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COEFFICIENTS IN EXPANSIONS OF 
CERTAIN RATIONAL FUNCTIONS 

RONALD EVANS, MOURAD E. H. ISMAIL AND DENNIS STANTON 

1. Introduction. The constant term of certain rational functions has 
attracted much attention recently. For example the Dyson conjecture; 
that the constant term of 

n a-*,/*,)"'• 

is the multinomial coefficient 

/ai + . . . + aA 
\ ah . . . , an / ' 

has spawned many generalizations (see [2], [7]). In this paper we con
sider some other families of rational functions which have interesting 
constant terms. For example, Corollary 4 states that the constant term of 

(1.1) h(z) = (1 - zA+B)A+B(l - zA)-A(l - zB)-Bz 

. (A + B\ Here, and throughout this paper, A and B denote fixed 

positive integers. 
In order to prove this result, we consider the rational function in two 

variables 

/(«i, x) = (1 - wx)A+B(l - w)-A{\ - x)~B. 

In Theorem 1 we give all of the coefficients of f(w, x). Corollary 4 will 
then follow easily. We use the Lagrange inversion formula in two variables 
to prove Theorem 1. 

The original problem which focused our attention on (1.1) was a 
problem of A/Iallows [8]. Using probabilistic techniques, he proved that 
if t, a, 13 ^ 0 and a + 13 = 1, then 

-f'[ 
TV J 0 L 

(1.2) * • ' smu 

(sin au)a (sin /3u) 
'du ~ —JX+IL 

T(at+ l)T(0t + 1 ) ' 

He remarked that a direct proof of (1.2) would be interesting. We give 
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1012 R. EVANS, M. E. H. ISMAIL AND D. STANTON 

a direct proof in Theorem 6, as one of the several applications of Theorem 
1. The relation between (1.1) and (1.2) is given in the proof of Theorem 6. 

Two g-analogues of Theorem 1 are stated in Theorem 9 and Theorem 
10. However, the resulting ^-analogues of Corollary 4 are not so simple. 
We use a transformation formula for a terminating basic hypergeometric 
302 series to prove these results. It would be interesting to find a proof 
by g-Lagrange inversion in two variables. Unfortunately, the principle 
of g-Lagrange inversion is not yet fully understood, although progress 
has been made in [1], [4], and [5]. There is as yet no multivariate q-
Lagrange inversion formula. 

Interesting multivariable extensions of Theorems 1, 9, or 10 would be 
much desired. For example the g-Dyson conjecture in several variables 
has been formulated by Andrews [2]. It has not been settled yet. It 
is not clear to us what the multivariable analogues of our results are. 

Because of the suggestive nature of Corollary 4, one could ask for a 
direct combinatorial proof. Zeilberger [13] has given such a proof for 
Dyson's conjecture. 

2. Notation and preliminaries. We use common notation for rising 
factorials and hypergeometric series [9]. Thus, for any integer m, 

(2.1) (a)m = T(a + m)/T(a)J 

and 

(2.2) ^(û'èL) = Ë - ( ^ # ^ 
for complex a, b, c. Sometimes we will encounter the case when a, b and c 
are negative integers and c < max (a, b). In this case we agree to termin
ate the sum when m = min ( — a, —b). Vandermonde's theorem [9, p. 69] 
states that 

(2.3) ^ ( ^ - ^ 1 ) = - ^ - ^ 
(C)n ' 

whenever the finite series on the left is well-defined. 
In Section 5, where basic hypergeometric series [11] are involved, we 

write, for any integer m, 

(2.4) (a)m = (a; q)m = W (1 - aqm+T) ' 

and 

(2.5) 
(a, b, d 

302V 

\ cy e 
ç,y 

m 

(The abbreviation (a)m should cause no confusion, since no ordinary 
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hypergeometric series are involved in Section 5.) Again, if some of the 
numerator parameters are negative integral powers of q with the largest 
negative integer exponent denoted by — n, then we agree to replace the 
upper summation index oo by n. 

