BuLL. AUsSTRAL. MATH. Soc. 43A80
VoL. 61 (2000) [53-68]

MARCINKIEWICZ MULTIPLIERS ON THE HEISENBERG GROUP

ALESSANDRO VENERUSO

Let H, be the Heisenberg group of dimension 2n + 1. Let Ly,..., £, be the partial
sub-Laplacians on Hy, and T the central element of the Lie algebra of H,,. We prove
that the operator m(Ly,..., Ly, —iT) is bounded on LP(H,), 1 < p < +o0, if the
function m satisfies a Marcinkiewicz-type condition in R**!.

1. INTRODUCTION

This paper deals with spectral multipliers on the Heisenberg group. We denote by H,,
the Heisenberg group of dimension d = 2n + 1, by L, ..., £, the partial sub-Laplacians
and by T the central element of the Lie algebra of H,,. The operators L1,...,L,, —iT form
a commutative family of self-adjoint operators, so they admit a joint spectral resolution
and it is possible to define the operator m(L,, ..., Ly, —iT) when m is a bounded Borel
function on the joint spectrum of {L,,..., L,, —iT'}. The boundedness on L?(H,) of the
operator m(Ly, . .., Ln, —iT) is an immediate consequence of the spectral theorem and the
boundedness of the function m. We prove that m(Ly, ..., Ly, —iT) extends to a bounded
operator on L? (H,), 1 < p < +00, under suitable Marcinkiewicz-type conditions on the
function m.

For the operators of the form m(L), where £ = £, + ... + L, is the sub-Laplacian
on H;, the problem of establishing sufficient conditions on m that make the operator
m(L) bounded on LF(H,), p # 2, has a long history. The first results are due to De
Michele and Mauceri [5], who have considered a wider class of operators. Later, these
results have been extended to stratified groups by Hulanicki and Stein (in {7, Chapter 6]),
Hulanicki and Jenkins (10}, Mauceri [15], De Michele and Mauceri [6]. The best result
up to now obtained in this more general context is due to Mauceri and Meda [16] and
to Christ [3]: if the function m satisfies a Hérmander condition of order o > Q/2 (where
Q is the homogeneous dimension of the stratified group), then the operator m(L) extends
to an operator which is bounded on L” for 1 < p < +oco and of weak type (1,1). More
recently, Hebisch {9] and Miiller and Stein [19] have proved that for the Heisenberg group
the preceding conclusion is still true if the function m satisfies a Hormander condition of
order & > d/2. In the paper of Miiller and Stein [19] it is also shown that this condition is
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sharp. Operators of the form m(L, —iT') have been studied by Mauceri [14]. In all these
works the authors have considered classes of multipliers that satisfy conditions invariant
with respect to the natural family of one-parameter dilations on the group. More recently,
Miiller, Ricei and Stein (17, 18] have shown the boundedness on LP(H,), 1 < p < +o00, of
some classes of operators m({L, —iT) where m satisfies conditions invariant with respect
to a family of multi-parameter dilations, in analogy with the classical Marcinkiewicz
theorem on the Euclidean space {20, Chapter IV].

Operators of the form m(L,, ..., L,, —iT), when m satisfies a Marcinkiewicz-type
condition of infinite order in R™*!, have been studied recently by Fraser [8], who has
characterised their convolution kernels and has shown that these operators are bounded
on LP(H,), 1 < p < +00. Our result about the boundedness is stronger, because we
only need that m satisfies a condition of finite order. Our techniques, based mainly on
Littlewood-Paley decompositions, generalise those of Miiller, Ricci and Stein [18].

2. NOTATION AND PRELIMINARIES

In this paper we set N = {0,1,2,...}, Z, = N\ {0}, R; = (0, +00), R* = R\ {0}.
The 2n + 1-dimensional Heisenberg group H, is the nilpotent Lie group whose un-
derlying manifold is C* x R, with multiplication given by

(z,8) (<, t) = (z +2,t+t +21Im (2, z’))

n
where z = (21,...,2,) €C", 2’ =(2,...,2,) € C*, t,f € Rand {2,7) = ¥ zz

J
Lie algebra of H,, is generated by the left-invariant vector fields Z4,..., 2, Z3, ..., Zn, T,

where
9 _a
ZJ' = a—zj'i"llzjg,
= a . 0
Zj = a‘?] —’I,Zja,
T = 8/6t.

