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1 Introduction

1.1 What Is a Model?

If there is anything that could be described as a core question in the philosophy

of modelling in science, it is probably What is a model? Unfortunately, this

question is deceptively complex: as we will see, it is tangled up with numerous

other key questions in this branch of philosophy. But since we have to start

somewhere, let’s give it a shot: what is a model? Here’s a short list of examples

of things scientists call models:

(1) A ‘typical’ drawing of a cell in a biology textbook, showing the cell to

contain a nucleus, a cell membrane, a Golgi body, mitochondria, and

endoplasmic reticulum (Downes 1992) (Figure 1).

(2) The standard laboratory rat, Rattus norvegicus, depicted in Figure 2, is

a model organism which is studied with the goal of understanding a range

of biological phenomena, including humans (Ankeny and Leonelli 2021,

chap. 2; Leonelli 2010; Levy and Currie 2015).

(3) The solar system, used byNiels Bohr in the early twentieth century as amodel

of the atom. Bohr argued that the nucleus of an atom is like the Sun, the

electrons like planets circling the Sun (Giere, Bickle, and Mauldin 1979).

(4) The Friedmann–Lemaître–Robertson–Walker models of cosmology and

the standard model of particle physics. The former is a way of picking out

a particular set of conditions that satisfies the equations of the theory of

general relativity; the latter a means of fleshing out the mathematical

framework provided by quantum field theory (Redhead 1980; Smeenk

2020). This idea of a scientific model bearing the relation to theory that

a model bears to a set of axioms in logic goes back to Mary Hesse (1967).

(5) Watson and Crick’s famous double-helix models, built from pieces of wire

and tin plates (depicted in Figure 3) and ultimately taken to represent the

structure of DNA (Giere, Bickle, and Mauldin 1979, 16–29).

(6) A model reconstruction of the Earth’s temperature in past geological

periods, developed using proxy data from sources like deep ice cores,

fossilized shells, tree rings, corals, lake sediments, and boreholes (Parker

2018;Winsberg 2018, chap. 2). An example of this is depicted in Figure 4.

(7) The San Francisco Bay model, depicted in Figure 5 – made of concrete,

replete with pumps, and filled with salt water when in operation – used to

simulate the behaviour of water in the real San Francisco Bay. The Army

Corps of Engineers constructed the model in the 1950s to predict the

effects of a proposal to close off the Golden Gate and turn the Bay into

a freshwater reservoir (Weisberg 2013).

1Scientific Models and Decision-Making
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Figure 1 A model of a plant cell.

Source: www.pinterest.ca/pin/plant-cell-vs-animal-cell-whats-the-difference–533746
993338085307/.

Figure 2 A model organism, the white lab rat.

Source: Williams (2011).

2 Philosophy of Science
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(8) Weather and climate models that run on computers (an example is

depicted in Figure 6), which are used to make predictions about actual

short-term weather conditions and projections about possible long-term

climate conditions under different CO2 emissions scenarios (Parker 2018;

Winsberg 2018).

(9) Epidemiological models that forecast or explain the spread of an infectious

disease (Winsberg and Harvard 2022). An example is shown in Figure 7.

Figure 3 Watson and Crick’s tin plate model.

Source: https://collection.sciencemuseumgroup.org.uk/objects/co146411/crick-and-
watsons-dna-molecular-model-molecular-model.

Figure 4 Several different models of the Earth’s paleoclimate, presented

as one history.

Source: Glen Fergus, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=
31736468.

3Scientific Models and Decision-Making

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
02

93
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://commons.wikimedia.org/w/index.php?curid=31736468
https://commons.wikimedia.org/w/index.php?curid=31736468
https://commons.wikimedia.org/w/index.php?curid=31736468
https://commons.wikimedia.org/w/index.php?curid=31736468
https://doi.org/10.1017/9781009029346


Figure 5 The San Francisco Bay model.

Source: https://commons.wikimedia.org/w/index.php?curid=30086231.

Figure 6 A global climate model.

Source: www.gfdl.noaa.gov/climate-modeling/.

4 Philosophy of Science

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
02

93
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://www.gfdl.noaa.gov/climate-modeling/
http://www.gfdl.noaa.gov/climate-modeling/
https://doi.org/10.1017/9781009029346


(10) Health-economic decision models, which compare the costs and conse-

quences of implementing different healthcare programmes, interventions,

or technologies (Briggs, Sculpher, and Claxton 2006).

One thing that is noticeable about this list is that it is extremely heterogeneous.

Take, to begin with, the standardmodels of cosmology and particle physics: while

they are very commonly called models, they are really complements to physical

theories. Compare these to climate models and epidemiological models: although

the construction of these models is in part guided by theory, they are more like

stand-alone bits ofmathematics. With regard to the San Francisco Baymodel and

Watson and Crick’s double-helixmodels, these are actual physical entities, which

were built by humans for scientific purposes. The standard laboratory rat is

a variety of a biological species bred by humans for these purposes, while the

solar system is a found object that Bohr used to articulate his conception of what

the atom looked like. And, unlike these physical entities, a reconstructed record of

the Earth’s temperature in a past geological period is a data model (Bailer-Jones

2009; Bokulich 2011; Hartmann 1995; Laymon 1982; Leonelli 2016, 2019;

Mayo 1996, 2018; Suppes 1962, 2007): ‘a corrected, rectified, regimented,

and in many instances idealized version of the data we gain from immediate

observation, the so-called raw data’ (Frigg and Hartmann 2012).

Figure 7 A model run of the Imperial College London Covid-19

model ‘Covidsim’.

Source: https://covidsim.org.

5Scientific Models and Decision-Making
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In fact, our short, yet extremely heterogeneous list of models reflects a key

source of confusion about models: there is very little one can say about scientific

models that will be generally true of all of them. In this Element, instead of

trying to work our way through this confusion, our plan is to live with it, so we

can focus on other issues. In this section, we will simply zero in on a few

features that many models have, so we can later explore how those features are

important for understanding philosophical issues that arise in connection with

certain models – especially those that play a role in helping policy-makers to

craft policies that affect us all.

There is one more source of confusion that we must address before we move

on. This is the rather haphazard way in which ordinary language use in science

invokes a famous triad of terms: model, theory, and experiment. As we noted,

the ‘standard model of particle physics’ is really a part of theory – but is

a theory different from a model? This is far from clear, especially since when

we talk about our best theories of how diseases spread or of how turbulence

arises, what we are really talking about are things that involve modelling.

Furthermore, there is an influential line of thought in philosophy of science

that asserts that theories are nothing more than families of models (Suppes

1960; Suppe 1972; van Fraassen 1980). Nancy Cartwright (1983, 1989)

argues that theories are incomplete without accompanying models – models

are involved whenever a mathematical theory is applied to the real world.

Finally, experiments are often described as being carried out under a ‘model’

of what the experimental system is and how it is manipulated in the laboratory

(Suppes 1969).

In light of this, how can we possibly distinguish between a theory, a model,

and an experiment? In fact, attempting to draw the line between these has

been a central activity in the philosophy of modelling for many decades. For

the purpose of this Element, however, it will suffice to employ a very simple

distinction between theory, model, and experiment. Here, we take the word

‘theory’ to mean a particularly well-supported, widely-respected, and

successful – in other words, well-credentialled – way of understanding how

the world works (we will set aside the question of whether such an entity

comprises a family of models, a syntactic structure, or whatever else (Suppe

1972)). In comparison, models and experiments can be more or less well-

credentialled; that is, neither term flags a particular level of epistemic support

or record of success. With regard to the difference between models and

experiments, we will not draw any particular distinction in this Element:

we simply use the word ‘modelling’ to convey a scientific process carried out

either with paper and pencil or on a computer, and the word ‘experiment’ to

convey a scientific process, the canonical form of which takes place in

6 Philosophy of Science
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a laboratory by poking and prodding at a sample of the kind of system that is

of interest.

With that said, let’s begin by zeroing in on three features that many models

have. First, models are almost always integrated into a triad. In other words,

when we talk about modelling, we are almost always referring to three

things: (1) a system or other phenomenon in the world, which we call the

target; (2) the model itself, which represents the target (more on this shortly);

and (3) the model user. These three things must be understood in relation to

each other: in particular, the model user cannot be ignored because it is her

intentions that ultimately determine the model’s target system and the

model’s purpose. In other words, models are only representations of their

target systems because a model user says they are. For example, the solar

system has been around for billions of years – but it only became a model that

represents the target system ‘the atom’ when a human agent, Niels Bohr,

singled it out and said ‘that’s a model of the atom’. Similarly, a particular

computer model has the cognitive function of predicting the weather tomor-

row rather than of projecting the climate at the end of the century because its

user says so. Indeed, a model only has a cognitive function at all, rather than

the function of being a video installation in an art museum, because its user

says so.

Second, as noted, models are almost always representations of target

systems. What exactly it means for something to be a scientific representa-

tion is another core area of inquiry in philosophy of modelling, with a rich

literature that we will not review here (Frigg and Nguyen 2021). For our

purposes, it will suffice to say that a model represents a target system if

a model user takes it to stand for that target system in a way that helps the

model user reason about that system (Morgan and Morrison 1999; Morrison

1999); R. I. G. Hughes’ (1997) ‘Denotation–Demonstration–Interpretation’

account of modelling is especially useful here. Some have even argued that

there is a kind of use of models along these lines that gives rise to its own

style of ‘model-based reasoning’ (Magnani, Nersessian, and Thagard 1999;

Knuuttila 2005, 2011; Magnani and Nersessian 2002; Peschard 2011) in

which ‘inferences are made by means of creating models and manipulating,

adapting and evaluating them’ (Nersessian 2010, quoted in Frigg and

Hartmann 2012).

Furthermore, because models are representations of target systems – not

perfectly complete and entirely accurate depictions of those systems – the

modelling process involves pragmatic choices about what to represent and

how to represent it, which we call representational decisions (Harvard and

Winsberg 2022). A well-worn analogy is useful at this point: models are like

7Scientific Models and Decision-Making
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maps. Think about a subway map: the choices that go into how to represent the

world in a subway map have a great deal to do with how the map will be used.

The purpose of a subway map is to help people figure out how to get from

station A to station B (‘Is there a single line that takes me there? Am I going to

have to make changes along the way?’). So, a subway map is designed to

represent the features of the world that are salient to being able to decide how

to get from point A to point B. Subway map users don’t particularly care how

far the different stops are from each other, nor do they care if the path between

two stops is a straight line or if the subway takes a curved path to get

somewhere. The key to making a good subway map is carefully choosing

the most useful information to represent and using representational conven-

tions that, together, make it as easy as possible for users to reason about and

identify the best way to get from A to B.

Models are a lot like this. Like maps, they are things that we build to

represent the world and to help us reason about it. And they reflect choices

about how to represent the world: model developers decide ‘we’re going to

include this, we’re not going to include that’. Think of Watson and Crick’s tin

plate and wire model of DNA. It was very important for them to represent, in

their model, the length of the four nitrogen-containing nucleobases (cytosine

(C), guanine (G), adenine (A), and thymine (T)), but not their internal

molecular structure. That is because they were trying to reason about how

these four nucleobases could fit together like a puzzle. So they used a (3D)

puzzle-piece–like representational toolkit to build the model and to help them

do that reasoning.

This brings us to our third extremely important feature of many models.

Their criterion of adequacy is most often not that they are ‘true’ to the world. It

is not an important criticism of a subway map that the Broadway line ‘isn’t

really orange’, or that the map doesn’t show that some subway lines cross

bodies of water by going under them in tunnels while others go over them on

bridges. Yet it would be an important criticism of a subway map if it were to

represent two nearby stations by the exact same dot on the map. After all, this

would make users think they could change lines at that stop without leaving

the system, and avoiding this kind of mistake is what subway maps are

supposed to facilitate. Part of a subway map’s intended purpose is to help

users make accurate inferences about where and how to change subway lines.

With models, as with maps, the criterion of adequacy is that they are good

enough for the purposes we intend to use them for. Sometimes meeting certain

purposes requires that the representational relationship between the model (or

map) and the world is verisimilitude. But often it does not. And adequacy for

purpose is the telos of a model and a map, not truth.

8 Philosophy of Science
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Whether or not this fact about models, along with the fact that models very

often involve deliberate distortions, poses a threat to scientific realism is a topic

of much philosophical debate. The threat might arise (according to the debate) if

one assumes, as many philosophers do, that science is fundamentally a model-

based activity (most famously Nancy Cartwright (Cartwright 1983, 1989,

2019), Ronald Giere (Giere 1988, 1999, 2006; Giere, Bickle, and Mauldin

1979), and Margaret Morrison (Morgan and Morrison 1999; Morrison 1999,

2000, 2005, 2009)).1

1.2 Are There ‘Types’ of Models?

Given all of the above, it is not surprising that philosophers have made various

attempts to classify models into types. Some of these classification attempts

have corresponded to key questions like ‘How does the model represent?’ and

‘What is the model’s cognitive function?’. Partly because it is a closely related

question, and partly because philosophers are always fascinated by ontological

questions, the question ‘What kind of entity is a model?’ often also plays

a central role in classifications of models. We will not explore here all the

philosophical attempts to classify models (see, especially, Frigg and Hartmann

(2012) andWeisberg (2013) if this is of interest). However, the following rough

division of models into four categories will be helpful in tying together some of

the central issues that concern us in this Element. We should emphasize that not

everyone will find this categorization scheme adequate, especially readers who

are concerned with understanding the most heterogeneous lists of models.

1.2.1 Abstract/Mental Models

Consider our very first example of something scientists call a model: a picture of

a cell in a biology textbook. This what Stephen Downes (1992) has called an

‘idealized’ exemplar. As Downes notes, textbooks will present a schematized

cell that contains items of interest: in a botany textbook the schematized cell

will contain chloroplasts and an outer cell wall, but in a zoology textbook the

schematized cell will not include those things (1992, 145). As Downes puts it,

‘the cell is a model in a large group of interrelated models that enable us to

understand the operations of all cells. The model is not a nerve cell, nor is it

a muscle cell, nor a pancreatic cell, it stands for all of these’ (1992, 145). As we

will see, abstract/mental models have much in common with our next category

1 For a discussion of whether a fundamentally model-based conception of science is compatible
with scientific realism, see section 5.1 of Frigg and Hartmann (2012) and references therein,
especially Hartmann (1998); Laymon (1985); Massimi (2018a, 2018b); Morrison (2000); Saatsi
(2016); and Teller (2018).

9Scientific Models and Decision-Making

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
02

93
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009029346


of models, concrete models. However, one important difference should be

emphasized. Making inferences from abstract/mental models requires model

users to have an implicit understanding of the target system that allows them to

do something akin to mentally simulating its behaviour. Unlike the concrete

models we describe next, abstract/mental models, like a simple drawing of

a cell, do not mechanically generate their own behaviour.

