, Penticton, Canada, p.363. 

Bryson, A.E. & Gross, R.W.F. 1961. J. Fluid Mech.,10,1 

Charles, P.A, Kahn, S.M. & McKee, C.F. 1985. Astrophys. J.,295,456. 

Chevalier, R.A: & Imamura, J.N. 1982. Astrophys. J.,261,543. 

Chevalier, R.A. & Theys, J.C. 1975. Astrophys. J.,195,53. 

Cox, D.P. 1972. Astrophys. J.,178,159. 

Dwek, E. 1987. IAU Colloquium 101, Penticton, Canada, p.363. 

Falle, S.A.E.G. 1975. Mon. Not. R. astr. Soc.,172,55. 

1981. Mon. Not. R. astr. Soc.,195,1011. 

Falle, S.A.E.G., Garlick, A.R. & Pidsley, P.H. 1984. Mon. Not. R. astr. 

Soc,208,925. 

Gull, S.F. 1973. Mon. Not. R. astr. Soc.,161,47. 

Hamilton, A.J.S. 1985. Astrophys. J.,291,523. 

Heathcote, S.R. & Brand, P.W.J.L. 1983. Mon. Not. R. astr. Soc.,203,67. 

Imamura, J.N., Wolff, M.T. & Durisen, R.H. 1984. Astrophys. J.,276,667. 

Innes, D.E., Giddings, J.R. & Falle, S.A.E.G. 1987. Mon. Not. R. astr. 

Soc.,226,67. 

Kahn, F.D. 1976. Astr. & Astrophys. ,5J), 145. 

Langer, S.H., Chanmugam, G. & Shaviv, G. 1981. Astrophys. J.,245,L23. 

1982. Astrophys. J.,258,289. 

McCray, R., Stein, R.F. & Kafatos, M. 1975. Astrophys. J.,196,565. 

McKee, C.F. & Cowie, L.L. 1975. Astrophys. J.,195,715 

Nittmann, J., Falle, S.A.E.G. & Gaskell, P.H. 1982. Mon. Not. R. astr. 

Soc.,201,833. 

Raga, A.C. & Bohm, K.H. 1987. Astrophys. J.,323,193. 

162 

https://doi.org/10.1017/S0252921100023678 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100023678


Raymond, J.C., Black, J.H., Dupree, A.K. & Hartmann, L. 1980. Astrophys. 

J.,238,881. 

Raymond, J.C., Davis, M. , Gull, T.R. & Parker, R.A.R. 1980. Astrophys. 

J.,238,L21. 

Sgro, A.G. 1975. Astrophys. J.,197,621. 

Shull, P., Dyson, J.E., Kahn, F.D. & West, K.A. 1985. Mon. Not. R. astr. 

Soc.,212,799. 

Whitham, G.B. 1974. Linear and Nonlinear Waves, Wiley Interscience, 

chapter 8. 

Woltjer, L. 1972. Ann. Rev. Astron. Astrophys.,10,129. 

Woodward, P.R. 1976. Astrophys. J.,207,484 

Discussion: 

ZINNECKER: Given these impressive numerical calculations, can you tell us under 

which conditions gaseous clumps can be imploded after being hit by a supernova remnant 

shock, i.e. for which parameters of the clumps (e.g. size, density) can star formation be 

triggered? 

FALLE: I can't tell you off the top of my head, but basically the denser the cloud 

the smaller it can be and still be induced to collapse. This is not only because of the 

dependence of the Jeans' mass on density, but because a dense cloud can more easily 

survive until it reaches the low velocity region in the interior of the remnant. 

PALOUS: Even if the SNR is non spherical for any reason, entering the Sedov phase 

of evolution, it will be more spherical after, since the parts moving with a higher velocity 

will be more decelerated from the ambient medium than the other parts. This was pointed 

out in a paper by Bisnovatyg-Kogan and Biliunikov (1982). 

FALLE: You are quite right. In the Sedov-Taylor phase the remnant has lost all 

memory of the details of the explosion, including any asymetry. One can therefore conclude 

that if an old remnant is not spherically symmetric then this must be due to the surrounding 

medium. 
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