H,, is a stratified group endowed with a family of dilations {4, : r > 0} defined by
8. (z,t) = (rz,rzt).

The bi-invariant Haar measure on H,, coincides with the Lebesgue measure on R?**1. As
usual, we denote by S(H,,) the Schwartz space of rapidly decreasing smooth functions on
H,, and by &'(H,) the dual space of S(H,), that is, the space of tempered distributions
on H,,. The maximal torus T", which we represent by (-, #]", acts by automorphisms
on H, in the following way:

ag(z,t) = (ei"'zl, .. .,ew"zn,t)
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where 9 = (dJy,...,9,) € T". A function f on H,, is said to be polyradial if foay = f
for every ¥ € T™, that is, if the value of f(z,t) depends only on |z|,...,|2:],t. We
denote by L. (1 < p < +00) the space of polyradial functions in LP(H,). The space
Lk is a commutative, closed *-subalgebra of L!(H,). A differential operator D on H,
is said to be T™-invariant if D{f o ay) = D(f) o ag for every f € C=(H,) and J € T".
The commutative algebra of T"-invariant operators is generated by Ly,...,L,,T, where
Ly,..., L, are the partial sub-Laplacians on H,, defined by

L:j = —% (Zj?j +7ij).

The sub-Laplacian on H, is £ = f} L;. The Gelfand spectrum A of L. can be identified
=1

with (N™ x R*)U ( [0, +0c)” ) The Gelfand transform G f of a function f € L., is given
by
Gk, X) = [, f()ura(x)de

with (k,A) € N* x R* and
wea(zt) = e M eI T Ly, (21 |5[7)
i=1
where L, (r € N) is the Laguerre polynomial of type 0 and degree r, defined by

(1)

The Godement-Plancherel measure x on A is given by

Lm=i“v

=0 3

n—1
() JRLCETOTE o RGPS
keN"

We ignore the remaining part of A, because it is of measure zero. By the Godement-
Plancherel theory, G extends uniquely to a unitary operator G : L2, — L%(A). For the
proofs and further information about all these facts, see for instance [2, 11, 19].

3. JOINT SPECTRAL MULTIPLIERS

The operators Ly,..., Ly, —iT form a family of commuting self-adjoint operators.
Their joint spectrum (see [2]) is the subset T, U S, of R™*!, where

1= {(@k + D,y kn + DAL A) by ke €N, A€ RYY

and
z:2 = {(ﬂ'l""v“'ﬂ»o) B PRRRTY S [01+w)}
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Let us define
A=|T|.

Arguing as in [18], one shows that also the operators A~1L,,...,A"1L,, —i7T form a fam-
ily of commuting self-adjoint operators. Their joint spectrum is (2N + 1)” x R. By the
spectral theorem, the multiplier operators m(Ly, ..., Ln, —iT) and m (A7 Ly, ..., A7IL,,
—4T) are bounded on L?(H,,) for all bounded Borel functions m defined on the corre-
sponding joint spectra. Both these operators commute with left translations, so by [12]
they are given by right convolution with tempered distributions, which we denote by
m(Ly,...,Ln, —iT)6 and m(ALy, ..., A7 L,, —iT)8, respectively. We also use the no-
tations

My =m(Ls,..., Ln, —iT)5;
Ny =m(A™Ly,..., A" Ly, —iT)S.

By the Godement-Plancherel theory, we have that M, € L%, if and only if the function
GMon(k, 3) = m((2ks + D)|AL-.., (2ka + 1)|A], A)
is in L*(A). Similarly, we have that N,, € L2., if and only if the function
GNm(k,A) = m(2k1 +1,...,2k, +1,})
is in L2(A).
4. LITTLEWOOD-PALEY DECOMPOSITIONS

Fix a function x € C§°((1/2, 2)) such that x > 0 and ¥ x(2~™A)% = 1 for
meZ

A > 0. Let () = x(m) for A\ € R. For j = (j1,...,jns1) € Z™! and
(s A) = (1, -« - 5 oy A) € R write

X (’-"1 A) = IiX(Z_j’u,) . «¢(2-]'n+1)\)‘
Set

w0 = xi(Lry- - -, Ln, —T)8;
®; = x;(A"'Ly, .., A7 L, —iT)8.