1.2.2 Concrete Models

Some examples of concrete models from our introductory list are the San

Francisco Bay model, the solar system as a model of the atom, and the laboratory

rat as a model of biological phenomena in humans. What seems to be special

about concrete models is that they come with their own dynamical behaviour and

they represent and support dynamical inferences by purporting to be a causal

duplicate of the target system. For example, the San Francisco Bay model is

a concrete thing that mechanically generates its own behaviour: water literally

sloshes in the model, and when it sloshes in a particular way in the model, the user

infers that water will slosh similarly in the real San Francisco Bay. While concrete

models are not the only type of model that is meant to license dynamical

inferences about their target systems, they are the only type of model that does

this by presenting actual behaviour. As a result of this built-in behaviour, users of

a concrete model do not need to know how to reason about how the system should

be expected to evolve – rather, a concrete model demonstrates that evolution. For

example, a schematized cell in a biology textbook (an abstract/mental model)

does not demonstrate to us how mitochondria behave in cells, but a laboratory rat

(a concrete model) might very well be used to demonstrate this behaviour.

When considering concrete models, a sometimes useful distinction is that

between analogical models (Bailer-Jones 2002, 2009; Bailer-Jones and Bailer-

Jones 2002; Hesse 1963, 1967, 1974) and scale models (Black 1962; Sterrett

2006, 2021). Both analogical models and scale models are concrete, but an

analogical model is found (e.g., the solar system as a model of the atom) and

a scale model is constructed (e.g., the San Francisco Bay model). While infer-

ences from model to target are probably the most straightforward in the case of

scale models, this does not necessarily translate into reliability. It is very easy to

see what the San Francisco Bay model says about what will happen in the real

San Francisco Bay. However, the inference is only as reliable as the assumption

that one is a causal duplicate of the other. In fact, this is almost certainly not true

in this case, because fluids have scale-dependent features. The San Francisco

Bay model was mostly used for rhetorical purposes (more on the use of models

for rhetorical purposes in Section 3).
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1.2.3 Data Models

An example of a datamodel from our introductory list is a reconstructed record of

the Earth’s temperature in past geological periods that is developed using proxy

data. A data model is essentially a summary of information – a corrected,

normalized, systematized, and idealized summary – that scientists believe is

relevant to their reconstruction project and that they have collected from various

data sources. For example, scientists may start by summarizing variations in the

ratio of different isotopes of oxygen in deep ice cores and in the fossilized shells

of tiny animals (Parker 2018) and gradually incorporate this data model into

another to draw inferences about the Earth’s temperature in the past. Examples of

other familiar data models come from randomized controlled trials and observa-

tional studies in the health sciences: for example, when a new drug is developed,

researchers will routinely collect selected pieces of information from people who

are taking and those who are not taking the drug and summarize it in the form of

a data model (e.g., descriptive statistical models of clinical outcomes). Such data

models often become useful sources of clinical information that are perceived to

be relevant to and can be incorporated into other research projects, including

computational models (described in the next subsection). For example,

a randomized controlled trial may find that patients who receive a new asthma

drug have an annual rate of asthma exacerbation of 0.11 (95% CI 0.10, 0.13),

while patients who receive an existing asthma drug have an annual rate of

exacerbation of 0.12 (95% CI 0.10, 0.14). This summary of clinical information

may then be incorporated as a parameter in the sort of model that is used to

explore the cost-effectiveness of a new medication (e.g., FitzGerald et al. 2020).

Importantly, data models also play a central role in evaluating computational

models. That is, the results of computational models will often be directly

compared to data models as a means of assessing whether their results are

consistent with our existing knowledge about the world. Although our focus in

the later sections of this Element is not on data models themselves, they are a key

component of the models we focus on. In this context, the important thing to keep

in mind is that data and data models ‘are representations that are products of

a process of inquiry’ (Bokulich and Parker 2021, 31). Like the other models we

discuss, data models involve representational choices, and our objective is for

them to be adequate for purpose, not true or false.

1.2.4 Mathematical (including Computational) Models

At a high level, the purpose of mathematical models is to be able to fit together

mathematical relationships that we think describe the world and apply them to

a target system. Those mathematical relationships can be bits of theory, law,
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mathematical regularity, rules of behaviour, or the product of our own human

reasoning. We then use the mathematical model to reason about that target system

and help us better understand it. Think of a weather system, a hurricane, traffic

patterns, predator–prey relations in an ecosystem, or the spread of disease in

a human population. In a weather model, we fit together laws of thermodynamics

with laws that govern the dynamical flow of parcels of air in the atmosphere. In

a hurricanemodel, we treat the atmosphere as a fluid that we divide into parcels and

use basic primitive laws of motion as well as thermodynamic laws of gas dynamics

to calculate how those parcels of air will move around. In a traffic model, we give

each car (with its driver) a set of rules for when it will speed up, slow down, or stop

depending on what it sees in its environment. In a predator–prey model, we fit

together our best assumptions about the rate at which predators kill prey with the

rate at which predators die when they fail to capture prey. At the end of the day, the

goal is to integrate various salient bits of theory and other mathematical regularities

that we have some trust in so that they can be applied to draw out inferences about

the target system (the hurricane or the traffic jam) by reasoning with the model

(Morgan and Morrison 1999, chap. 1; Winsberg 2010).

Computational models can be understood as a subset of mathematical models.

A mathematical model becomes computational when the bits of math in the

model become too analytically intractable to draw the needed inferences using

pencil and paper. Often this is because the model involves differential equations

that can’t be solved analytically (Winsberg 2010). But it can also be because the

mathematical model is more about rules of behaviour than it is about solvable or

unsolvable equations.

Earlier we pointed out that abstract/mental models are quite different from

concrete models in that the latter mechanically generate their own behaviour

while the former require model users to effectivelymentally simulate the behaviour

of the target system.As a result, what behaviour abstract/mentalmodelswill predict

depends quite a bit onwhat themodel user brings to the task.Mathematical models,

interestingly, straddle this divide. If you have a basic pencil and paper model with

which you can make simple calculations, then the model just does what it does, not

unlike a concrete model. However, if the mathematical model needs to be turned

into a computational model, then how that gets implemented by its builder/user will

often have a significant effect on what behaviour it exhibits.

1.3 Mathematical and Computational Models: A Closer Look

In this subsection, we delve in greater detail into mathematical and computa-

tional models; Sections 2, 3, and 4 will focus on philosophical issues connected

specifically with these models. Our main goal in this subsection is to establish
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that mathematical models can vary along at least five overlapping continua –

idealization, articulation, credentials, sensitivity, and skill –and to explain how

we will use these terms in the remainder of this Element.

1.3.1 Idealization

It has become popular in recent philosophy of science to call certain kinds of

models ‘idealized’ models, and to divide so-called idealization into ‘Aristotelian

idealization’ (McMullin 1985) and ‘Galilean idealization’ (Cartwright 1989). On

this account, Aristotelian idealization consists of ‘stripping away’, in our imagin-

ation, all properties from a concrete object that we believe are not relevant to the

problem at hand. This allows us to focus on a limited set of properties in isolation.

An example is a classical mechanics model of the planetary system, which

describes the planets as objects only having shape and mass and disregards all

other properties. Galilean idealizations, on the other hand, are ones that involve

deliberate distortions. Physicists build models consisting of point masses moving

on frictionless planes, economists assume that agents are omniscient, biologists

study isolated populations, and so on. It was characteristic of Galileo’s approach

to science to use simplifications of this sort whenever a situation was too

complicated to tackle (Frigg and Hartmann 2012). In mathematical models,

Aristotelian and Galilean idealization usually work in harmony. Indeed, the two

generally go hand in hand for good reason: so-called Galilean idealization usually

only works insofar as some degree of ‘Aristotelian’ reasoning is in play. If we do

too much Galilean idealization without ensuring that this idealization doesn’t

affect what is ‘relevant’ to us, we will get into trouble. Making the two kinds of

idealization work in harmony is part of the way we ensure that our models are

adequate for purpose. The takeaway point is that mathematical models (including

computational models) can vary in terms of how idealized they are, both in terms

of the degree to which they simplify reality (i.e., exclude elements of the target

system from the representation) and distort it (i.e., deliberately change elements

of the target system in the representation).

1.3.2 Articulation

Earlier, we drew attention to the fact thatmathematical models seem to come in two

varieties. Sometimes, a mathematical model invites us to use simple paper and

pencil methods to draw out inferences about theworld. Other times, amathematical

model needs to be augmented with additional reasoning, including reasoning about

which computational methods can and will be used to implement it – and, as we

said, how a computational model gets implemented will often have a significant

effect on what behaviour it exhibits. Consider the case of a computational model

13Scientific Models and Decision-Making
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designed to simulate fluid flows that contain significant shock discontinuities. The

existence of shocks makes it difficult to turn the differential equations of fluid

dynamics into a step-by-step algorithm that a computer can calculate without errors

compounding and blowing up. A host of different strategies, including the so-called

piecewise parabolic method discussed in Winsberg (2010, 46), is an extreme case

of a mathematical model needing substantial augmentation in order to be imple-

mented successfully, and different implementations could lead to substantially

different results. A useful piece of vocabulary to help understand the degree to

which amathematicalmodel needs to be supplementedwith additional reasoning in

order to successfully calculate with it is articulation. We can say that the simplest

paper and pencil model will not require any articulation at all, while any computa-

tional model will require at least some degree of articulation; the more complex the

computational model, the more articulation it will require. A model comprising

differential equations of fluid dynamics that we hope will enable us to calculate the

behaviour of shocks will require enormous articulation. Only a model that requires

no articulation will just ‘do what it does’, that is, generate its own behaviour like

a concrete model (see Section 2.4). Note that it may be tempting to say that once we

have finished developing a computational model, the model just ‘does what it

does’. However, this is only really true if we zero in on a specific version of the

model, written with a specific set of instructions, run on a specific piece of

hardware, and compiled by a specific compiler. Otherwise, the ‘same’ computa-

tional model (if it is complex enough) can very easily exhibit substantially different

behaviour. It is therefore very useful to understandmathematical and computational

models with reference to the degree of articulation they require.

1.3.3 Sensitivity

In many contexts, a model’s sensitivity refers to how sensitive its output is to

choices of parameter values. More generally, it could refer to how sensitive the

model’s output is to methodological choices of any kind. It is important to

distinguish a model’s sensitivity to choices of parameter values and the sensi-

tivity that the system it models exhibits to the initial value of its variables. Here

we are concerned with the former.

What is the difference between a variable and a parameter? A parameter

value is the value of some measurable quantity associated with the system that

stays fixed throughout the life of the system over the timescale of the model,

while a variable, obviously, varies. A variable for a model is thus both an input

for a model (the value the variable takes at an initial time) and an output (the

value the variable takes at all subsequent times – including, of course, at the

final time of a model run). A parameter is simply an input. So, for example, in an
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epidemiological model, it might be that the reproductive rate of the virus is

a parameter, and the value for the number of people infected at any one time is

a variable.

When building mathematical models, there can be varying levels of uncer-

tainty about what to represent in the model and how to represent it. In some

cases, there is a wealth of well-established background knowledge about the

target system, which functions to inform and even constrain representational

decisions. For example, when modellers build computational models of the

motions of the planets in the solar system, modellers’ representational decisions

are constrained by the well-established laws of celestial mechanics. However, in

other cases, background knowledge about a target system is lacking: there is far

more uncertainty around what should be represented in the model and how. In

these cases, we say that representational decisions are unconstrained. When

a model is built under these conditions, it is important for modellers to explore

whether and how model results change when they make different representa-

tional decisions. In other words, it is important to explore how sensitive model

results are to changes in representational decisions. If the value of X that

a model calculates is highly sensitive to representational decisions, and those

decisions are not highly constrained, we have reasons not to trust the model to

give us precise predictions of the value of X.

1.3.4 Credentials

Roughly speaking, a model’s credentials correspond to how much trust we

should put in it: the degree to which we should expect the model not to let us

down, but rather to prove to be a successful way of understanding how the world

works. In the case of mathematical models, model credentials are intrinsically

linked to the ancestries of whatever bits of math have gone into making them.

After all, bits of math can come from almost any source we use to gain

knowledge about the world: they can come from theory, from patterns we see

in data that we think are robust, or just basic assumptions we think are plausible

(for whatever reason). If the bits of math that go into a model come from theory,

this will help to give the model credentials (as we described in Section 1.1, we

reserve the term ‘theory’ for a well-credentialled way of understanding the

world, one that enjoys not only wide recognition but a history of success). If the

bits of math that go into making a mathematical model come, not from theory

but from models of data, then those bits of math will only be as good and as

widely applicable as those models of data – the model’s credentials are linked to

the data models. And if those bits of math come not from theory, not from data

models, but from human intuitions of what is plausible, then those bits of math

15Scientific Models and Decision-Making

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
02

93
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009029346


will only be as reliable as human intuitions are. A model whose credentials are

intrinsically linked to human intuitions is one we should put less trust in.

To give an example, imagine we are building a climate model and we need

a bit of math that calculates how much infrared radiation the Earth radiates

back as it absorbs ultraviolet radiation from the Sun. To find one, we can reach

for the Stefan–Boltzmann law, which is a direct application of Planck’s law,

which is ultimately grounded in the well-established theory of quantum

mechanics. Putting a mathematical relationship like that into our climate

model is unlikely to let us down. On the other hand, imagine we need a bit

of math that calculates howmany clouds and of what kind will form in various

parcels of the atmosphere. Unfortunately, it is unlikely that we will be able use

basic physics to calculate this: in general, climate models are too coarse-

grained to ‘resolve’ cloud formation (Winsberg 2010, 2018). Instead, we will

need to come up with a subgrid model of cloud formation. The goal of

a subgrid model is to dictate a function that will tell us how much cloud

structure there is in each grid cell of the simulation as a function of the

temperature, humidity, pressure, and other variables in the grid cell. Because

subgrid models often require a number of parameter values to specify them,

they are often called parameterizations. These subgrid models have complex

ancestries: they are derived from laboratory experiment, field observation,

and, more recently, from the output of machine learning algorithms. None of

these sources will have the same credentials as our piece of math that calcu-

lates infrared radiation. Furthermore, it is not uncommon in climate models

for the parameterization of cloud formation to be deliberately wrong – so as to

offset other errors that climate models are known to have (Mauritsen et al.

2012). This highlights an important fact about representational decisions: the

best representational decision is the one that is most adequate for purpose, not

necessarily the one that is true to the world. The ‘best’ parameterization of

cloud formation in a climate model might not be the one that most accurately

depicts cloud formation, but the one that, in conjunction with all the other

representational decisions, makes the model most adequate for purpose (that

is, perhaps, the one that tells us the truest things about what the climate will be

like at the end of the century, if that is our model’s purpose).

To the extent that model constructions depend on human judgement and

ability – rather than, for example, being determined by theory – our appraisal

of the trustworthiness of a model might depend, at least in part, on the people or

groups of people who built the model. Different researchers and groups of

researchers have past track records of success, institutional credentials, and so

on, and there is no reason that these elements should not affect the degree of

trust we can rationally put in their work.
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1.3.5 Skill

Mathematical models can help us to reason about the world in myriad ways and

can be put to almost infinitely many purposes (as we said, nothing technically

stops us from using a model as an art installation). However, models do vary in

their degree of adequacy for different purposes. One way of understanding

model adequacy for purpose is in terms of model skill (Winsberg 2018, chap.

10). Skill refers to a model’s adequacy for specific types of epistemic purposes.

Three examples of epistemic purposes for which mathematical models may be

more or less skilled are the following:

(1) Prediction:mathematical models can help us to know what a target system

will do in the real world at some particular point in time.

(2) Projection: mathematical models can help us to estimate what a target

system would likely do under different possible counterfactual scenarios,

especially under various possible human interventions.