A useful transformation formula for a terminating 3</>2 series is an 
iterate of [10, equ. (4.4)] 

(2.6) W , W , 3 0 2 ( a ' ^ ' | g , g ) 

/ / \ / / x n (a, Q~n, Q1~nab/ce \ = (e/a)n(c/a)na 3<M i-« / i-n , \q, q) • 
\q a/e, q a/c | / 

We will be interested in the above transformation formula when a, b, c 
and e are of the form q~j for non-negative integral values of j . In these 
cases formula (2.6) reduces to the polynomial identity 

(2.7) £ ( 2 ^ ) , ( a M & M c g V , ( « z V , ( 2 ) r y 
j =0 

= ( - f ) V 2 ~ " g (.q-n)l{a)l(q
l-nab/ec)l{q1-n+la/e)n-i 

X {q1-n+la/c)n-l{q)l-
lql. 

A version of Lagrange inversion in two variables states that for a 
formal Laurent series F(w, x) about the origin, 

(2.8) Coefficient of (xw)~1 in F(w, x) = Coefficient of (ziz2)~
l in 

/ • F(g, h), 
where 

(c? Q, ig = g(zi, z2) = zi - {power series with constant term 1}, 
[h = h(zh z2) — z2 - {power series with constant term 1}, 

and f is the Jacobian 

(2.10) / 
àg/àzi dg/dz2 

dh/dZi dh/dz2 

Although this result has been attributed to modern authors, it is in the 
work of Jacobi [6]. 

A theorem of Carlson [12, p. 186] states that if f{z) is analytic and is 
0(^ ' 2 1) in the half-plane Re (z) ^ 0, where k is a constant <7r, then 

(2.11) f(z) = 0 if f{n) = 0 for every n = 0, 1, 2, . . . . 

3. Coefficients of rational functions. 

THEOREM 1. For each pair of integers u, v ^ 0, the coefficient K(u, v) 
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of wuxv in 

(3.1) f(w, x) = (1 - wx)A+B(l - w)~A(l - x)-D 

is 

(3.2) K(u, v) = (5 - u + l)v-i(A - v + l)u-i(AB - Au - Bv)/ 
(u\v\), 

with the interpretation 

Proof. The result is clear when uv = 0, so let zw > 0. Apply Lagrange 
inversion (2.8) with 

F(w, x) = f(w, x)w~u~lx~v~l 

and with the propitious change of variables 

g = Z i / ( 1 - Z2) , h = 2 2 / ( l - Zi) . 

Since y = (1 - si - z2)(l - 2!)-2(l - z2)~\ we see that K = K{u, v) 
equals the coefficient of (ziz2)~

l in 

(l - zi - z2)(i - zO-^Ci - z2) t t-1-B2r1^2-1-. 

Thus K is the coefficient of Ziuz2
v in 

a - * - *) È Ê (" ~ v+ m)(B ~u + n\^, 
so 

„ /A—V + U\(B — u+v\ 
K = \ u ) \ v ) 

_ (A - v + u - l\(B - u + v\ 

_ (A - v + u\ (B - u + v - l\ 

Combining the first two terms, we obtain 

^ (A + u — v — l \ (B + v — u\ 
K = \ u ) \ v ) 

_ (A + u - v\ (B + v - u - l \ 

and the result easily follows. 
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COROLLARY 2. Suppose that A = ad, B = bd for integers a, b, d > 0. 
For each integer s, the coefficient Ks of w

b(d-s)x
as in 

(3.3) f(w, x) = (1 - wx)A+B(l - w)-A(l - x)-B 

is given by 

(3.4) K . - ( A + i - 1 ) , K . . ( A + ^ - 1 ) . K . . 9 

for 0 < s < d. 

Proof. Apply Theorem 1 with u = b{d — s), v = as. 

COROLLARY 3. Fix nonzero complex numbers X, /z. Then the constant 
term of 

(1 - \fizA+B)A+B(l - \zA)~A(l - ixzB)~Bz-AB 

is 

Proof. Apply Corollary 2 with d = (A, B), w = \zA, and x = \xzB, to 
see that the constant term equals 

Z . Hd-s) asjr ( A + B — 1 \ B ( A + B — i \ A 

COROLLARY 4. The constant term in 

h(z) = (1 - zA+B)A+B(l - zA)~A(l - zB)-Bz~AB 

is 

(Ar)-
Proof. Set X = /i = 1 in Corollary 3. 