The properties of x imply (see [1]) that ¢; and ®; are in S(H,) and satisfy

Y Goitk, A= Y 68(k, N =1.

e+l jeZn+
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For u € 8'(H,,) we define the following Littlewood-Paley functions:

1/2
Z |"*<Pj|2) H

yeZntl

1/2
> lux <I>,-|2) -
jEZr+1
Arguing as in [18], it is easy to prove that g, and g, are isometries of L?(H,,).
PROPOSITION 4.1. Forl < p < +oc there exists a constant C, > 1 such that
(2) if f € L?(Hy) then g1(f) € IP(Hy) and |g1(f)]|, < Gy /1l
(b) if f € L*(H,) and ¢,(f) € LP(H,) then f € L?(H,,) and
1£1ls < s |ox ()] -
PROOF: By a standard duality argument (see [20, Chapter II]), it suffices to

prove (a). Moreover, by some standard randomisation argument based on Khintchin’s
inequality (see [21, Chapter V]), it suffices to prove that there exists C, > 0 such that

N N
1 +1
o X g (e <Gl
j1=—N Jn41=—N A
for every N € N and for every choice of the n+ 1 sequences {eg)}jlez, ceey {sg':: ) Vioviez

with values in {—1,0,1}. Since S(H,,) is dense in LP(H,,), a standard approximation
argument allows us to assume that f € S(H,). So

N

N
1 1
> oo Y et (F )

hi=-N Jas1=—N
& W fomi N (@) fomi S _(at) ;

_ ( S y@e)) . [ 5 Pxre))(  rbu(-ammar)) .
J1=—N jn=—N jn41=—N

A straight-forward calculation yields

i (£, 4x0)

for r € {1,...,n}, where the constant A, is independent of N and of the choice of the
sequence {5}:)}1}62' Therefore, by a suitable multiplier theorem (see {7, Chapter 6]), we
have

sup X < A

A>0

z E.(”) X(2-J'r LHl)g

Jr=—N

< My |lgll ey
Lr(H,)
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for g € S(H,), where £ is the sub-Laplacian on H; and the constant M,, depends only
on p. Applying the transference principle [4] yields

< Mp | fllerqan)
Lr(H,)

E E(') X(2“Jr ) f

je=—N

for f € S(H,). Similarly we obtain

< M, || fllea,)
Lr(H,)

> dmu(-rmn)s

jn+l=—N

for f € S(H,). This gives the conclusion. 1]

As a corollary of Proposition 4.1, we obtain a weak Marcinkiewicz-type multiplier
theorem. For N € N and m € CV((R,)" x R*) put

o\ a\*" /[, a\™
(na) (magm) () o]

COROLLARY 4.2. There exists N € N such that if m € CV((R4)" x R*)
and ||mll(yy < -+oo then the operator m(Ly,...,Ls,—iT) is bounded on L*(H,),
1 < p < +o0, with norm controlled by ||lm||(xy.

ffmllvy = sup  sup
aeN"+ ue(Ry)"
lajl<N  AcRe

We omit the proof of Corollary 4.2, because it is an easy but lengthy adaptment of
the proof of Corollary 4.3 in [18], where the operator m(L, —iT’) is considered. The
only crucial point is that we apply our Proposition 4.1 instead of the corresponding
Proposition 4.1 in [18]. We remark that Corollary 4.2 has also been proved in [8],
however by a different method. Once we have Corollary 4.2, arguing again as in [18] we
easily obtain the following

PROPOSITION 4.3. Forl < p < +oo there exists a constant C, > 1 such that
(8) if f € LP(HL,) then go(f) € L(H,) and lg2(£)ll, < Gy |l
(b) if f € L?(H,) and g(f) € L?(H,,) then f € L*(H,) and
11l < Cp llg2(£)llp-