(3) Causal inference: mathematical models can help us to learn what causes

what in a target system. If a model of the climate without increased carbon

concentration does not exhibit the warming exhibited by both the real world

and models with increased carbon concentration, then we might plausibly

infer that the carbon caused the warming (especially if that warming

exhibits the same ‘fingerprints’ in both cases).

As we will see in the next section, sometimes model skill can be measured using

specific types of empirical tests. However, at other times no such empirical tests

are available, in which case model users must judge a model’s skill using other

means, often taking into consideration its levels of idealization, articulation, and

credentials, among other things. In any case, model skill should be understood on

a continuum: that is, when assessing a model for the purpose of prediction,

projection, or causal inference, we speak of it being more or less skilled.

1.4 Conclusion

In this introductory section, we canvassed a variety of different representational

entities in science that are a regularly referred to as ‘models’. We noted that this

was an extremely heterogeneous collection of entities, but that they could be

loosely grouped into four categories: abstract/mental models, concrete models,

data models, and mathematical/computational models. We also noted that one

thing these entities have in common is that while they are all representational

(that is, they all depict the world as being some way or another), few of them are

truth apt – the sorts of things we say are ‘true’. Rather, they are adequate (or not)

for some purpose or another – though often the purpose for which we hope they
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are adequate includes the purpose of inferring true claims about the world. The

models themselves are not truth apt, but often the inferences we draw from them

are, and adequacy for purpose often means ‘this model is adequate for inferring

claims about the world that are likely (enough) to be true to a high (enough)

degree of accuracy in a broad (enough) domain of application’. (There’ll be

much more on this in the next section.)

We next decided to zero in on mathematical and computational models. We

saw that models like these are especially useful for the tasks of prediction,

projection, and causal inference, and that this, in turn, makes them especially

useful and important in guiding decision-making. When this is the case, it’s

especially helpful to talk about the degree of skill that models of this kind have

for carrying out these tasks. Skill, we said, is adequacy for a specific kind of

quantitative purpose, and evaluating the skill of a model for various purposes is

complex and motley – but it often involves looking at the credentials of the

model, and the degree to which it is idealized, articulated, and sensitive to the

representational choices that we made in creating it.

2 Adequacy for Purpose

2.1 Introduction

In Section 1, we emphasized that our objective is not usually that a model be true,

but rather adequate for purpose. This naturally leads to the question: ‘what does it

mean for a model to be adequate for purpose?’. This simple question has a fairly

straightforward answer: the model users simply need to trust that they can use the

model for whatever tasks they intend to use it for. However, this simple question

invites far trickier ones. For example, ‘What are all the purposes to which models

can be put?’. In fact, models can have myriad purposes: they can be used to make

predictions or projections of various kinds, to draw causal inferences, to explain

behaviour, to convey things pedagogically, or for something else entirely.

Furthermore, when we specify a model’s purpose, we usually do so relative to

a particular standard of accuracy. In other words, we may count a model as

adequate for purpose if it gets things right a certain amount of the time, but no

less: our model’s purpose, then, is cemented to our standard of accuracy. We also

tend to specify a model’s purpose relative to a particular domain. We may trust

a model to predict the weather in one geographical region, but not in another, for

example. Because of this, a model’s purpose may end up being expressed in

a rather complicated sort of compound statement: wemay intend amodel to assist

reasoning in xway, to y degree of accuracy, and across z domain of targets. In light

of this complexity, articulating all the purposes to which models can be put is

a lofty project (and we will not attempt it here). The best we can do is provide
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illustrative examples, which can help us gain a good understanding of a given

model’s purpose in context.

An even trickier epistemological question is: ‘how do we decide when

a model is adequate for a specified purpose?’. This question defies a general

answer – and we should be very clear that the question of what ‘adequacy for

purpose’ means is a different question from how we assess it. In fact, assessing

a model’s adequacy for purpose requires a good understanding of the model’s

purpose in context, as well as intimate knowledge of several model attributes,

including its levels of idealization, articulation, credentials, and sensitivity,

among other things. For example, if using a model requires that it be seeded

with initial conditions that reflect the present (or past) state of the world, then

our assessment might also depend on the confidence we have in the data models

that we treat as initial conditions.

In this section, we explore the topic of model adequacy for purpose by taking

a close look at three different models that are used in the Earth and atmospheric

sciences: a zero-dimensional energy balance model, a weather forecasting

model, and a global circulation model of the atmosphere. As we will see, each

of these models is used for a different purpose in a different context, and each

has its own special combination of attributes. The first of these models, in

particular, is used for what we call an idealized purpose, that is, a purpose in

the context of Aristotelian idealization. The second and third models, on the

other hand, are used for non-idealized purposes, which are the same types of

epistemic purposes that we associate with model skill (Section 1.3.5). The

measurement of model skill (or ‘adequacy for a non-idealized purpose’) raises

special epistemological issues in different contexts: in some cases, model skill

can be measured operationally; in others, it cannot. In light of these complex-

ities, our discussion of assessing adequacy for purpose proceeds differently for

each of the models we explore in this section.

2.2 A Zero-Dimensional Energy Balance Model

One very basic epistemic purpose to which models can be put is explanation:

models can help us to understand why a target system behaves in the way it

does. Consider a very interesting phenomenon we might like to explain: why

does Earth have an equilibrium temperature, rather than simply heating up

indefinitely and burning up under the Sun? To help explain this, we can use

a simple mathematical model called a zero-dimensional energy balance model

(ZDEBM) (Winsberg 2018). This simple model is described as zero-

dimensional because it does not allow for any variation in time, nor any

variation in space. It simply treats the Earth as the surface of a sphere, as it
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would look to you if you were looking at it from the surface of the Sun, which is

really just a disc. The term energy balance in the model’s name hints at the

useful explanation it provides, which is that Earth reaches an equilibrium

temperature thanks to a balance between its incoming and outgoing energy.

As it allows no variation in time and no variation in space, we can already tell

that a ZDEBM is a highly idealized model. The model strips away properties

that are not relevant to the problem at hand, which is to understand why planets

achieve equilibrium temperatures. It also involves deliberate distortions, as we

will see. However, the model is simple enough that we can reason with it using

pencil and paper: it does not require articulation.

The bits of theory and mathematical relationships that fit together in the

model come from solar physics, simple optics, and quantum mechanics, which

are all well-credentialled sources. Here is how they work together in the model:

• Solar physics tells us how much incoming radiation there is.

• Simple optics tells us that some of that radiation gets reflected into space. We

call the rate at which the Earth reflects solar radiation its ‘albedo’.

• The Stefan–Boltzmann law of black body radiation tells us howmuch radiation

gets re-radiated back into space. The hotter the disc gets, the more radiation

gets sent back.

If we assume that all of these must balance out, we can calculate a target

temperature in the following way.

The only sources of incoming and outgoing energy are radiation, which we

can measure in watts per square metre (Wm−2). So we have incoming radiative

energy, Ein, and outgoing radiative energy, Eout. And since we want an equilib-

rium model, we set

Ein ¼ Eout: ð1Þ

We call the energy per square metre that the Sun delivers to the Earth the

‘Incident solar radiation’, S0.

Since the Earth presents a disc-shaped face to the Sun, it has area πR2, so it

receives πR2S0 in incoming radiation.

We assume that some fraction of that (which we call the albedo) is reflected

back into space and that the remainder (1-α) (the ‘co-albedo’) is absorbed. We

now have a formula for Ein:

Ein ¼ 1� αð ÞπR2S0 ð2Þ

To model outgoing energy, the model treats the Earth as a simple, spherical

black body that obeys the Stefan–Boltzmann law, which says that a black body
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will radiate away heat in proportion to the fourth power of the temperature (T, in

degrees Kelvin), with the constant of proportionality, σ, called the Stefan–

Boltzmann constant. This gives us an equation for Eout:

Eout ¼ 4πR2σT ð3Þ

(4πR2 being the surface area of a sphere)

Combining equations 1, 2, and 3, and solving for T we get:

T ¼ 1� αð ÞS0
4σ

� �1
4

ð4Þ

Since S0 ¼ 1; 368Wm�2 and σ ¼ 5:67� 10�8Wm�2K�4

we calculate that T ¼ 254:8 K or −18:38C:
We can call this the Earth’s effective temperature. Note that this is not equal to

the Earth’s actual temperature, which ismore like 15°C: if our goal was tofind the

Earth’s actual temperature, rather than its effective temperature, wewould need to

alter the model to make it account for the Earth’s emissivity.2 However, the goal

of a ZDEBM is not to find Earth’s actual temperature. Rather, the purpose of the

model is to explain why planets have an equilibrium temperature and identify

the dominant causal process. The model gives us a very good explanation of this

phenomenon: the Earth’s ingoing and outgoing energy balance out.

The astute reader might be tempted to interject the following: ‘I get that

a ZDEBM is being used for explanation rather than prediction, but I still don’t

understand how a model that gets Earth’s equilibrium temperature so wrong

could be adequate for any purpose that has to do with the Earth’s temperature.’

The answer here has to do with Aristotelian idealization. Recall that Aristotelian

idealization is when we strip away, in our imagination, factors that we deem

unimportant to the system of interest. In such cases, it is helpful, following

Martin Jones (2005) and Peter Godfrey-Smith (2009), to think of models that

engage in Aristotelian idealization as telling us literally true things about

abstract systems. So, on this conception, the ZDEBM is a perfectly accurate

model of a perfectly spherical black body immersed for an arbitrarily long time

in a uniform field of high frequency radiation. Why should we care about that if

we are thinking about the Earth, which is, after all, not a perfectly simple black

body, and so on? The reason is that we think that in understanding how such

2 The simplest way we could do this would be to add a simple ‘emissivity coefficient’ to the model.
The emissivity coefficient (call it ε) is defined as the proportion of the energy radiated out by a body
relative to what a black body would radiate. There are various ways of measuring the emissivity of
the Earth, and they generally settle, for the present time, at around � ¼ 0:62. There are also more
complex ways for climate models to account for Earth’s emissivity, but they resemble the methods
discussed in Section 4 much more than they do the simple model discussed in this section.
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a simple, idealized, imaginary system behaves, we get insight both into why the

Earth has an equilibrium temperature and regarding one of the most fundamen-

tal causal processes involved in determining what it is. In many cases, radical

idealization of the kind we see in a ZDEBM is a red flag that a model is unlikely

to be adequate for purpose. However, in other cases, we understand the purpose

of the model in terms of Aristotelian idealization, and in terms of getting at only

one of many possible causal processes that are behind a phenomenon wewant to

understand. In those cases, it is easy to see why radical idealization is not an

impediment to adequacy for purpose.

2.3 Weather Forecasting Model

The purpose of weather forecasting models is to make spatially and temporally

fine-grained predictions about states of the atmosphere over a short time horizon –

in other words, to tell us what weather conditions will actually occur at

a particular time and place in the near future. Compared to the ZDEBMdescribed

in Section 2.2, weather forecasting models are far less idealized. In fact, these

models are based on a comparatively high degree of fidelity to our understanding

of causal relationships in weather systems.

Weather models incorporate both initial conditions and the so-called primi-

tive equations. The primitive equations are a set of non-linear partial differential

equations grounded in the well-credentialled theories of fluid mechanics and

thermodynamics. Initial conditions are established through a data-driven pro-

cess: direct measurements of a large number of observable variables that

describe the atmosphere and its surroundings in a specified region, such as

temperature, precipitation, humidity, atmospheric pressure, wind, and cloud

cover. Along with direct measurements of these variables at weather stations,

data on initial conditions come from satellite data, aircraft observations, wea-

ther balloons, and stream gauges. This measurement process results in a wealth

of data, which are often subjected to various smoothing, interpolation, and error

correction methods that turn them into standardized datasets (i.e., models of

data). These standardized datasets are treated as initial conditions.3

The primitive equations are only solvable analytically (i.e., with paper and

pencil) in very simple and unrealistic scenarios, which means they have to be

turned into equations that can be calculated time-step by time-step on a computer if

we actually want to predict the weather. This means weather forecasting models

require articulation. Articulation of the equations of this model consists in trans-

forming them into a form that is discrete in both space and time. (In aweathermodel,

the spatial grid size is roughly 10 kilometres and the time-step is a few minutes.)

3 For more detail, see the National Weather Service website, www.weather.gov/about/models.
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The discretized version of the equations is supplemented with parameteriza-

tions that try to estimate what is happening inside these relatively large grid

cells and is therefore lost to the primitive equations. Once the computer model

completes these calculations for one time-step, themodel can create something

that looks just like the initial dataset. This new ‘dataset’ is fed back into the

model, which then runs for another time-step. The model can be used to

visualize these data to see what the atmosphere will look like over time. We

can also combine (say, by averaging) the forecasts of ensembles of models that

rely on different articulations or on different datasets by way of initial conditions.

Often the ensemble averages perform better than any single model.

An epistemologically significant thing about weather models is that we can

measure their forecasting skill (i.e., their adequacy for prediction) fairly object-

ively with various operationalized metrics. If we use a weather model to make

a large number of forecasts and then compare those to what actually happens,

we can define measures of forecasting skill like mean absolute error (MAE),

bias, and Briar score. These measures tell us, respectively, things like how far

the predictions are from what we measured, whether they are systematically

wrong in one direction or another, and whether the probabilities they generate

match the observed frequencies in the world.4 This enables us to see how much

progress is being made in improving a weather model’s forecasting skill over

time. The Briar score is especially important because it lends a natural under-

standing to the probabilities that weather forecasts give us, since they are

evaluated with respect to observed frequencies.

In summary, weather models wear their adequacy for purpose on their

sleeves: because they are used to predict phenomena that we soon come to

observe in great detail, we can measure their skill in a relatively straightforward

manner. On the flipside, we can see very easily what weather models are not

skilled at: as everyone knows, it is impossible to predict whether it will rain on

any particular day six months from now. As we will see in Section 2.4, model

skill cannot always be measured so straightforwardly as it can in the context of

weather models. This raises special epistemological issues, notably in the area

of climate science.

2.4 Climate Models

The dynamics of the atmosphere are chaotic. This means that small errors in

initial conditions grow very fast when we try to predict the future state of the

atmosphere, which explains why predicting the weather more than about 10 days

4 For more detail, see the Meteorological Development Laboratory website, https://vlab.noaa.gov/
web/mdl/ndfd-verification-score-definitions.
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into the future is nearly impossible for practical purposes. In contrast to ‘weather’,

the very concept of climate is tied to a long time horizon: when we speak of

a region’s climate, we are referring to big-picture trends in the average values of

weather variables over periods of at least 30 years. At a high level, then, the

purpose of climate models is to produce coarse-grained summaries of weather

variables, often in the form of global or continental averages or degrees of

variation, and to use this knowledge to help make projections of future climate

conditions. To do this, climate models generally do not take into account present

weather conditions. (After all, these contribute only to the climate system’s

internal variability, which is not the target of interest in climate modelling.

Worse still, the information contained in a weather dataset is mostly lost after

about 10 days of forecasting.) What climate models do take into account are the

possible effects of various external forcings: things like ozone depletion, CO2

emissions, other greenhouse gases, deforestation, and so on. These are forces that

are external to the climate system, but which could push it beyond its normal

range of variation – and therefore affect projections of future climate conditions.

Of course, there is much uncertainty around these forcings themselves: future

CO2 emissions, for example, depend on numerous unpredictable factors, includ-

ing (but not limited to) future energy policies and practices. As a result, climate

models often consider a range of plausible future scenarios for external forcings,

producing projections that correspond to these counterfactual scenarios.