4. Evaluation of integrals and series. Let C be the contour 
[eiB : 0 ^ 6 ^ 2TT} and let £ be the arc {eid : 0 ^ 0 ^ 2ir/G4 + B)\. 
Corollary 4 states that 

1-KlJ c>
 K ' Z \ A ) 

where C is C except with inward indentations around the poles of h(z) 
on C. We now prove the surprising fact that if one integrates only along E, 

i.e., along the first l/(A + B)-th of C, the result is ^ I . J. 

Note that h(z) has no poles on E. 
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THEOREM 5. We have 

Proof. For 0 < p < 1, let 

T A + B f ( ,dz 
IP = 9 • 1 h(z)~ 

Zirt J pE z 
where pE = \peid : 0 ^ 6 ^ 2TT/(A + B)}. In the notation of Theorem 1, 

f(w, x) = ^2 K(u, v)wux\ 

SO 

(4.2) h(z) = z~ABf(zA,zB) = £ K{u,v)zAuArBv~A 

M.CÊ0 

Since ( . I is the constant term of h(z) by Corollary 4, it follows from 

(4.2) that 

D, --'•-{AV) 

27ri w ^ o 4w + Bv - AB p 

Au+BV9±AB 

= - ^~^-]-P-AB A E - 1 (e2'ifi/u+B) - 1)S,(*), 
i ? = l 

where 

(4.3) s,(*)- ^ A B ^ T ^ " • 
Au+Bv— AB=R(moûA+B) 

It remains to show that 

(4.4) lim^i SP(R) = 0 (0 < i? < ,4 + £ ) , 

for then lirrip^i Dp = 0, so 

Let d = (̂ 4, JB) and write A = (/a, B = db,a = a + b. lid does not 
divide i?, then SP(R) = 0, so assume that R = dr for an integer r. Note 
that 0 < r < a and (a, 6) = (a, <r) = 1. By the formula for K(u, v) 

I = lim Ip 
P-41 
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given in Theorem 1, (4.3) becomes 

(4.5) S,(R)= Z ( g _ - « + l ) , - 1 U - j L ± i ) ^ - — 
w~o ulvl 

- IP 

ulvl 
au+bv—daf)=r(moù <r) 

The congruence in (4.5) can be restated in the form 

u — v = g(mod a) 

with fixed g = B + m_1(mod <j), where a~l denotes the inverse of a 
(mod a). Note that g ^ j3(mod o-). Now write 

SP(R) = Sp + Sp — St 

E + E - Z 
«i^ci^O v^u^O u=v^0 

•w— v=g (mod ff ) w— v=g (mod c) w— 0=0 (mod <0 

x (£ - U + l ) , , ! ^ - l> + 1)U-1PAU+BV 

ulvl 

It is easily seen that 
(A-+B 

(4.6) Sp~ is obtained from 5P
+ by the replacements IB —» A 

\g -> - . 

The condition u — v ^ g (mod a) is equivalent to u = *> + r, where 
T = g -f wo- for integers w. Thus, 

C + = V V (\ + & — T — v)v-l(A — V + l ) g + r - l Ar+(A+B)v 

*P kko (v + r)lvl P 

In view of the formula (x — v)v = ( —l) s(l — x)v we obtain 

{A\P
A\-A)v{r - B)JA+B)" 

s; = z z 
T^O 

éS T L 4 ( B - T ) P ! ( T + 1 ) , 

V (^)TPAT
 p ^ - 5 - - ^ I *+B\ 

\>~r\A{fi-r)tF\ r + 1 | P i 

This 2^1 terminates after at most A + 1 terms, so, using (2.3), we see 
that 

( T - B , -A\ A+B\ (B + l)A 

(r + 1)A 

where the implied constant depends only on A and B. Thus by Abel's 
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theorem for power series, 

l i m 5 + = y_ i f iMB±Ik_ 
Ti " V T L 4 ( 5 - T ) ( T + 1 ) A 

(B + l)A T 1_ 
A\ i?(r + A)(r-B) 

T > 0 

-er)? (am + g + A)(am + g - B) ' 

By (4.6), 

î*--er) ? 
07W—0 = 

=-(\+s) ? 