5. FUNCTIONAL CALCULUS ON THE GELFAND SPECTRUM

In Section 2 we have seen that the Gelfand spectrum A can be identified, as a
measure space, with the space N* x R* equipped with the measure u defined by (2.1).
Thus A can be considered as a subspace of the measure space S = Z™ x R equipped with
the measure Ji defined by

[ 6w) ) = ..+1 2/ (k, A) [AI" dA.

keZn»
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We consider the canonical operators P : L%(S) — L?(A) and Q : L*(A) — L3(S)
defined by

(PG)(k,A) = G(k, A);

F(k,)) ifke N"and A € R*
F)(k, A) =
(QF)(k,A) { 0 otherwise.
Let G be a function on S. For j € {1,...,n} and h € Z we define the translation operator
M by
7
(5.1) (rMG) (k, ) = Gk, .., ki, ki + by ks by D).

We also define the difference operator

A, =1 1O,
Finally we define the multiplication operator M; by
(5.2) (M;G)(k,\) = k; Gk, )).

From (5.1) and (5.2) we immediately obtain the following commutation relations between
the operators T}h) and M;:

M;M; = M;M;;

T}")M; = M,‘T}h) if i # 7;
'r}")Mj = M,T}h) + hT}");
T}h)rf‘) = Ti(')rfh) ;
T}h)r}:) - TJ(hH).

These relations and simple induction arguments lead to the following

LEMMA 5.1. Forv,B,gq € Nym € Z,,h € Z,j € {1,...,n} the following
identities hold:

v - Vr v
My =Y (=h) ( r ) M}

r=0

m m ! m—r m (1) agr
Mj Aj = AJ'Mj + z (—1) - 75 Mj;

r=0
v g+2¥-1 )
v AV+e _ 3, T,
M{AT =3 3 Gugrats” MjAG;
r=0 s=0

viq (h)prB AB XL PlaraF- (h+s) r+q

by = T

MyATH M AT =3 2% bupgnssTi MO
r=0 =l

The coeflicients @45 and b, g g, in the last two identities are real.
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Let p be a polyradial polynomial on H,,. For all f € L2., such that pf € L%, let us
define

3 (Gf) = s
The operator , is thus densely defined on L?(A) and its domain is
Dom3, = {F € L*(A): p-G7'F € L} }.
Straight-forward computations (see [5, 13, 19]) yield
(63) (B F)(kN)
= §|_1A'i {@k; + DF(k,X) = (k; + D) (rOQF) (K, X) — k(1§ VQF) (k, )} ;
(5.4) (8- F)(k, \)
- ‘;_f(k, N+ a5 j‘;{F(k, X) = (ks + D)(QF) (k, 3 + k(1 QF) (k, 1)}

Since every polyradial polynomial on H,, has the form

N N N . . .
Pat) =3 30 3 it [2® 2l (—it)

i1=0 in=0 =0

with a;, ;.1 € C, by (5.3) and (5.4) we can extend the operator 8, to an operator §, on
L*(S) defined by
N N N - -
(55) = Z Z Zail,...,i,.,l af;l[’ et af;ﬂlz al_.'g
1=0  ia=0 =0
where

56 (8 |zG)(k )
2| N {(2k; + DGk, X) — (ks + 1) (7VG) (k, ) — ki (v} G) (k, M)}
(5.7) (8-4G)(k, N

_9%6 L ¢ o) (-1)
= 5 b2 + o5 J);; {G(k, %) = (k; + V) (7VG) (k, X) + k5 (i G (k, )} .
The operator 8, is thus densely defined on L*(S) and its domain is
Dom3, = {G € L*(S) : §,G € L*(S)}.

This domain contains the subspace Q(Domd,). Furthermore, the following identity is
valid on Dom 8,
(5.8) 8, = PO,Q.
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Let us introduce the following notation:

H
(5.9) (a-7) = Z a(h)TJ(h);

h=— H
(5.10) (a-7F) = Z E a(hrreha) 4! ('u) (hn)

hy=—H An=—H

where H € N and a®, glh-fn) ¢ R,
PROPOSITION 5.2.
(a) ForgeNandje{1,...,n} we have
N q
o=t Sle-m e
v=t
where the integer H and the coefficients a'® involved in the expression
(a - 7;) according to (5.9) depend only on g and v.
(b) Forge N and T € R we have

. lg=v/2] &
o= T3 (@RI 2 o MM AR AR
v=0 BeEN® ¥=0
181<2q—v

where [-] denotes the greatest integer function and the integer H and the
coefficients a(P1>#=) involved in the expression (a - ¥) according to (5.10)
depend only on q,v, 3,7,sgn \.