Climate models of the most advanced kind include not only representations

of the Earth’s atmosphere, but of its hydrosphere (including rivers and seas),

cryosphere (ice caps and sheets), land surfaces, and biosphere, as well as the

many complex interactions between these systems. Our purposes for such

models are almost as complex as the models themselves: we use them to

estimate climate sensitivity; to attribute human activities as the cause of

observed warming; to project regional changes to the climate under various

forcing scenarios; to project sea-level rise; to find possible ‘tipping points’ in the

climate (a critical threshold, the crossing of which leads to dramatic and

irreversible changes), and more. While these are some of the many skills we

hope our climate models will have, we are not quite done spelling out the

purposes of climate models. In practice, we have to specify model purposes

relative to the degree of accuracy we expect, the degree of confidence we want

to have in an answer before we use it, and so on. In climate modelling generally,

we face certain obstacles that we must mitigate by lowering our standards of

adequacy: the chaotic nature of the atmosphere and the long timescales that are

of interest to us, for example, mean we must limit what we expect from our

models. At best, we hope that climate models will give us averages on time-

scales of two to three decades. To mitigate other sources of error, we temper our
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expectations regarding the degree of accuracy we expect from climate models,

asking only for relatively wide uncertainty bands, rather than point forecasts.

An example of an advanced climate model is the Geophysical Fluid

Dynamics Laboratory Earth System Model (GFL ESM 4.1). This complex

model actually consists of several modules, each corresponding to a different

aspect of the climate system. In order to be computationally manageable, all of

these modules will necessarily have a much lower degree of fidelity to physical

theory than weather prediction models. To show what we mean by this, we can

look at just one of the modules in the GFL ESM 4.1, the AM 4.0. The AM 4.0 is

an example of a general circulation model of the atmosphere (AGCM), which

Winsberg (2018, 44) describes as a ‘flagship’ climate model. It models the

Earth’s atmosphere, ‘at approximately 1° of resolution with 49 levels of com-

prehensive, interactive chemistry and aerosols (including aerosol indirect

effect) from precursor emissions’ (Alvich n.d.a.). By examining how an

AGCM specifically is developed, we can get a good idea of how climate models

are developed more generally, including the role of equations, discretization,

parameterization, and tuning.5

In principle, the core behaviour of the Earth’s atmosphere can be modelled

with pencil and paper and three simple equations: (1) Newton’s laws of motion

as they apply to parcels of fluid; (2) the conservation of mass; and (3) a simple

thermodynamic equation that allows us to calculate the heating effect on each

parcel of air via a parameterized value of the radiation from the Sun.

Unfortunately, this results in a coupled set of non-linear partial differential

equations for which we have no closed-form solution. However, if we want

a numerical approximation of how the atmosphere should behave, we can

develop a computer simulation model like an AGCM.

In an AGCM, we transform continuous differential equations into discrete

difference equations that approximate them, then we use a computer to solve

those equations. At heart, an AGCM is a more coarse-grained version of

a weather model. It is more coarse-grained because it has to be run for much

longer times. And, of course, because it is more coarse-grained, though its

primitive equations might be very close cousins of the weather model’s, the

degree of articulation it requires is dramatically greater.

Ultimately, an AGCM consists of a three-dimensional grid of cells, with each

cell exchanging radiation, heat, moisture, momentum, and mass with its neigh-

bours (Stone and Knutti 2010). In an AGCM, anything that happens below the

level of the chosen grid size (i.e., within a grid box) cannot be calculated using

the fundamental equations that have been discretized at that grid size. Instead,

5 For more detail, see (Alvich n.d.b.)
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any interactions in the system that occur within a grid box need to be treated

with a subgrid parameterization. Parameterization refers to the method of using

simple mathematical descriptions, that is, equations with parameters, to replace

processes that are too small-scale or complex to be physically represented in the

discretized model. In climate modelling, parameters are often referred to as

‘non-physical’, because there are no corresponding values in nature. In devel-

oping an AGCM, subgrid parameterizations are chosen and refined based on

individual performance; the best value for a parameter in an AGCM is generally

an artefact of the computation scheme. Despite being grounded in physical

theory, the more a computational model relies on parameterization, the less

fidelity to theory the model will exhibit.

The last step in developing an AGCM is tuning (Mauritsen et al. 2012). As we

use it here, this term refers to the process of adjusting a few key parameter

values in order to ensure that the model’s overall behaviour is acceptable. For

example, recall from our discussion of the ZDEBM (Section 2.2) that global

warming/cooling will occur whenever there is an imbalance between the

amount of solar radiation coming into Earth and the amount of emitted radiation

leaving at the top of the atmosphere (TOA). In general, a priority in climate

model development is to ensure that the model produces the expected results for

TOA energy balance. Model tuning can also be used to ensure that other

important model results match expectations (e.g., the general features of atmos-

pheric circulation, observed global mean temperature, tropical variability, and

sea-ice seasonality). Understanding how a climate model is tuned is key to

understanding how we assess its adequacy for purpose.

With that preamble in mind, what do we look to when we evaluate whether

climate models are adequate for our purposes? As with a weather model, we can

evaluate a climate model on various metrics of observable skill, such as bias (see

Section 2.3). But unlike a weather model, measured skill cannot be the be-all and

end-all of climatemodel appraisal, for a number of reasons. First of all, we hope to

use our climate models to forecast how the climate will evolve under conditions

we have never seen before. The fact that a climate model exhibits skill under the

conditions we are now experiencing is no guarantee that it will do so under future

forcings. Even for present conditions, assessing the skill of a climatemodel ismore

difficult than assessing the skill of a weather model because we don’t have nearly

as much relevant data. We can evaluate the skill of a weather model nearly

every day, but we can only evaluate a climate model roughly a decade at a time,

andwe only have a handful of decades of good data to compare against –with even

fewer than that having occurred after the first climate models came into service.

Furthermore, insofar as we want to get probabilities out of a climate model,

we can’t possibly measure anything like a Briar score because we don’t have
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multiple trials of the same set-ups. A weather forecaster makes predictions

under similar situations multiple times, so if it predicts a 70% chance of rain

under those conditions, we can check to see whether rain occurs 70% of the

time. But nothing comparable happens in climate, so the probabilities we infer

from climate models are more difficult to interpret and understand.

Perhaps most importantly, we want to use climate models to tell us what will

happen under various different counterfactual scenarios; for example, those

defined by possible emissions pathways. This is the only way we can use

a climate model to help us decide if the expense of pursuing a particular

scenario – for example, an emissions pathway associated with a more demand-

ing policy change mandating less fossil fuel use – is worth the cost. And to be

effective at doing this, we have to be able to trust a climate model to tell us not

only how the world will actually behave, but also how it would have behaved

under emissions pathways that never came to be.

As a result, much more than in the case of weather models, we have to look at

the internal qualities of a climate model very carefully in order to appraise

whether it is adequate for our purposes. What qualities do we look at? There’s

a long list, beginning with the model’s fidelity to well-established theory and the

mathematical arguments for the trustworthiness of steps we take in articulating

our basic model into its computational form. We also perform sensitivity ana-

lyses: we can check to see what degree of sensitivity our models display to

choices of parameters about which we have substantial uncertainty. If a climate

model needs a mathematical function to estimate a particular subgrid parameter

(e.g., cloud formation), and we are uncertain what the best form of that function

is, we can explore how sensitive the model is to different values that we might

pick. If the model is highly sensitive to the value we choose, and we think that

several different values are equally reasonable, we can temper our expectations

concerning the accuracy of our projections by widening our confidence intervals.

Another strategy we use is ensemble studies: different models not only have

different parameter values, but they have different model structures. We can try

to do for model structure the same things we do for parameter values, though the

situation here gets a bit more complex. The basic idea is that climate research

centres around the world produce a variety of different models. Some of these

models differ from each other in ways that are deeper than simply having

different values for parameters plugged in. We describe such models as having

different ‘model structures’. The idea is that by looking at which results come

out the same in all members of the ensemble we might be able to learn

something about whether we can trust those results. This is all far from

straightforward, however, and a large literature exists on how to manage this

source of knowledge (Abramowitz et al. 2019). There are other more bespoke
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techniques that climate scientists turn to, including trying to achieve process

understanding and employing emergent constraints (see Knutti (2018) and

Winsberg (2018, chap. 12) for more details).

And of course, we are free to declare that the models are not adequate for

some of the purposes we hoped they would be. Indeed, there is some contro-

versy about how adequate climate models are for forecasting the melting of land

ice, projecting regional conditions like precipitation levels, and foreseeing the

likely impacts on major climatic structures, such as the thermohaline circulation

and the El Niño–Southern Oscillation cycle. Alternatively, we can declare that

our models are adequate for certain purposes only in conjunction with other

lines of evidence. For example, many climate scientists would say that climate

models are adequate for the purpose of informing, along with other sources of

evidence, an estimate of equilibrium climate sensitivity (ECS), the amount we

expect the world to warm under a doubling of CO2 in an uncertainty band that is

about 3°C wide. But some would hesitate to claim that, on their own, climate

models would be adequate for that purpose.

2.5 Conclusion

In this section, we have looked closely at three different kinds of models and used

them to illustrate three very different ways in which we can assess a model’s

adequacy for purpose. While this is not meant to be a complete and exhaustive

taxonomy of such assessment methods, it does illustrate how varied these methods

are. In the first case, adequacy for purpose is argued for by limiting the model’s

intended purpose to giving extremely idealized explanations of phenomena. In

the second, it is argued for by repeatedly testing the predictions of the model,

scoring it on a variety of metrics of skill, and then carefully circumscribing our

attributions of skill for the model to the kinds of predictions or forecasts on which

the model scores well. In the last case, the situation is entirely motley and nearly

impossible to fully analyse. When dealing with a complex real-world projection

model like a climate model – a highly idealized and articulated model that is

intended to make counterfactual claims about the future – determining adequacy

for purpose requires an examination of awide array of features of themodel. It also

requires being quite careful and circumscribed about what purposes we take the

model to be adequate for.

3 Inadequacy for Purpose

3.1 Introduction

On 1May 2020, evolutionary biologist andmodelling expert Carl Bergstom and

biostatistician Natalie Dean published an op-ed piece in the New York Times
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(Bergstrom and Dean 2020). Written at the start of the Covid-19 pandemic, its

title contained a warning: ‘What the Proponents of “Natural” Herd Immunity

Don’t Say: Try to Reach It without a Vaccine, and Millions will Die.’ In the

article, Bergstrom and Dean calculated a value called the ‘herd immunity

threshold’, which, as they explained, is a concept typically described in the

context of a vaccine. ‘When enough people are vaccinated’, they wrote,

a pathogen cannot spread easily through the population. If you are infectedwith
measles but everyone you interact with has been vaccinated, transmission will
be stopped in its tracks. Vaccination levels must stay above a threshold that
depends upon the transmissibility of the pathogen. We don’t yet know exactly
how transmissible the coronavirus is, but say each person infects an average of
three others. That would mean nearly two-thirds of the population would need
to be immune to confer herd immunity. (Bergstrom and Dean 2020)

In the absence of a vaccine (as was the case in May 2020), Bergstrom and Dean

stressed, immunity to the virus would only be achieved through infection and this

would lead to a lot of deaths. More deaths, even, than we might think. After all,

new infections would continue for some time even after the herd immunity

threshold was reached, an epidemiological phenomenon called overshoot.

In this section, we examine Bergstrom and Dean’s op-ed, alongside related

arguments on social media, in order to build on our discussion of model

adequacy for purpose and introduce the topic of values in modelling. As we

will show, although Bergstrom and Dean’s op-ed explains epidemiological

phenomena that a simple model can help us understand, it also draws conclu-

sions that go far beyond what that model can tell us. This case study raises

a broader question: what is the significance of building and using models for

purposes for which they are not adequate?

3.2 SIR Models: From Overshoot to Lockdown?

In their op-ed, Bergstrom and Dean (2020) focus first on estimating the herd

immunity threshold in the context of Covid-19 and explaining the concept of

overshoot. The origin of these concepts is a simple mathematical model called

an ‘SIR’ model (‘Susceptible, Infected, Removed’) (Britton 2010; Handel,

Longini, and Antia 2007). This highly idealized model represents the dynamics

between people in the context of an infectious disease, with each of three groups

represented in its own ‘compartment’:

• Susceptible: The number of people who have not yet been infected with

a pathogen and are therefore vulnerable to infection.

• Infectious: The number of people who are infected and capable of infecting

others.
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• Removed: The number of people who are no longer capable of infecting

others or being infected (e.g., because they have recovered from the disease

or died). This compartment may also be called ‘recovered’ or ‘resistant’.

In a SIRmodel, when a susceptible individual and an infectious individual come

into ‘infectious contact’, the susceptible person becomes infected and moves

from the S compartment to the I compartment (or, in some models, does so with

some probability). Over time, infectious individuals also move from the

‘Infectious’ to the ‘Removed’ compartment. There are a number of different

ways of giving this kind of model its dynamics – that is, of providing the

mathematics of how the system will evolve over time such that people will

gradually move from the S to the I to the R compartment. The most standard

form of the dynamics looks like this:

The transition rate between S and I is given by:

dS=dt ¼ �βSI ð1Þ

where

β is the average rate of potentially infecting contacts a single person has per

unit time multiplied by the probability that actual infection would occur

between an infected person and a susceptible person.

And the transition rate between I and R is given by:

dR=dt ¼ �γI ð2Þ

where

γ is the fraction of infected people who recover per unit time.

In a SIR model, we begin by assuming that mixing in human populations is

homogeneous: that is, every individual potentially encounters every other

individual and, ceteris paribus, every infected individual will infect a given

number of random new people. This number is parameterized with the param-

eter R0. In other words, at the very beginning of the epidemic (time 0) we expect

every infected individual to infect R0 many new individuals (e.g., R0 ¼ 5).

(That is, when Bergstrom and Dean say, ‘We don’t yet know exactly how

transmissible the coronavirus is, but say each person infects an average of

three others’, they are imagining an R0 of 3.)

As time goes on, a SIR model shows, the number of infected individuals will

increase and the number of susceptible individuals will decrease – meaning

each infected individual has fewer potential people to infect. We can call the

proportion of the population that is susceptible, at time t, ‘St’ and the ‘effective

reproduction number’, at time t, ‘Rt’, which is equal to R0*St. In simple terms,

if, at the beginning of an epidemic, we expected each infected person to infect 5
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people (i.e., R0¼ 5), but now only 80% or 0.8 of the population is susceptible,

then we will expect each infected person to infect only 5 � 0:8 ¼ 4 new people.

Once Rt falls below one, each new infected person will infect less than one

new person in turn –at that point, the epidemic will wane. In fact, Rt will fall

below one when S reaches a threshold of Sthreshold = 1/R0, which is when 1-S =

1–1/R0. And 1-S is simply the number of people who have already either been

infected or vaccinated. So, in this simple model, 1/(1-R0) is what is considered

the ‘herd immunity threshold’.

A simple SIR model can also show that the rate of new infections doesn’t

immediately grind to a halt once the herd immunity threshold is reached. Rather,

the first derivative of the rate of new infections turns negative for the first time,

representing a rate of decay rather than a rate of growth. In fact, the number of

susceptibles can fall well below the threshold Sthreshold. This additional deple-

tion of susceptibles is what is referred to as ‘overshoot’ (Handel, Longini, and

Antia 2007).