(o-w — g + B) (am — g — A) 
am—g^O 

1 
(am + g - B)(am + g + A) ' 

(rm+g^O 

where the last equality follows from the change of variable m —> —m. 
Thus 

lim SP(R) = lim (Sp
+ + S~ - Sp°) 

( A + A % -
1 - 0 . 

(am + g - J5)((rm + g + A) 

because the s e r i e s ^ m (am + g — B)~l(am + g + A)~l converges, 

A +B 1 1 
(am + g — B) (am + g + A ) am + g — B am + g + A 

and 

am + g — B = am' + g + A 

if and only if 

m = m — (A + B)/a. 

This proves (4.4). 

THEOREM 6. If t, a, p ^ 0 and a + fi = 1, /&ew 

a 7Ï T = l f* ( sinu \ '* = r(* + i)  
k ' TTJO \(smctu)a(sm0uyj T(at + l)T(f3t + 1) ' 

Proof. Recall that 

C = {eie : 0 ^ 0 ^ 2TT}, £ = [eie : 0 ^ 0 ^ 2TT/(A + B)}. 
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We have 

(4,8) L==~2^Jo KTT^'T^rTi^^W^)du 

= _ 1_ f I 1 - w \ ' < 
" 2<iriJc \(1 - wa)a(l - vf)*wa*) ' 

1 dw 
]
 c \(1 -wa)a(l - * / ) V " 7 w ' 

By continuity, it suffices to prove (4.7) for each fixed rational a, 0 < 
a < 1. Let A and B be positive integers which vary in such a way that 
a = ,4/04 + 5 ) stays fixed. If we put / = A + 5 , a = A/(A + B), 
13 = B/(A + B),w = s A + s in (4.8), it follows from Theorem 5 that 

'-^/.'«t-er)-
Thus (4.7) is true for our fixed a = A/(A + B) and all values of / of 
the form A + B, i.e., all positive integers / which are multiples of the 
reduced denominator of a. It remains to show that (4.7) is true for our 
fixed a and all real t ^ 0. 

In the half-plane Re (t) ^ 0, both members of (4.7) are analytic 
functions of t. The integrand in (4.7) takes its maximum value (aa^)~t 

when u = 0, so for Re (t) ^ 0, 

T(at + i)T(pt+i)L /r(«/ + i)r(ff +i) \ nu/nm 
f(T+T) = °l r(/+iK^~7 = 0(Vt + 1T 

by Stirling's formula [9, p. 31]. Thus (4.7) holds for alU ^ 0 by Carlson's 
theorem (2.11). 

THEOREM 7. Let R be an integer ^ 0 (mod A + B). Then 

Q4 ) , (£) , 

Mo ,jAj + Bk - AB\ °-
A j+Bk-AB=R(mod A+B) J>K-\ A . r? / 

\ A + B J A+B+l 
Proof. Let # (z ) be an antiderivative of 

<»«-fr)) 
in a neighborhood of a point s with 0 < \z\ < 1. By Corollary 4, 

A(j+n)+B(k+n)^AB 

A(j+n)+B(k+n)-AB 

X (-1)"-

* - " 

A(j + n) + B(k + n) - AB ' 

For 0 < p < 1, let T„(R) denote the sum of the coefficients of those 
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powers zm in the expansion of H(pz) for which m = i?(mod A + B). Thus, 

rp rj?\ 1 V^ Aj+Bk-AB[A + 7 ~~ M 
T>W-T+B h p \ j ) 

Aj+Bk-AB=R(moûA+B) 

(A+B\{ 
(-l)"p 

i /~) —t— f — i i •«—» \ ri. i 

X 

n (A + B)n 

(» + 8) 
where 

. 4 / + 5/fe - AB 

The inner sum on n equals 

i [ 6, —4 — J3 A + B \ 

and it can be seen with the aid of (2.3) that 

(4.9) limrpCR) = (A +B - 1)! 

x Z iA)iiB)k 

Aj+Bk—A B=R(mod A + B) 
...lAj + Bk- AB\ 

On the other hand, the definition of TP(R) together with (4.2) and (4.3) 
show that 

TP(R) = -P~ABSP(R). 