PROOF: By straight-forward computations, we can rewrite (5.6) and (5.7) as

b =y (105 (1))
a - —
8-e= 53 ﬁ ?; {77 +77) Mp + 0 -V}

:)\ (2,\%{( O 4 749) My, + 10 - (_1)})

o?
ax?
o[ ) _
+% ax (,z::l {(T}O) + ‘r} 1)) M;A; + T,(l) _ T,( 1)})
1 (zﬂ: {(1‘(0) +7C l)) M+ 10 — (_1)})
(’z::l {(T,(O) + -r}-l)) M;A;+ 1V - 7—}‘1)}) .

https://doi.org/10.1017/50004972700022012 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700022012

62 A. Veneruso (10}

Using these expressions for 5|,j|2 and 812,42, we can easily obtain (a) and (b) by induction
on ¢q and iterated applications of Lemma 5.1. 0

The reason why we have considered the space Z" x R rather than the space N* x R*
is that Z" x R has some properties which N™ x R* does not have: in particular, it is a
locally compact Abelian group, so it is possible to define a Fourier transform on it. If f
is a function in L'(Z" x R), the Fourier transform of f is the function f € Co(T" x R)

defined by
z / f(k /\) e-t(k 94-As) dX.
keZn

The Fourier transform on Z" x R extends uniquely to a unitary operator (apart from a
multiplicative constant) from L?(Z™ x R) to L*(T" x R).

If f is a suitable function on Z" x R, we have
B;5(8,5) = (¢ — 1) f(5,9);
F 0 .2
a—/\(ﬂ, s} =1sf(9, s).

Correspondingly, for & > 0 we define fractional powers |A;|* and ]%]“ by

(1851°£) (8, 5) = |6 — 1]°f (8, 5);

Iﬁlaf ) (8,5) = Is|* (9, 5).

Similarly, for ry,...,7,, p 2 0, we define the operator (1 + i‘ ;i + lp‘%[)al by
i=1

(5.11) ((1 +j§::l|r,A,-1+|pa%|)° ) (9, s) = (1+2r,|e"’: _1|+pis|)u (9, 3).

We shall use all these notations in Section 6.

6. MULTIPLIERS ON THE JOINT SPECTRUM

In this section m is a bounded function on (2N + 1)" x R* such that
m(2k, + 1,...,2k, + 1,-) is a Borel function on R* for every k = (ky,...,k,) € N

Fix a function 7 € C°°( (1/4, 4) such that n > 0 and 17 1in [1/2,2]. For
3= (1, Jn1) € 2% and (1, X) = (p1, .., i, A) ER™! p

(6.1) 731 A) = Hn(2 e - (274 )).
Set
(6.2) N = (mn;) (A L1, ., A7 Ly, =TS,
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Since the function
(k, A) —> (mn;)(2k, + 1,..., 2k, +1,7)

is in L?(A), by (6.2) and the facts established in Section 3 we have that N; € L., for all
j € Z™*!. We consider the function m; € L*(S) defined by

(6.3) m; = QGN;

where the operators @ and G have been introduced in the previous sections. According
to (5.11), for & > 0 and § > 0 we define the scale-invariant localised Sobolev norm

(1+[224])" - (14 |2An])°

2 1/2
dA} .

We remark that, by standard partition of unity arguments, it can easily be shown that
different bump functions 7 lead to equivalent £2(L?), 4, norms.