In much the same way that we can use a highly idealized ZDEBM to calculate

the effective temperature of the Earth (see Section 2), we can use a simple SIR

model to explain why certain infectious disease epidemics will eventually wane

and why new infections do not stop abruptly when the herd immunity threshold

is reached. However, it is important to emphasize that a SIR model is a ‘very

strong oversimplification’ of any real infectious disease outbreak (Handel,

Longini, and Antia 2007). In fact, real outbreaks involve stochasticity, take

place among populations with heterogeneous clinical characteristics and social

contact networks, and have many other complicating features, such as the

potential for pathogens to exhibit seasonality (Chikina and Pegden 2020;

Choi, Tuel, and Eltahir 2021; Handel, Longini, and Antia 2007; Rucinski

et al. 2020).

The fact that none of this complexity is represented in simple SIR models

limits the range of purposes to which these models can be put. To mitigate this,

modellers will often build additional features onto simple SIR models. For

example, modellers will often add an ‘exposed’ or ‘E’ group, representing the

group of people who have been exposed to an infectious pathogen, but who are

in a latency period and not quite ready to infect new people. In such a model,

sometimes called a ‘SEIR’ model, people will transition from susceptible to

exposed before finally becoming infected. A SEIR model with a substantial

latency period will already exhibit less overshoot than a simple SIR model. In

the most complex adaptations to SIRmodels, modellers aim to represent the fact

that real populations display a complex network structure and heterogeneous

mixing, which greatly influences infectious disease dynamics, including the

herd immunity threshold (Britton, Ball, and Trapman 2020).
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In their op-ed, Bergstrom and Dean (2020) do not mention SIR models

directly, but these models are the source of the simple method they use to

estimate the herd immunity threshold and establish the risk of overshoot.

Importantly, a simple SIR model allows us to calculate the herd immunity

threshold in much the same way a ZDEBM allows us to calculate the effective

(but not actual) temperature of the Earth. Just as a ZDEBM does not account for

the Earth’s emissivity, a simple SIR model does not account for things like

stochasticity, seasonality, and heterogeneous population mixing: hence, the

results of each model come with a strong ceteris paribus clause. Neither is

adequate for making real-world projections of quantitative outcomes under

counterfactual scenarios, or for establishing conclusions like Bergstrom and

Dean’s in their op-ed.

In particular, Bergstrom and Dean (2020) assume that once an infectious

disease outbreak has begun, in the absence of external control measures, it will

continue unabated until the herd immunity threshold is reached, and even

beyond. This assumption is represented in the figure that accompanies the op-

ed, which depicts a logistic increase in infections. The figure even includes

a timescale in days and a representation of the percentage of total infections that

would be due to overshoot, though SIR models are not adequate for the purpose

of predicting these quantitative outcomes. Again, the many factors that compli-

cate epidemics but are not represented in SIR models make it impossible for us

to use simple SIR models for these purposes. Nothing like what the figure

predicts happened anywhere in the world, because a simple SIR model was

nowhere near adequate for predicting the spread of SARS-CoV-2. Bergstrom

and Dean’s (2020) claim that ‘If the pandemic went uncontrolled in the United

States, it could [our emphasis] continue for months after herd immunity was

reached, infecting many more millions in the process’ is similar to the claim that

the Earth could have stopped warming at -15°C. Insofar as these are claims that

could be taken to be true, they are simply claims about how a world would

behave under highly unrealistic ceteris paribus conditions. Otherwise, a claim

like ‘it could continue for months’ is an empty modal with seemingly only

rhetorical significance.

Following their discussion of herd immunity and overshoot, Bergstrom and

Dean (2020) went on to make remarks about pandemic mitigation. They noted

that some countries had attempted strategies intended to safely build up popu-

lation immunity to Covid-19 without a vaccine. For example, they noted,

Sweden had advised older people and other special groups to self-quarantine,

but kept many schools, restaurants, and bars open – and many commentators

had suggested that similar policies would be good for poorer countries like

India. But given the fatality rate of Covid-19, Bergstrom and Dean (2020)
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stressed, ‘there would be no way to do this without huge numbers of casualties’

(italics added). On these grounds, they argued that it was too early to proceed as

if most people would inevitably become infected, and that we should not trust

our ability to achieve a ‘controlled burn’ of the pandemic. Instead, Bergstrom

and Dean (2020) emphasized that aggressive control and containment could be

used to reduce strain on the healthcare system and to buy the scientific commu-

nity time to develop treatments, vaccines, and so on. (It is, of course, noteworthy

that although Sweden continued the policy discussed by Bergstrom and Dean,

its number of casualties was not an outlier relative to European countries that

pursued the aggressive mitigation strategies they had in mind.) These arguments

echoed one that Bergstrom had made on social media the month before, in

which he drew on a SEIR model to support the idea of instituting a 30-day

‘lockdown’ at the peak of an epidemic:

If one can break the momentum that is driving the epidemic beyond the herd
immunity threshold, one can reduce that overshoot substantially. Below, I’ve
modelled a 30 day period of social distancing around the epidemic peak, that
drops R0 from 2.5 to 0.3. This 30 day lockdown period is far less onerous than
that required to hold the virus in check until a vaccine is available but reduces
the total fraction infected from 90% to 70% by eliminating much of the
overshoot. In my view, this is not a substitute for aggressive control and
containment, because 60% of the population still becomes infected. In India,
for example, this would cost about 19 million lives with a 2% infection
fatality rate. But the 30 day lockdown would save >5 million. (Bergstrom
on Twitter, 19 April 2020; cited in Winsberg 2022)

This argument turns on several precise quantitative claims, including a specific

reduction in infections that could be achieved with a 30-day lockdown. Yet such

precise quantitative claims go beyond what a simple SEIR model can tell us, as

we have shown, and are highly sensitive to inputs like the infection fatality rate,

here assumed to be 2%, though assumed to be 0.5%–1% in Bergstrom and

Dean’s (2020) op-ep. (The true global average of this value is controversial, but

is probably much closer to the lower end of Bergstrom and Dean’s estimate, if

not slightly below it, and substantially lower than the 2% estimate Bergstrom

used in his social media thread.6) They are also highly sensitive to whether or

not the model contains the kinds of mechanisms that seem to make respiratory

viral pathogens come in waves, even in the absence of human interventions. In

the remainder of this section, we discuss the social and ethical significance of

building and using scientific models for purposes for which they are not

adequate, placing this in the context of philosophy’s values in science literature.

6 See Covid-19 Forecasting Team (2022).
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We also discuss what sorts of considerations are important when using scientific

models to inform public policy decisions, such as implementing the public

health measures that Bergstrom and Dean (2020) endorsed.

3.3 Two Kinds of Risk

As we established in Section 1, models are not perfectly complete and entirely

accurate representations of target systems. By necessity, modelling involves

representational decisions – overlapping decisions about what to represent and

how to represent it –which are driven by the purpose of the model (Harvard and

Winsberg 2022). For example, as we have seen, it is not always necessary to

represent every complicating factor in a model of an infectious disease epi-

demic. If a model’s purpose is to explain why some infectious disease epidemics

exhibit a herd immunity threshold, the simplest SIR model will be adequate for

this purpose. However, if a model’s purpose is to make a quantitative prediction

regarding the number of infections that will be observed over a specific time

period under various human interventions, the simplest SIR model will not do.

If our goal was to build a model adequate for this purpose, we would have to

represent many, if not all, of the complicating factors discussed in Section 2.2

(and possibly more). Indeed, it is possible that even the very best infectious

disease model we could build would only be adequate for the purpose of making

quantitative predictions if we defined that purpose conservatively, such that we

accepted predictions with very large margins of error. In any case, our decision

concerning what factors to represent in the model would be informed, at least in

part, by how accurate we wanted our quantitative predictions to be, which we

can think of as part of our model’s purpose (see Section 2). And whatever

complicating factors we decide to represent – say, for example, heterogeneity in

social contact rates – will present us with further decisions regarding how to

represent them. For example, deciding to include heterogeneity in social contact

rates means we will have to decide which source of data or evidence is adequate

to represent this phenomenon.

The purpose of this subsection is to reflect on the ways in which representa-

tional decisions in modelling are value-laden.7 There are at least three ways for

us to disentangle and appreciate this. First, representational decisions corres-

pond to the purpose of the model and purposes are value-laden. Second, even

with a set purpose, judgements about what is adequate for that purpose are

7 When we say representational decisions are value-laden, we mean they are the sorts of ‘scientific
choices that cannot be decided solely by appealing to evidence and logic’ (Elliott 2017, 11). In
other words, we mean that representational decisions invoke social values, that is, ‘the estima-
tions of any agent or group of agents of what is important and valuable – in the typical social and
ethical senses – and of what is to be avoided, and to what degree’ (Winsberg 2012, 112).
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value-laden, especially when model skill cannot be measured operationally.

Third, representational decisions influence model results, which affect our

‘inferential decisions’ concerning which facts to endorse at the stage of model

interpretation, the moment at which we use the model to infer facts about the

world (Harvard et al. 2021). This means representational decisions influence

our risk of endorsing a false fact, which is what we call inductive risk (Harvard

and Winsberg 2022).8

Inductive risk highlights the role of social and ethical values in model

interpretation, since we put these in play when deciding what facts to endorse

as true, taking into account the possible harms of endorsing a false fact; if we

evaluate those harms as serious, our ethical values tell us to demand a higher

standard of evidence. However, our values come into play in modelling well

before model interpretation, and value-laden representational decisions are

distinct from decisions around which facts to endorse – after all, representa-

tional decisions are generally about what is adequate for purpose, not about

what is true. In modelling, then, it is useful to think in terms of two types of risk:

while inductive risk is the risk of endorsing a false fact, representational risk is

the risk of making a representational decision that is inadequate for purpose.

These two types of risk are not unrelated because an inadequate representational

decision will sometimes lead to a downstream endorsement of a false fact. Yet,

(1) it needn’t lead to this and (2) it can also lead to other harms that are distinct

from a false conclusion. These distinct harms include lamentably incomplete

scientific results, irrelevant or distracting results, and even pernicious and unjust

gaps in scientific knowledge (Harvard and Winsberg 2022). The two types of

risk therefore encourage us to distinguish between the influence of values in

model development/selection (i.e., in managing representational risk) and in

model interpretation (i.e., in managing inductive risk), respectively.

To help appreciate the role of values in modelling, we can think about the

risks that Bergstrom and Dean (2020) and Bergstrom (on Twitter,

19 April 2020) were running in their op-ed and social media threads, respect-

ively. In both cases, Bergstrom and Dean were making representational deci-

sions (i.e., to use simple SIR and SEIRmodels, respectively, which are adequate

for some purposes, but not for others, as well as to choose certain parameters for

the models) and inferential decisions (i.e., decisions about what facts to endorse

as true). This means we can use both the representational risk and inductive risk

‘lenses’ to analyse what social and ethical considerations would have been

relevant to Bergstrom and Dean’s decisions.

8 The term ‘inductive risk’ was first used by Carl Hempel (1954) and more recently revived by
Heather Douglas (2000, 2009). There is considerable debate around how to define inductive risk
(Elliott and Richards 2017), but here we follow Harvard and Winsberg (2022).
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Let’s start with inductive risk, by identifying some ‘facts’ that Bergstrom and

Dean (2020) and Bergstrom (on Twitter, 19 April 2020) endorsed. We might

want to consider the claim that a 30-day lockdown period ‘reduces the total

fraction infected from 90% to 70% by eliminating much of the overshoot’ and

that in India this ‘would save >5 million’ lives assuming a 2% fatality rate

(Bergstrom on Twitter, 19 April 2020). To analyse the inductive risk here, we

must consider the possible harms of endorsing this ‘fact’ (which turned out to be

far from true). Thus, we should keep in mind that the claim is both highly

precise and explicitly made in the context of endorsing a public health interven-

tion that is known to present potential harms as well as potential benefits, as

most health interventions do. In health policy-making and decision-making, the

conventional approach is to quantify both potential harms and benefits and

evaluate whether the intervention would be net beneficial. How accurately

potential harms and benefits are quantified is therefore of great importance. If,

for example, a 30-day lockdown (which affects all or most of the population)

were to reduce the total fraction infected from 40% to 30%, or from 30% to

20%, rather than from 90% to 70%, this may flip the results of a harm–benefit

analysis (i.e., change the policy recommendation). Deciding to endorse the fact

that a 30-day lockdown period ‘reduces the total fraction infected from 90% to

70%’ (italics added) therefore specifically involves ethical considerations. In

particular, it involves considering whether a simple SEIR model is adequate to

provide evidence strong enough to endorse this fact, or whether the seriousness

of a factual error in this context means other evidence is required.

Instead of focusing on Bergstrom’s decision to endorse a fact, we can focus

on his decision to use a simple SEIRmodel to: (1) predict the impact of a 30-day

lockdown on total Covid-19 infections over 140 days, and (2) inform the

decision to implement a 30-day lockdown in India. As we interpret it, these

are two purposes to which Bergstrom put his SEIR model. In this context, the

relevant risk is representational risk, the risk that a simple SEIR model will be

inadequate for these purposes. With respect to purpose (1), representational risk

is high because the model’s precise quantitative predictions depend on highly

unconstrained ‘what to represent’ and ‘how to represent’ decisions.

Specifically, the model excludes information about many factors that compli-

cate epidemics and incorporates both a highly controversial estimate of the

Covid-19 infection fatality rate (i.e., 2%) and a highly idealized assumption

about epidemic growth (i.e., in the absence of interventions, Covid-19 infec-

tions would follow logistic growth all the way to the herd immunity threshold

and then continue into overshoot over a very short period of time – with 60% of

people infected on the order of 60 days). Perhaps the most salient harm that

could result if the SEIR model were inadequate for purpose (1) is that its
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inaccurate results would mislead people. In this context, representational risk

and inductive risk seem to be entangled: both link to the harm of endorsing

a false fact. However, with respect to purpose (2), representational risk links to

a distinct harm, as we will see.

We interpreted purpose (2) of Bergstrom’s SEIR model in terms of deci-

sion-making: the purpose of informing the decision to implement a 30-day

lockdown in India. In the decision-making context, it is not only important that

a model’s quantitative predictions are accurate, but that it represents all of the

information that is relevant to the decision. Importantly, what information is

relevant to a decision is a highly value-laden question: we can imagine, for

example, that some decision-makers would desire only information about the

effect of a 30-day lockdown on total number of Covid-19 infections, but that

other decision-makers would desire information about the effect of the lock-

down on food insecurity, educational outcomes, all-cause mortality, and so on.

In light of this, we can see that whether or not Bergstrom’s SEIR model is

adequate for purpose (2) depends directly on the model users and their moral

values around how decisions about public health interventions should be

made. If model users desire only information about the effect of a 30-day

lockdown on total number of Covid-19 infections, Bergstrom’s SEIR model

would be adequate for the purpose of decision-making if its quantitative

predictions were accurate. However, if model users desire information about

the effect of a lockdown on food insecurity, educational outcomes, and all-

cause mortality in order to inform their decision, then Bergstrom’s SEIR

model would not be adequate for purpose, regardless of how accurate it

were at predicting Covid-19 deaths. In this context, the harm at stake is best

understood as incomplete results rather than factually incorrect results. After

all, even if the model’s quantitative predictions were precisely accurate, the

model could still be inadequate for purpose if model users’ decision-making

approach demanded information on all the potential harms of lockdown.