The result thus follows from (4.4) and (4.8). 

Even the special case A = 1, R — B of Theorem 7 appears to be non-
trivial. We conclude this section by discussing this case. 

COROLLARY 8. For every positive integer B, 

V (! + " * + ["»/£])* = o 
£A(m-B/(B + l))B+2

 U' 

where [x] denotes the greatest integer ^ x. 

Proof. Put A = 1, R = £ in Theorem 7 and write j + Bk = tn(B + 1) 
for m = 0, 1, 2, . . . . Since m(Z? + 1) — Bk = j ^ 0, we have k ^ m + 
[m/B] so Theorem 7 yields 

y y ^ = o 
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For any integer N ^ 0, 

£ (B\ _ (N+l)t 

so 

^ ^ ( m - . B / ^ + l ) ) ^ 

5. A g-analogue of theorem 1. The following result is beautifully 
analogous to Theorem 1. Recall that in this section we use the notation 

oo 

(«)»= Y\{\-aqr)/{l-aqm+r). 

THEOREM 9. For each pair of integers u, v ^ 0, the coefficient Kq(u, v) of 

(5.1) fq(w,x) = 

is 

(5.2) Kq(u,v) = 

(wx)A+B 

(w)A(qx)B 

- ( i - g
A ) ( i - < f ) - q - g * ) ( i - g ' ) } 

fe)«(?)r 
w f̂e /fee interpretation 

(5.3) X,(« ,0) = (<zA)M/(g)a, # , (0 , ») = g'(g a) . /(g), . 

Proof. Heine's ^-binomial theorem [11, p. 92] gives 

i E (gA)X 
(w)A ,%o (g),-

Since 

fQ(w,x) = {(w)A(qx)B(xwqA+B)-A„B\-\ 

expansion by the g-binomial theorem gives 

f (m ̂  = V (q^^tfUqxnq-^Uwxq^y 
h K , ) ,.&& (a)t(t)n(q)t 

The coefficient of wuxv is obtained by combining the terms with k = 
v — n = u — j . Thus 

-A-B\ „v+k(A+B-l) 
K (u v) = Y (^A)u-k(qB)v-k(q A B) 

Q ' *=o (q)u„k(q)v-k(q)k 

https://doi.org/10.4153/CJM-1982-073-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-073-1


1022 R. EVANS, M. E. H. ISMAIL AND D. STANTON 

where M = min (w, v, A + B). Using the formula 

^A\ „k(k+l)/2-uk-Ak/-i\k 

we obtain 

k%l. 
(g h 

—u\ / — A — B\ k 

Kq{u,v) = (g )u(g )cg f̂  (g g)*(g u)k(g )kg' 
(q)u(q). k (ql-A-U\(ql-B-V)iM)k ' 

that is 

(5.4) * , ( « , „) - i q U q ) - 3*2 ^ w - « g i - * - . \q,q). 

When A + B ;£ min (M, !») we choose a = ç_°, 6 = q~u, n = A + B, 
c = q1—i~u and e = q1~B~v. Hence the 302 in the left the member of (2.6) 
equals the 3*2 series in (5.4), while the right member of (2.6) is a multiple 
of 

(5.5) Z A+B {q^B) ^ 

J=.O (q)a 
(q-l)l(q'-A)A+B-l(q'+u-v-'i)A+B-l 

which vanishes for B > 0. The right side of (5.2) also vanishes when 
A + B ^ min (w, v) because one of the factors (qB~u+1) v-i, (qA~v+1)u-i 
vanishes. We finally turn to the case u < A + B, u ^ v. In this case we 
take n = u, a = q~\ b = g-*-*, c = ql~A~u, e = g1-*-" in (2.6) to ob
tain, from (5.4) 

K („ „\ - ^A)MB)v(q1~B)u(q1~A+v~u)u v-uv 
K ^ V ) ~ {q)u{q)v{ql-A-U)u(ql~~B-V)u * 

( —V — 1 —•« \ 

q , q , q i 
B-u A-v g> g | 

q ' q i ' 
Hence 

(5.6) Kq(u,v) = 

X ? 