For § >0, 7> 0 and j € Z"*! let W}” and u{) be the weights on H, defined by

_gendl
”7”l|12(u)¢,“,_,v'mc ={ sup 2 g Z /R

jeZnti keZn

.9
in+l
LAY

)B m;(K, A)

(6.4) (1 + f‘, [2* A, +

r=1

) n ) n o 2(1+6) ) 148
(6.5) Wa(’)(z, t)=2" Yoreydr =(n+1)jas1 | H (1 + 2U,+Jn+1)/2|zr|) . (1 + 2]n+llt|) :

r=1
(66) ud(z,t) = 22 ] {1 + (27t | zrlz)h} (2 1),
r=1

LEMMA 6.1. Supposel < p < +oco and § > 0. There exists a constant
C = C(p,d) > 0 such that

1 -1 ; 2 12
[maics,.... a7 —imf] < Cll- sup ([ [N W(2) da)
» jezm+t \JHa

for all f € L*(H,)n LP(H,,).

The proof of Lemma 6.1 follows strictly the proof of Lemma 5.1 in [18], where the
operator m(A~L, —iT) is considered. The only obvious difference is that we apply our
Proposition 4.3 instead of the corresponding Proposition 4.4 in [18].

PROPOSITION 6.2. Foreveryy 2 0 there exists a constant C., > 0 such that

n ) ) ) 2y
v Indl
/Hn (1 +r2=:1|2 A+ 2 a,\')

(1 + I2jl All)kr e (l + |2j" Anl)47 mj(k, /\)]2 dA

. 2 .
Nj(z) U.(;')(z)‘ dz < Cy- 2. 3 /R

keZr

for all j € Z™+.
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PRroOF: By (5.11) it suffices to prove that

n 2y
/ |Ny(2) uP (@) de < C - 2imss - / / (1 + 329 et — 1] 4 P |ag)
H. T JR =

n 2
6.7 I (1 + 2 e — 1)) - 75(9,0)| @9 do.
¢

r=1

Furthermore, it suffices to prove (6.7) if v € N: the general case will follow by inter-
polation. In this hypothesis ufyj) is a polyradial polynomial on H,. So, by (5.5) and
Proposition 5.2, we have

3 . 92vins1 2y(iry+in+1) | . 02WUr, tinst) FY L F2Y 5y
B =2 3 2 2 O -8 128

= %n+1 442
{r1,-..,rs}C{1,...,n}

= 22'7jn+1 { Z 22’7 (3jn+l+E;=1 jfu) M‘“z”ﬂ
{r1,..,re}C{1,...,n}

2y 2y
( Y (a7 M,’:“A;’;‘”") ( Y (%) M:;'-A;';-+27) }

my =0 ms=0

br=v/2)

5 xS ree e S

=0 BeN™ q=0 ’\
181<2q—v

..anAfl...Agn

i 2y (r=v/2] 2v 27y 20i
= 22+ E Z Z 2 Z - E 2~ 2qin41

{11 ra)C{L,n} V=0 |Bl<27-v ¢=0 mi=0  m,=0

927 (sdns1+3_, ry) |A|=@r-v- 2q+276)§u (@a7%)-(a7,)

MMATH2 M ATA (g F) M M AR AP,

If we set {rs41,...,m} ={1,...,n}\ {r1,...,75}, by Lemma 5.1 we obtain

- [y=»/2) 2y 2y mit+hr; m.+ﬂr, .
auﬁ,j) - Z E Z Z Z Z Z Z 92in+1 (1-9)
{r1e0rs}C{l,...,n} ¥=0 |f|<2y—v ¢=0 m1=0 my=0 h;=0 hy=0

i
927 (sin+1+30_, dro) A~@r—v—20+2v) = (4. F
A 2 )
Ao AP b
Mrhll AI:11+27 v Mv":- A¢:+2v My A - Mrﬁi n Afnn‘
We observe that in suppm; we have |A| ~ 2%+ and k, ~ 2 forr € {1,...,n}. So

92in+1(1-9) lAI-(ZT-V-Zq) ~ 2”jn+l;
9278jn+1 | )\l_z'“ ~1;

M, ~ ¥,
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By these facts and by (5.8) and (6.3) we have
N
/;{”|N,~(z) uﬂ,’)(z)l dx

gn-1 5
- kgf}» /R 18,0 (GN) (B N[ A1

2»—1 . 2 .
S oA kezz:n /Rla..gmj(k, 2| 1A da

2y 2y mit+Bry m.+/3.-,
<G Y XY X E DIEDINIEDY
{r1,ra}C{1,... 0} ¥=0 |B|<2y—v Mm1=0 m;=0 h;=0 Rhy=0
/ ' (2ujn+, ) 21” Arl)hl-l-?'y .. (2jr‘ Ar‘)h.+2’7
keZ»