Depending on our moral values, and perhaps our knowledge about the ultim-

ate effects of lockdown in India (Shanker and Raghavan 2021), we may

consider such incompleteness in model results to be more or less harmful,

somewhere between lamentable and unjust.

3.4 Models for Public Decisions

In the last subsection, we emphasized that our social and ethical values are in

play (1) when deciding what to represent in a model and how to represent it;

and (2) when deciding what facts to endorse on the basis of model results. We

also emphasized that model purposes can be spelled out at different levels:
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sometimes, a model can be understood as being for the purpose of quantitative

prediction at one level, but for the purpose of public decision-making at

a higher level. Models that may be used to inform public decisions raise

special moral considerations, not least because their adequacy for purpose

depends directly on model users and theirmoral values concerning how public

decisions should be made; yet modellers and model users are not always

directly connected. Sometimes, modellers work directly with model users

and build models that are explicitly informed by the latter’s values around

decision-making. At other times, modellers have no direct connection to

model users, but rather build models according to their own values around

decision-making. Under these conditions, models have the potential to be used

as rhetorical devices, which raises further moral considerations. In this sub-

section, we outline just a few different possible approaches to public decision-

making and establish that models must be built very differently in order to be

adequate to support each one.

Consider, for example, three possible approaches to deciding whether to

implement a 30-day lockdown in India. Following the first, the decision

depends uniquely on whether a 30-lockdown is likely to prevent Covid-19

infections; we ignore all other considerations. Following the second, we still

ignore all other considerations, but now we require that a 30-day lockdown is

likely to prevent a certain minimum number of Covid-19 infections. And

following the third, the decision depends on whether a 30-lockdown is likely

to be net beneficial, taking into account a broad range of harms and benefits. The

first of these approaches assumes a duty to prevent Covid-19 infections, period,

and the second assumes a duty to prevent a certain number of Covid-19

infections, if possible (cf. Harvard and Winsberg 2021).The third does not

assume any straightforward, singular duties of these kinds, but rather assumes

that decisions should be net beneficial from some perspective. To inform the

first decision-making approach, it would not be necessary to build a model

capable of quantitative prediction (indeed, it may not be necessary or appropri-

ate to build a model at all). However, to inform the other two decision-making

approaches, a model would have to be adequate for quantitative prediction.

Both of these decision-making approaches, then, raise a further value-laden

question, which pertains to the existence of uncertainty surrounding quantita-

tive predictions. Such uncertainty is particularly inevitable when modelling

complex, non-linear systems like epidemics. Because there is generally

a good deal of uncertainty around the harms and benefits of health interventions,

conventional approaches to health modelling for decision-making typically

combine something like a cost–benefit analysis with uncertainty analysis

(Briggs, Sculpher, and Claxton 2006).
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As we saw, the SIR and SEIR models that Bergstrom and Dean (2020) and

Bergstrom (on Twitter, 19 April 2020) presented in their op-ed and social

media threads, respectively, do not represent potential harms associated with

social distancing policies/lockdowns or estimate the uncertainty around their

predictions. As a result, their models are adequate only for certain model

users: those who consider only the number of Covid-19 infections averted to

be relevant to the decision and who are unconcerned by uncertainty. It is also

apparent that Bergstrom and Dean’s models were built by them independently,

rather than in collaboration with model users, such as those responsible for

deciding whether or not to implement a 30-day lockdown in India. As a result,

there is some risk that Bergstrom and Dean’s models could be perceived as

having a rhetorical purpose – for example, the purpose of persuading people to

implement a 30-day lockdown in India. To see why there would be a risk of

such a rhetorical purpose being perceived, it is useful to think about what the

dialectical situation was (at least for some people) regarding lockdowns

generally. In early 2020, some people were arguing that lockdowns would

cause more harm than good, because of their negative impact on the economy,

education, and so on. However, this view was not very popular among public

health professionals (and perhaps the typical New York Times reader), at least

not with respect to the developed world. The thought was that lockdowns

would surely achieve more good via saved lives than they would cause harm

via decreased general welfare. Many people were willing to conclude this

simply on the basis of their moral intuitions.

However, it was sometimes acknowledged that the calculus could be con-

siderably different in developing economies like India and South Africa, due

to the fact that overall welfare is much closer to dangerously low levels for

a large majority of people (Broadbent 2020; Broadbent and Streicher 2022).

Bergstrom himself effectively acknowledged this: ‘Every possible measure

should be taken to prevent this [unprecedented humanitarian disaster] from

happening. Yet in some countries this may be unavoidable. Some nations may

simply lack the economic resources, technological capacity, and political will

to contain the virus until a vaccine can be developed.’ (Bergstrom on Twitter,

19 April 2020; cited in Winsberg 2022). Indeed, it was reasonable to worry

that even if developing countries could sustain lockdowns as long as devel-

oped countries (a dubious proposition), vaccines would be rolled out very

slowly in developing countries anyway. Thus, Bergstrom was aware that the

central question regarding lockdowns in developing countries was not ‘Should

they lockdown until a vaccine is developed?’, but rather ‘Should they try

a relatively short lockdown?’. One prima facie reasonable response to this

would be to point out that a lockdown that lasts only a tenth or less of the time
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needed to make a vaccine available would be pointlessly harmful, so it was

clear that a special argument would be needed for the case of the developing

world. This is what Bergstrom’s SEIR model appears to provide in represent-

ing the phenomenon of ‘overshoot’, along with a very high infection fatality

rate of 2% (a rate 2 to 4 times higher than the one he and Dean used in the

New York Times piece (Bergstrom and Dean 2020)). In other words, it could be

perceived that Bergstrom’s SEIR model was serving the rhetorical purpose of

presenting a quantitative prediction so nuclear that it would obviate the need

for more a complex cost–benefit model.

3.5 Conclusion

In this section, we have looked closely at an application of a SIR/SEIR model,

both to illustrate ways in which models can be used for purposes for which they

are not adequate and to tie this to the fact that building and usingmodels invokes

social and ethical values. We showed that there are two risks associated with

building and using a model for a specific purpose: the risk associated with

drawing false inferences from the model (inductive risk), and the risk associated

with making representational decisions that are inadequate for purpose (repre-

sentational risk). Both of these risks are moral. In the first case, the risk is moral

because when we use a model to infer a conclusion, and endorse that conclusion

as being a fact, harms and benefits can ensue. This means that deciding whether

to endorse a fact requires reflection on the harms of endorsing the fact when it is

false and on the harms of not endorsing the fact when it is true. In the second

case, the risk is moral because making representational decisions that are

inadequate for purpose can not only increase inductive risk, but also lead to

harms that are distinct from a false conclusion.

We also suggested, at the end of this section, that Bergstrom and Dean’s

(2020) model could be perceived as having served a rhetorical purpose. In

particular, we noted that the model might be perceived as being used to make

a special argument for lockdowns in the case of the developing world. Thus, we

seem to have encountered a new purpose for models, one that goes beyond the

purposes we canvassed in Section 2: models can be used rhetorically to advance

arguments for conclusions that the model-makers want to advance. This points

to a current controversy in the values in modelling literature: when is it

legitimate to use a model for a rhetorical purpose?

One way we can think about a rhetorical purpose for models is in terms of

a model’s purpose being its ‘performativity’ or ‘performative’ impact

(Basshuysen et al. 2021). The performative impact of a model is the degree

to which it encourages people to change their behaviour and/or compels
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policy-makers to adopt various policies. That models may have the purpose of

performativity has been discussed in the epidemiology literature: Biggs and

Littlejohn (2021), for example, remark that ‘[i]nitial projections [of a Covid-

19 model] built in worst-case scenarios that would never happen as a means of

spurring leadership into action’ (92), and Ioannidis, Cripps, and Tanner (2022)

speculate that ‘[i]n fact, erroneous predictions may have even been useful.

A wrong, doomsday prediction may incentivize people towards better per-

sonal hygiene.’ Some philosophers have suggested that, even if a model

makes very poor predictions or projections, we might want, under some

conditions, to consider a model’s performative impact to be a potential virtue

(Basshuysen et al. 2021). Designating a model’s performative impact as

a virtue under some conditions equates to sanctioning a model’s use for

rhetorical purposes under those conditions (Winsberg and Harvard 2022).

While some authors have suggested that using models for rhetorical pur-

poses is sometimes acceptable, others have argued that this practice should be

strictly avoided. Although there may be a temptation to encourage people and/

or policy-makers to adopt certain behaviour, Winsberg and Harvard (2022)

argue that modellers should not try to do so by incorporating worst-case

scenarios or other specific types of predictions into models. One reason for

this is that changes in behaviour often have costs, including both financial

costs and other undesirable, unintended effects, which can be difficult to

anticipate and even harder to quantify. Indeed, one of the most important

functions of policy-oriented modelling is to facilitate a cost–benefit analysis,

which encourages careful reflection on the potential downstream effects of

behaviour change, the methods available to quantify those effects, and the

inevitable uncertainty that will surround the results. In other words, one of the

core functions of models is to help us determine with greater accuracy and

reliability which behaviours are truly the best ones for us to adopt, given the

values we attach to different potential outcomes. It should be clear, then, that

using models to promote a certain course of action from the outset runs

counter to that core function, and puts us at risk of adopting behaviours that

do not actually accord with our values. Furthermore, Winsberg and Harvard

(2022) argue, to use models for a rhetorical purpose runs the risk of under-

mining the credibility of science, as well the right of the public to have policies

that reflect their own values (not just those of model developers). The question

of whether it is acceptable for models to be used for rhetorical purposes

remains a topic of debate in the values in modelling literature. In the next

section, we will canvass considerations in favour of the claim that the public

deserves a say in how models should be developed and used to inform public

policy.
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4 Models and Values

4.1 Introduction

In Section 3, we introduced the topic of values in modelling by establishing that

scientific models give rise to two kinds of risk. First, during model development,

there is representational risk: the risk that modellers will make representational

decisions (i.e., decisions aboutwhat to represent and how to represent it) that will

be inadequate for the intended purpose of the model. Second, during model

interpretation, there is inductive risk: the risk that model users will make inferen-

tial decisions (i.e., decisions about what to endorse as a fact) that will be

erroneous. Because social and ethical values come into play in deciding how to

manage these risks, we said that the processes of model development and

interpretation are value-laden. In this section, we revisit this topic in more detail,

showing how we can follow Harvard and Winsberg (2022) and Harvard et al.

(2021) in developing a basic framework to identify and understand value judge-

ments in modelling generally. We then apply this framework to the Imperial

College London (ICL) ‘CovidSim’model, a well-known model used to estimate

the impact of non-pharmaceutical interventions (NPIs) onCovid-19mortality and

healthcare demand (Ferguson et al. 2020). Building on this detailed account of

value judgements in a single model, we end our discussion by considering how

model-building can proceed in an ethical manner, particularly when the goal of

modelling is to inform public policy.

4.2 A Basic ‘Values in Modelling’ Framework

As we discussed in Section 3, representational decisions in modelling take the

form of overlapping decisions about what to represent and how to represent it.

Roughly speaking, we can think of ‘what to represent’ decisions as concerning

what entities to include in and exclude from a model and ‘how to represent’

decisions as about what methods to use to represent entities chosen for inclusion

in a model. But, as Harvard et al. (2021) acknowledge, these decisions are closely

intertwined in practice. For example, ‘what to represent’ decisions are routinely

informed by how or whether the representation of something can be achieved: if

modellers would like to include an entity in a model, but have no data to support

doing so, theymay decide to exclude it. In this case, the how to represent decision

affects the what to represent decision. Indeed, the distinction between ‘what to

represent’ and ‘how to represent’ is mostly a practical distinction, rather than

a philosophical or theoretical one. Much of what we say in what follows applies

equally to both types of representational decisions, and often it makes sense to

simply speak of ‘representational decisions’ in general. However, the practical
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distinction between ‘what to represent’ and ‘how to represent’ decisions can be

useful for structuring an initial discussion about modelling decisions, which helps

us to see the value-laden (and iterative) character of these decisions.

4.2.1 What to Represent: A High-Level View

In their initial discussion of ‘what to represent’ decisions, Harvard et al. (2021)

invite us to think in the big picture: they note that ‘social and ethical values

shape our views about what is necessary or important – or even acceptable – to

reason about using scientific models’. In other words, the foremost ‘what to

represent’ decision in modelling concerns what topic to study, which is long-

recognized to reflect social and ethical values (Longino 1990; Weber 1949). At

this level, we can recognize that scientists’ decision to build a model of the

Earth’s climate, for example, reflects their judgement that studying this topic is

a good and worthwhile pursuit. We can also recognize that the decision to build

a model of the Earth’s climate reflects the judgement that to do so is a priority: at

least in some sense, it is more pressing or important than studying the climate on

Mars (i.e., even if scientists would agree that studying the climate on Mars is

also good and worthwhile, they accept the opportunity cost in this context and

choose Earth over Mars). Furthermore, building a model of the Earth’s climate

reflects the judgement that doing so is defensible: that is, there are no ethical

reasons not to model the Earth’s climate, as there might be not to engage in

certain other research practices (e.g., experimental testing on animals).

We can characterize the notion of ‘values’ in the loose and general way we do

here, appealing to what’s considered ‘important’ or ‘worthwhile’ or ‘a priority’ or

‘defensible’, or we can tighten the notion up with a more abstract framework

coming from decision theory, defining ‘values’ in the way that decision theorists

define ‘preferences over prospects’ – that is, in terms of what states of affairs in

the world an agent prefers to have obtain over another. For example, to say that an

agent thinks ‘building a model of the Earth’s climate is a good and worthwhile

pursuit’means the agent prefers the state of affairs in a world where the model is

built (and the time and money expended to do so) to the state of affairs in a world

where themodel is not built. To say that ‘building amodel of the Earth’s climate is

more pressing or important than studying the climate on Mars’ means the agent

prefers the state of affairs where a model of the Earth’s climate exists and a model

of Mars’ climate doesn’t, over the opposite state of affairs. To say that ‘building

a model of the Earth’s climate is defensible’ might mean something like ‘a

reasonably large number of reasonable people prefer the state of the world

where the model exists to the one where it doesn’t’. In what follows, we will

sometimes use the more concrete language of the form ‘X believes Y is

43Scientific Models and Decision-Making

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
02

93
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009029346


a worthwhile project’ or ‘X thinks Y is more important than Z’. But it will also

sometimes be more helpful to speak more abstractly in the language of decision

theory of preferences over prospects.

In their discussion of big-picture ‘what to represent’ decisions in modelling,

what Harvard et al. (2021) remind us is that not everyone supports building

a scientific model for every purpose: any one of us might object to a model-

building project if its goal were to highlight essential moral differences between

men and women, for example (Kitcher 2010), or if its inevitable consequence

would be to delay a time-sensitive Alpine rescue operation.