(gA).(ga).(g1~ l '),(g1~A+,~"). 
( g ^ g ) , ^ " " ) . ^ - * - ) , . 

(1 _ g « - ) ( i _ gA-«} _ ( 1 _ g - ) ( 1 _ g-») 

( 1 _ g ^ ) ( l _ g ^ ) 

We now apply 

Wu = (-X)w(g1-VX)MgM(M~1)/2 

to obtain 

JUV / „B—U\ _UV 

&-B~X - CqB+°-UTu~q ~TqB+V-")J ~{q hq 
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and 

(qA)u(q1~A+v~u)u _ (qA)u(qA-v)uut 

~ foV q 
\q )« 

Combining these relationships with the observation 

(i - g*-*)(i - qA-<) - (i - r") ( i - <r°) 

= <r"-[(i - <zA)(i - <zB) - (i - qA)d - qu) 
- (1 -qB)(l-q°)] 

we establish (5.2). 

Our next result is the following complement to Theorem 9. 

THEOREM 10. For each pair of integers u, v è 0 the coefficient Kq(u, v) 
of wuxv in 

(wx)A+B 

is 

where 

fq(w,x) • 

Kq(uy v) 

(W)A(X)B 

JUV/„B—u+l\ /„A—v+l\ 
g (g )»- l (g )u-l 

X [(1 - qB)(l - qA~v) + qB(l - qA)(l ~ q*)]9 

Kq(u,0) = (qA)u/(q)u, Kq(0, v) = (qB),/(q)v. 

The proof is similar to our proof of Theorem 9. We reverse the sum, 
that is, replace k by M — k, in the first formula for Kq(u, v) and again 
use the transformation for a 2-balanced 3<£2. 

We conclude with a g-analogue of Corollary 2 in the case A = B. 
As in [3, p. 35], we write 

n 
m 

(q)n 

(q)m(q)n-m 

for the Gaussian binomial coefficient. 

COROLLARY 11. The coefficient Kq(s) of wA~sxs in [(WX)2A/(W)A(X)A] is 
given by 

, u _ „ ( g * - 1 ) - ! ^ - " ) , — i ( l - gA)(l - g')(l - qA-s) 
(q)Àq)As 

K,(s) = g 

,s(A-s) 2s - 1 
s 

2(A - s) -
A - s *1 (1 " qA), 

J Q 

for 0 < 5 < A, and 

KM = 2A - 1 
A , KM) = 2A 

Proof. Put A = B, u = A — s, and v = s in Theorem 10. 
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6. Concluding remarks. R. Askey has pointed out that Saalschlitz's 
theorem (the summation of a 1-balanced 3^2) is equivalent to 

6.1) (1 - wx)A+B-\l - w)~A{\ - x)~B 

(B - u)v(A - v)u u v -— w x . 

Our proof of Theorem 1 also gives (6.1). Also, (6.1) clearly implies 
Theorem 1. Finally, the transformation which takes a ^-balanced 3F2 

to a sum of k terms (the q = 1 version of (2.6)) is easily proved by 
multiplying (6.1) by (1 — x)k~l and equating the coefficients of wuxv. 

For the g-analogue we have 

(6.2) « ^ - = £ ^ - ^ Ç ^ ç w W . 

If x —» qx and we multiply (6.2) by 1 — wx, we have Theorem 9. If 
we multiply (6.2) by (1 — wxqA+B~l), we have Theorem 10. Also (2.6) 
easily follows from (6.2). 
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