Bruns

(27 Ay, ) (20 A ) m;(k, ,\)‘ 2Mnt1 d)

2y ma+B8ry m,+B:,

SSILLTRD RS S oD SETD S D >

{r1,-rs}C{L,...,.n} v=0 |B|€2y—r Mm1=0 m,=0 h;=0 =0

Jeo

vint1 , (id)" . f[{zjw (eion - 1) }h"+27
v=1

I {or (¢ = 1)) 0,00 do do
u=s+1
2y

LR SN YIS U v SER0 >

{r1,re}C{1,...,n} ¥=0 (B|€2y—v m1=0 m,=0

/Tn /R (2 lot)”- 012[1 (142 Jei?me — 1)

T (2 g - 1) w0, 0')| d9 do
u=s+1
2y

LR TS S D ) ot >

{ri,..rs}C{l,...;n} ¥=0 |B|<2y~v m1=0 m,=0

v+|8|
A (1 + 3095 e — 1] 4 o Ial)

r=1

2
I (1429 &% —1))™" 759, 0)

v do
v=1
N n 2y
< | ONdngl | ir | 80 - Ind1
<Cr-2 /rn/Rl(ngf e — 1] +2 |a'|)
n 2
I (1 + 2 (e ~ 1)) - 759, 0)| a9 do.
r=1
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Formula (6.4), Lemma 6.1 and Proposition 6.2, by the relation between W}j) and
u({l‘, deducible from (6.5) and (6.6), lead directly to:

THEOREM 6.3. Suppose |m|z@s), ,,,. < +oo for some a > 1 and 8 > 1/2.
Then for 1 < p < +oo there exists a constant C, g, > 0, not depending on the function
m, such that

[mA= L A L, =T < Cagplimllaaay, , 1Tl

for all f € L*(H,) N LP(H,,).

7. MULTIPLIERS ON R"t!

We want to prove a weaker but simpler version of Theorem 6.3, where the function m
satisfies a Sobolev condition on all R**! and not only on the spectrum of the operator. In
this context, from the boundedness of the operator m(A~1L,,...,A"'L,, —iT) we shall
be able to deduce also the boundedness of the operator m(L,,..., Ly, —iT) under the
same hypotheses on m.

In this section m is a bounded Borel function on (R, )" x R*. We extend m on all
R™! by putting m = 0 outside (R4)" x R*. For 7 = (r1,...,7ny1) € (Ry)™*" we write

m(r)(u') ’\) = m(rlul) <o Tnfin, 7',.+1A).

Fix 7 as in Section 6 and 7 as in (6.1). For @ > 0 and § > 0 we define

“m”Lg Satec —SUP ”m(')’?o“L: s
. re(R4)™! :
where the mixed Sobolev norm | - || 2, s defined by

2

n « n+1 8
a) - T1(1 +141) ~(1+§:|£j|) de.

Jj=1

2 —
lolizz, = [ ..

By applying n times Lemma 2.5 in {18], we have

(7.1) Imllews, 4 0. < Climliza

a,8.sloc”

THEOREM 7.1. Suppose ||m]|L§“u < +oo for some a > 1 and § > 1/2. Then
for 1 < p < +oo there exists a constant Copp > 0, not depending on the function m,
such that

Im(a2y,... A7 L, ~iT) f| < Capplimllsz NIl

a.f.sloc
and
[m(La,.... £, ~T)f| | < Cagp limilzz

2 5 el llp
for all f € L*(H,) N L*(H,).
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Proor: The first inequality is a direct consequence of Theorem 6.3 and (7.1).
Putting
(Sm)(p, 3) = m(|\u, A)

we have that
m(Ly, .-, Lny —iT) = (Sm)(A7'Ly, ..., A7 Ly, =iT).
Then, in order to prove the second inequality, it suffices to prove that

(7.2) lSmilzz

2 pane < Cag Imllzz

a,f,sloc .

The proof of (7.2) is an easy adaption of the last part of the proof of [18, Corollary 2.4]. 1]
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