4.2.2 Fine-Grained Representational Decisions

But of course, we can zoom into ‘what to represent’ decisions in modelling with

far more granularity than just looking at the research topic itself: when we say

a model is ‘of the Earth’s climate’, we typically mean that the model represents

multiple attributes of that system in various different ways.What are some finer-

grained ‘what to represent’ decisions? As we discussed in Section 1, models

include both variables and parameters: crudely, a model’s variables are the

quantities it associates with a system that vary in space and time, while

parameters are fixed quantities that help to specify the mathematical relation-

ships between variables. For example, in a SEIR model, the value of R0 is

a parameter, and the number of people infected at a given time is a variable.9

Once we know a model’s variables, we can talk about what the ‘outcome’ of

a single run of a model is in terms of the final values that the variables take. And,

last but not least, we can sometimes observe model-builders having the final

values of certain variables as the outcomes of interest. The whole point of the of

the model, from the point of view of the modellers, is to calculate the final value

of these variables. We could call those the ‘end points’ of the model, but we

should be aware that which outcomes count as end points is not a feature of the

model: it is simply a fact about the model user. And a model that is built by one

person with some set of end points in mind might end up being used by another

user who picks a new and different set of outcomes as her end points.

Let’s explore the question of the sense in which the finer-grained representa-

tional decisions concerning variables, parameters, and outcomes of interest (or

‘end points’) are value-laden. Recall that what we mean by value-laden here is

that making these decisions will reflect not only the epistemic judgements of the

9 However, you could also build an elaborate model in which the virus mutates and the value of R0
changes over time. This would turn R0 into a variable. If R0 is a variable, there will have to be
causal input that determines the value it takes over time, showing that ‘how to represent’ decisions
can quickly turn into ‘what to represent’ decisions.
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agents making them, but their preferences over the possible prospects of making

these decisions. To see why this is so, it is useful to think about how the

modelling process typically goes. Upfront, there is usually a decision about

which variables the final values of which are the end points of interest. In

a climate model, for example, the global mean surface temperature of the

Earth in some future decade, conditional on some emissions pathway, might

be our end point of interest – or, it might be that researchers are interested in

regional values of other variables, like precipitation or humidity. The fact that

choosing an end point of interest is value-laden should be pretty obvious: people

who think American agricultural production is especially important are apt to be

especially interested in precipitation values in North America. To put this in the

formal language of decision theory, if I prefer the prospect of having improved

American agricultural production over the prospect of improved European

agricultural production (of some given amount) then I might be more interested

in a model whose primary end point is North American precipitation.

Once an end point is chosen, choosing which other variables and parameters

to include is also value-laden, but in a more subtle way. The process goes like

this: having chosen global mean surface temperature as our end point, we decide

which other variables, and which parameters, are causally relevant in a model

designed to project global mean surface temperature. This decision is value-

laden both because it is dependent on the end points of interest, but also because

whether, say, a particular variable will be considered to be ‘causally relevant’

might depend on the degree of accuracy to which we hope to forecast the value

of the end point. And, of course, whether or not a forecast is considered

‘accurate enough’ is a value judgement too. Whether a climate model needs

to include carbon sinks and sources, for example, might depend on how accurate

we want the results of the model to be. If I prefer the prospect of having a model

that’s available sooner rather than later and is less costly to build, but which is

slightly less accurate, then I might choose to omit carbon sinks and sources from

the model. If I prefer the prospect of having a model that takes longer and is

more costly to build, but will provide more accurate information, I might do the

work of including carbon sinks and sources.

4.2.3 Inferential Decisions

As we discussed in Section 3, decisions in the modelling process include not

only representational decisions but also inferential decisions. That is, at the

stage of model interpretation, the goal is generally to use model results to infer

facts about the world. This requires assessing the ethical consequences of

endorsing a fact as true when it is actually false, of remaining silent, and so
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on; so it is a value-laden decision. Furthermore, many facts that wemight decide

to infer from model results will embed normative, that is, value-laden, presup-

positions (Alexandrova 2017). Inferential decisions based on model results

have a straightforward moral significance, particularly when these decisions

will directly influence public policy.

4.3 The Ethical Significance of Including and Excluding Variables

Of course, nomodel is a perfectly accurate and comprehensive depiction of a target

system: all models include some variables and omit others. If a model does not

include certain variables, this could signify one of two things. First, it might signify

that the model-builders deemed that the variable was neither ethically significant

itself nor causally relevant to an ethically significant outcome. Second, it might

signify that the model-builders determined that, regardless of whether the variable

is ethically significant, it is not the job of the model in question to inform us about

that variable, which is often perfectly reasonable and unavoidable. Determining

what representational decisions say about model-builders and the outcomes they

consider morally significant is a complex matter, and because it is seldom possible

to hear their perspectives first-hand, some people might say that observers can only

speculate. Nonetheless, it is at least important to consider the ethical significance of

representational decisions in the context of how model-builders intend a model to

guide policy. Ordinary climate models, for example, include neither the economic

costs of mitigation nor the economic damage of climate change, whereas so-called

integrated assessment models (IAMs) (see Winsberg 2018) do include these. We

should not conclude from this that the developers of ordinary climatemodels do not

deem the economic costs ofmitigation nor the economic damage of climate change

to be morally significant, but rather that they expect their model results to play

a less direct role in policy-making (with knowledge of economic factors coming

from another source) than do the builders of IAMs. On the other hand, when an

IAM is being used to directly inform policy, it is perfectly reasonable to ask for

a discussion to establish whether all of the ethically significant outcomes were

included in the model (Winsberg (2018) and Frisch (2018) discuss the question of

whether or not they do).

As we noted, ‘what to represent’ decisions are often informed by how or

whether the representation of something can be achieved. For example, if there

are no high-quality data on some aspect of a target system, this may be the

reason it is not represented in a model. This raises the question: do practical

barriers negate the social and ethical significance of building a model that omits

certain aspects of a system? Following Harvard et al. (2021), we say the answer

is no, for at least the following reasons: (1) modellers could use low-quality data
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or estimates in order to represent it; (2) modellers could decline to build the

model on the grounds that there are no adequate data or estimates on an

important aspect of the system, and the model results would be problematically

incomplete without them. Deciding between these types of alternatives involves

not only considering epistemic values, but weighing social and ethical values

(cf. (Peschard and van Fraassen 2014; Harvard and Winsberg 2022)).

In their discussion of ‘how to represent’ decisions, Harvard et al. (2021) focus

on the fact that representational decisions often centre around what inputs to use

for values of parameters in the model: for example, what data sources should be

used to model the rates of cloud formation in a climate model grid cell, or the

probability of hospital admission if people in various age brackets are infected

with a virus. Decisions around what inputs to use in a model can be challenging

to make, particularly because different data sources generally have different

limitations and higher degrees of adequacy for some purposes than others. In

general, these decisions are value-laden because the choice to use one input over

another will have an effect on model results. In other words, people with

different views around whether it is worse to overestimate or underestimate

the value of a variable, for example, will be inclined to use different inputs to

populate a parameter that influences that variable, if there is a choice to be made

between inputs.

4.4 The Expected Utility of Representational Decisions

To put this discussion in the language of decision theory, I might prefer the

expected downstream prospects of making one representational choice over

another. Why would that be? Suppose I think one representational choice has

high probability of overestimating the danger of climate change and a low

probability of underestimating it. And that I think the other available represen-

tational choice will be the opposite. I might pick the first choice because my

expected utility for the first choice is higher. That is, the utility of overestimating

multiplied by its probability on the first choice, plus (or minus) the utility of

underestimating multiplied by its probability on the first choice, is higher than

all of the above on the second choice.

There are two important things to note here. First, notice that in this slightly

more formal presentation, we have moved to the general language of

a representational choice, rather than the language of ‘what inputs to use for

a parameter’. This is because the point here is very general. Considerations like

the above can kick in for all representational decisions, whether they be choices

of what to represent, or how to represent – including what inputs to use, or what

mathematical function to use, or anything of the sort. Second, in our formal
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presentation, we imagine that the person making the representational decision

knows the probabilities and utilities exactly. But this will not generally be the

case. In order for me to choose representation R1 over R2, I need only know that

U1� P1þ U2ð1� P1Þ > ðU1� P2þ U2ð1� P2Þ

where U1 and U2 are the utilities I assign to overestimating and underestimat-

ing, respectively, and P1 and P2 are the probabilities of overestimating on R1

and R2.

Note that I needn’t know in virtue of what exact values of P1, P2, U1, and U2

this obtains: I need only holistically grasp that the inequality obtains for

whatever reason. As representational decisions get more and more complex,

intermixing with other representational decisions, and as outcomes move from

being binary to being continuous and multidimensional, it becomes more and

more likely that model-builders are employing the kind of reasoning we explain

here only in the most implicit sense. To ask modellers, then, to articulate all of

the values and probabilities that drive their representational decisions would be

impossible, in practice, to satisfy as a general requirement (we discuss this

further in Section 4.7). The degree to which these considerations tend to be

implicit and suppressed will be important to our discussion. We can call this

claim, that model-builders can rarely articulate the full epistemic and normative

considerations that underpin their representational decisions, the inarticulabil-

ity thesis (cf. Parker and Winsberg 2018; Winsberg 2012, 2018).

Returning to the specific issue of making choices of parameter values: to be

sure, modellers can often perform a sensitivity analysis in order to explore the

effect of using different inputs for different parameters. However, this generally

leaves a value-laden decision to be made around which inputs will be used for

the ‘main’ (or base-case) analysis versus a sensitivity analysis (keeping in mind

that the results of a main analysis may be the ones emphasized in reports to

policy-makers and/or the media). It is also a value-laden decision whether

model users are better served by a precise estimate or one that fully reflects

the range of uncertainty that comes from our imperfect knowledge of parameter

values. Finally, there are often limits to how many sensitivity analyses model-

lers can perform in a timely way.

4.5 Case Study: Imperial College London Model

4.5.1 Background

The ICL model, running on CovidSim, was developed by Neil Ferguson and his

team and was based on an earlier influenza model (Ferguson et al. 2005, 2006,

2020). The primary purpose of the model was to project the impact of various
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possible policy choices on Covid-19 deaths and demand for hospital beds,

including intensive care unit (ICU) beds. Specifically, the report considers

a variety of permutations from a set of possible policy choices (in addition to

a potential ‘do nothing’ policy), consisting of the following elements, shown in

Figure 8.

The subsets of these NPIs considered to be ‘mitigation’ strategies that the

model explored were: PC; CI; CI&HQ; CI&SD; CI&HQ&SDO; and

PC&CI&HQ&SDO. All of these strategies are ‘shown’ to result in massive

overwhelm of the healthcare system, as shown in Figure 9.

‘Suppression’ is defined as being able to ‘reduce R to close to 1 or below’

(Ferguson et al. 2020, 10). The report cautions that, at least, ‘[c]ase isolation,

general social distancing, and either school and university closure or home

quarantine’ are required to achieve suppression, but the only ‘suppression’

strategy whose simulation results are presented in the report is the combination

of all four elements (i.e., ‘[h]ome isolation of cases, household quarantine,

school and university closures, and social distancing of the entire population’).

Ferguson et al. (2020) show the simulation results of instituting these policies

cycling on and off for the 18 months they expected it to take to achieve a vaccine

(assuming a baseline R0 value of 2.2) (Figure 10).

Figure 8 Summary of NPI interventions considered in Report 9.

Source: Ferguson et al. (2020, table 2, 6).
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In building the model, the modellers aimed to steer policy choices by the UK

Government, as well, to a lesser degree, as other governments around the world,

by highlighting the extremely high death toll, and burden on healthcare systems,

that would ensue from pursuing all but the last of those policy choices

(Broadbent and Streicher 2022). Ferguson et al. (2020, 16) said:

Figure 9 Report 9’s projections for critical care (ICU) bed requirements under

various mitigation and suppression strategies.

Source: Ferguson et al. (2020, 8).

Figure 10 Adaptive triggering of suppression illustrated in Report 9.

Source: Ferguson et al. (2020, 12).
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We therefore conclude that epidemic suppression is the only viable strategy at
the current time. The social and economic effects of the measures which are
needed to achieve this policy goal will be profound. Many countries have
adopted such measures already, but even those countries at an earlier stage of
their epidemic (such as the United Kingdom) will need to do so imminently.

4.5.2 What Is Represented? Study Topic and End Points in Context

Following the basic framework outlined in Section 4.2, we can begin to outline

some big-picture value judgements that went into building the ICL model. First

and foremost, building this model reflects the judgement that it is an ethically

defensible project: in other words, that it is desirable to seek more information

about the likely effects of certain policy choices on Covid-19 deaths and

hospitalizations. It is important to realize that this needn’t be taken for granted.

It is not hard to imagine people having a set of values according to which many

of the policy choices explored in the model, particularly those that involved

restrictions on various liberties, constitute violations of fundamental rights and

should not even be considered. It is also not hard to imagine having a set of

values, and a set of prior beliefs about the severity of the virus, on which it

would have been morally unacceptable to delay action even long enough to

carry out the modelling project – or to accept any risk at all that the model would

erroneously steer policy-makers away from drastic suppression measures. It is

only according to a certain set of values, and a certain set of prior beliefs given

the state of evidence at the time, and a certain confidence that a minimally

informative model could be built, that it would appear the right thing to build

a model like the ICL model and to consider using its output to evaluate the costs

and benefits of the kinds of policy choices that are explored in the model.

Next comes representational decisions concerning what the primary end points

of the model ought to be. In the ICL model, the variables taken to be primary end

points were Covid-19 infections, hospitalizations, occupancy of intensive care

hospital beds due to Covid-19, and Covid-19 deaths. Including these as end points

in a pandemic mitigation model signifies an ethical judgement that these are

important outcomes to consider when reasoning about what NPIs to implement to

help slow the pandemic. What about the outcomes that were excluded from the

model? Recall that if a model does not include certain outcomes this could signify

one of two things. The fact that the ICL model did not project the impact of the

possible policy choices explored on things like educational outcomes and eco-

nomic output could be interpreted in two ways: either as suggesting that these

outcomes were not ethically significant, or as suggesting that decision-makers

would have to look elsewhere to get this information.
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This highlights the degree to which models must be understood in the context

of the intended purposes of their users. It is not built into the ICL modelwhether

it is intended to be a tactical model that can be used, directly, to assess different

policy choices, or intended to be used alongside other sources of information

about the effects these choices would have on things other than Covid-19

deaths, hospitalizations, and so on. But insofar as we can read the famous

‘Report 9’ (Ferguson et al. 2020), which was the primary document produced

with the help of the ICL model, as a policy guidance document,10 we can read it

as suggesting that these outcomes were relatively ethically insignificant in

comparison to the outcomes that were in fact part of the model.

Here is another way to frame the same point. If you happen to believe that

policy choices that were guided with the help of a model were made without due

consideration of a certain dimension of their consequences, it is difficult to

assign moral responsibility for that moral failure. Responsibility could lie with

the model-builders for failing to include those dimensions among their model

end points, or it could lie with policy-makers for relying on only one kind of

expertise (say, infectious disease epidemiology) when in fact two kinds of

expertise (educational psychology as well as infectious disease epidemiology)

were required. Or responsibility could fall on both parties. But in the case of

Report 9, it seems clear that the ICL group judged that their model results alone

could guide policy, and that their recommended strategy should be implemented

despite its social and economic effects: ‘We therefore conclude that epidemic

suppression is the only viable strategy at the current time. The social and

economic effects of the measures which are needed to achieve this policy

goal will be profound’ (Ferguson et al. 2020, 16).

4.5.3 Finer-Grained Representational Decisions

Other Variables

While representational decisions concerning what variables to include as end

points in the ICL model (e.g., ‘Should learning loss be an end point in the

model?’) have a particularly obvious ethical importance, decisions about what

other variables to represent are value-laden too. One example is the decision to

represent the ages of inhabitants of the United States and the United Kingdom,

and their status as workers or students, but not their race, income, postal code, or

occupation. As a result of this decision, the ICL model is not adequate for

exploring research questions like: (1) whether a mitigation or suppression

10 See Broadbent and Streicher (2022) for the view that Report 9 was intended to be an argument
that the UK ought to adopt maximum suppression and that its cousin, Report 13, was intended as
an argument that other nations, including developing nations, ought to do likewise.
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strategy will lead to a racially unjust distribution of infections, hospitalizations,

and deaths; or (2) whether such a strategy will differentially affect people of

different professions. For example, will the closing of non-essential industries

result in the burden of the disease falling primarily on those who provide essential

services? As we noted in Section 1, at the heart of computational models like

climate models and models of disease spread are the bits of math that jointly

create the behaviour of the model, given its starting state, and the choice of

counterfactual scenarios (from among all the infinite possible counterfactual

scenarios) that it is designed to investigate. Usually, this requires picking other

variables besides the ones being studied as end points, the mathematical relation-

ships between them, and the values of parameters that feature in the equations that

specify those relationships. The ICLmodel, for example, does not include among

its variables the time of year and its possible impact on viral transmission. This

makes it impossible for the model to explore the possibility that the virus could

come in waves due to an underlying seasonality of the virus.

Parameters

Overall, the ICL model employed equations with almost 900 different param-

eters. Given its purpose, the model needed inputs for the expected Covid-19

death rate, hospitalization rate, and ICU admittance rate for every 100,000

people infected in each of several different age brackets, given in a table in

Figure 11.

At the time that Report 9 came out, in the middle of March 2020, none of the

correct values of these inputs were well known. (Indeed, our estimates of them

at the time of writing now remain imperfect.) One moral judgement that could

have been made at the time was that our confidence intervals around these input

values were too large to make modelling the impact of different possible policy

choices a worthwhile project. If, for example, one thought that the possible

values for the infection fatality rate of SARS-CoV-2 at the time could be

anywhere between 0.1% and 3%, and one thought, as the ICL team clearly

did, that you had to pick a single value (at least relative to each age bracket) then

you might think that a model of this kind would be useless for assessing the

costs and benefits of policy choices. That’s because you might think that it is

fairly obvious that, if the infection fatality rate (IFR) is 0.1%, the most stringent

strategies are almost certainly going to look too costly, and if it’s 3%, they are

almost certainly going to look like they are morally required. If you thought

that, you might conclude that getting a better estimate of the numbers in Table 2

was a much higher priority than building a model like the ICLmodel – indeed, it

might even be a condition on the moral permissibility of building it.
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Since the ICL team obviously decided to proceed with the modelling project,

how did they choose those values? In early March 2020, researchers had at least

two sources of data available to them for the parameters in Ferguson et al.

(2020, table 1) (Verity et al, 2020). The first was the Diamond Princess (DP)

cruise ship. This was the first ‘natural experiment’ of a Covid-19 outbreak,

where every single passenger had been tested for infection and the health

outcomes of each passenger were well known. The second was the data

available from the first ‘epicentre’ of the pandemic: Hubei province in China.

The advantages and disadvantages of each data source were clear. The advan-

tage of the DP data was that they were comprehensive. The exact number of

infected people was known as was the exact number of each health outcome.

The disadvantage was that the number of people was relatively small, and the

age structure of the population was unusual. Most of the passengers were rather

old and most of the crew were very young. There were very few intermediate-

aged people in the data set. The advantage of the Hubei dataset was the mirror

image of the disadvantages of the DP set. The dataset was large and every age

demographic was included. The main disadvantage was that while the numer-

ators for all of these outcomes were relatively well known,11 the denominators

Figure 11 Estimates of virus morbidity and fatality from Verity et al. (2020)

used in Report 9.

Source: Ferguson et al. (2020, table 1, 5).

Note: The table is somewhat confusing because fatalities are given as a percentage of
infections, but hospitalizations are given as a percentage of ‘symptomatic infections’, and
ICU beds are given as a percentage of hospitalizations. If we dig into the code, we can
determine that two-thirds of infections are expected to be symptomatic, and so the percentage
of overall infections that will require hospitalization is 0.66 times the numbers in this column.

11 We say ‘relatively’ because the ICL group gathered the data from newspaper reports, not from
scientific sources.
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were not known at all. That is, how many people had died of Covid-19 in Hubei

and how many had been hospitalized was known, but it was not known how

many infections this represented. Knowing the ratios of these numbers, how-

ever, was crucial to estimating the parameters needed for the ICL model.

The ICL group responded to this lacuna by looking at repatriation flights from

Hubei into the United States and Europe. That is, at the time of the outbreak,

citizens of the United States and some European countries were evacuated from

Hubei province and returned to their home countries. Each person on these

flights was carefully screened for infection with SARS-CoV-2. The ICL group

used the proportion of expatriates who were infected to estimate the incidence

of infection in Hubei at large. The disadvantages of these methods were obvi-

ous. For one thing, this ended up being a very small sample. In total, only six

people were found to be infected on the flights.12 Had, by chance, a seventh

person tested positive, then all the values in Table 2 would have been six-

sevenths the size they are. Another disadvantage was that the method assumed

that very wealthy and culturally outlying expatriates had a degree of infection

that was representative of the underlying population.

So the makers of the ICL model had at least two choices with regard to this

‘how to represent’ question: they could have generated something like Ferguson

et al.’s (2020) Table 1 from the Hubei data or from the DP data. In what way did

values influence this choice? The model-builders could clearly see that the IFR

and hospitalization rates that came from the Hubei data were considerably

higher than from the data from the DP.13 Thus, choosing the Hubei data made

it more likely the IFR would be overestimated than opting for the DP data, and

less likely that it would be underestimated. Thus, the more serious you consider

the harm of a Covid-19 death and/or hospitalization, and the less serious you

regard the various harms of the mitigation and suppression strategies being

considered, the more inclined you will be to choose the Hubei data, and perhaps

the more inclined you will be to use the repatriation flight method for estimating

the denominator than some other method that produced a lower IFR.

To return to a point we made in Section 4.4 that we called the inarticulability

thesis, it is probably not reasonable for us to think that Ferguson and his

12 ‘In international Wuhan residents repatriated on six flights, we estimated a prevalence of
infection of 0·87% (95% CI 0·32–1·9; six of 689)’ (Verity et al, 2020, 675).

13 Verity et al. (2020) use Ferguson et al.’s (2020) table 1 to estimate what the IFR on the DP would
have been, given the age structure of the population, if table 1 were correct and this came to
a value of 2.9%. The observed IFR on the ship, however, was 1.4%. This already shows that the
estimates they were getting fromWuhan were higher than they would have got from the DP. But
it actually understates the case because the hospitalization and death rates for the younger
decades is more overestimated in Verity than it is for the older decades, and the way they do
the comparison somewhat obscures this.
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colleagues had in mind exact probabilities that the Hubei data were closer to

reality than the DP data. Recall that what rationally guides representational

decisions like the choice between the Hubei data and the DP data is utility

maximization, and that is a function of the values we assign to the various states

of affairs that might follow from our representational decisions being good or

bad, along with the probabilities we assign to the various good and bad

outcomes that could follow from particular representational decisions.

Suppose that the members of the ICL group had one, and only one, binary

choice to make: use the DP data or the Hubei data. And suppose that they had in

mind exact probability distributions that they assigned to each dataset overesti-

mating and underestimating the effectiveness of each intervention to various

degrees, say P(DP) and P(H). And suppose they had a complicated function of

utilities over the space of each of those degrees of overestimation and under-

estimation. Even articulating just this amount of information would be over-

whelming. But the situation is far worse than this: they have over 900

representational choices to make (just regarding the items they chose to repre-

sent, excluding those they chose to ignore!), and most of those choices are not in

fact binary. They could, in principle, have had whole probability distributions

over possible values of all the numbers in Ferguson et al.’s (2020) table 1. This

suggests that, in fact, in a complex modelling situation like the one faced by the

ICL team, a whole host of representational choices have to be made in conjunc-

tion with each other, with only a very coarse-grained and holistic assessment of

the expected utility of a small subset of a nearly infinite set of possible choices

they could have made. This is why the inarticulability thesis cautions that the

decision could only have been made based on a rough expected utility estima-

tion, without the modellers having precise values of probabilities and utilities in

mind. Their choice of data set is ultimately the result of an inchoate mix of

epistemic assessments and value commitments that cannot be fully articulated.

4.5.4 Uncertainty

Another ‘how to represent’ question concerns how to represent, in a model, our

uncertainty regarding the best value of the relevant parameters. For example, the

ICL model assumes that when people socially distance, their probability of

getting infected at home increases by 25%. But why 25%? Why not 35%? In

fact, there were no data or research to support any particular choice in the model,

since we had few well-established rates for any past virus, let alone rates for the

novel SARS-CoV-2 virus. It is very common in modelling to attempt to deal with

uncertainty about the correct value of parameters by running a sensitivity ana-

lysis. The idea is to run the model on a wide sample of parameter values, in order

56 Philosophy of Science

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
02

93
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009029346


to try to figure out how sensitive the model is to small differences in those values,

and to try to figure out which values do the best job of capturing known data. In

climate modelling, this is referred to as doing a ‘perturbed physics ensemble’. But

the ICL model was used to influence major policy decisions in the absence of any

study of parameter sensitivity.

Fortunately, Edeling et al. (2021) finally undertook such a study in

November 2020. They wrote:

Here we report on parametric sensitivity analysis and uncertainty quantifica-
tion of the code. From the 940 parameters used as input into CovidSim, we
find a subset of 19 to which the code output is most sensitive – imperfect
knowledge of these inputs is magnified in the outputs by up to 300%. The
model displays substantial bias with respect to observed data, failing to
describe validation data well. Quantifying parametric input uncertainty is
therefore not sufficient: the effect of model structure and scenario uncertainty
must also be properly understood. (Edeling et al. 2021, 128).

They found, in particular, that almost two-thirds of the differences in the

model’s results could be attributed to changes in just three especially important

variables: the length of the latent period during which an infected person has no

symptoms and can’t pass the virus on; the effectiveness of social distancing; and

how long after getting infected a person goes into isolation. More importantly,

Edeling et al. (2021) found that for most values of these parameters, 5–6 times

as many people die during ‘suppression’ than the model predicted using the

values that the ICL group used. Thus, Edeling et al. (2021) show that, had

Ferguson’s group done a sensitivity analysis over the range of parameter values

that were consistent with what was known about the virus, they would have

been unable to show that the suppression strategy they appeared to be recom-

mending would have had much benefit with respect to Covid-19 outcomes.

It is not hard to see that had Report 9 (Ferguson et al. 2020) included

a sensitivity analysis of the kind found in Edeling et al. (2021), its influence

on policy-makers and the public might have been less dramatic. After all,

Edeling et al. (2021) seemed to show that it was consistent with what we

knew in March 2020 that the mitigation and suppression strategies considered

in Report 9 were all going to be equally ineffective. So we can see two ways in

which the choice of how to represent these parameter values was value-laden.

First, the ICL team chose values of parameters that maximized the projected

benefits of the strategy they appeared to be recommending. Thus, they appear to

be judging it to be less serious a mistake to overestimate the effectiveness of

those strategies than to underestimate them.

Second, the choice not to include a sensitivity analysis in the characterization

of the model output we find in the report was itself highly value-laden.
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One possibility is that it reflected the value judgement that urgent action was

required before there was time for the sensitivity analysis to be carried out.

Another possibility is that it reflected the value judgement that an estimation of

the degree of uncertainty regarding the effectiveness of the measures would be

less valuable than the precise, fine-grained projection they in fact made. This is

always a balance of values that model-builders and interpreters face: how to

balance the benefit of the informativeness of a precise projection against the value

of the confidence one can have in a wider, imprecise estimate of that same benefit

(Winsberg 2018). Another possible explanation of the ICL group’s failure to do

a sensitivity analysis is that they deemed that doing so would be too likely to

cause governments to wrongly choose to abstain from maximum suppression

(i.e., by emphasizing the degree of existing uncertainty). This obviously would

reflect a value judgement about how bad such an outcome would be.

4.5.5 Choice of Counterfactuals for Projection

Let’s compare the way that the ICL model and climate models make projec-

tions. The ICL model projections are conditional on policy choices, while

climate models are conditional on representative carbon pathways (RCPs).

The latter are not policy choices: they are outcomes that are conditional on

policy choices and numerous other factors acting in complex interaction with

one another; there are no uncontroversial connections between policy choices

and carbon pathways. In comparison, the ICL model takes policy choices as

counterfactuals for projection. Model developers are thus put in the position of

estimating how, for example, university and school closures will affect social

contact rates – but there is enormous uncertainty around such relationships, not

least because they stand to vary from setting to setting. Imagine putting climate

modellers in a similar position: for example, asking climate modellers to

assume that regulations imposed on nuclear power plant builders are reduced

and subsidies are provided to electric utilities that build out solar power

infrastructure. Our confidence in the model would have to be relatively low:

the results would no longer reflect a causal pathway of which scientists have

a good understanding (Harvard and Winsberg 2021). So the decision to repre-

sent possible policies in the model, rather than simply putting in contact rates

that would be the outcome of policy choices, forced the modellers to choose

how to represent those choices. This opens up a huge number of choices to

make. And there was enormous uncertainty concerning nearly every one of

these choices, many of which take the form of parameters built into the model’s

coding. Most modelling choices were relatively unconstrained by data or

background knowledge; and when there was data, it was of poor quality.
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4.6 Moral Responsibilities in Modelling

In this section, we have explored the consequences of the claim, developed in

Section 3, that model-building involves a kind of epistemic risk that is funda-

mentally different from the kind of epistemic risk involved in endorsing a truth-

apt claim as a fact. In particular, we used the example of the ICL computational

model of Covid-19, called ‘CovidSim’, to highlight the ways in which making

representational decisions – of what to represent and how to represent it – is

highly value-laden.

One thing this discussion highlights is how the value-ladenness of modelling

laces the practice of model-building and model-using with significant moral

responsibilities. Model-builders and model users, especially model users who

are policy-makers, face significant moral responsibilities because the choice to

model at all, and the choices of how to model, can have serious moral conse-

quences. Thus, model-builders and users are morally responsible for building

the rightmodels for the right purposes and for making representational choices

that embody the right balance of risks (i.e., that their models will fail to be

adequate for purpose in one way rather than another).

But, of course, every use of the word ‘right’ in the previous sentence will be

highly value-dependent. And when model-builders and model users are work-

ing, as they so often do, on behalf of the public, the question of what constitutes

the right set of values for informing the modelling process can become over-

whelmingly vexed. How can model-builders and model users possibly navigate

these incredibly turbulent waters? How can they ensure they are not imposing

their idiosyncratic values on the public?

One proposal that we find in the general ‘values in science’ literature is that

scientists should strive to make their own reasonable methodological decisions

and then be transparent about what values guided those decisions (Douglas

2009; Elliott 2017; Elliott and McKaughan 2014; Schroeder 2017). There are

two considerations here that suggest this is unlikely to do the work it needs to

do – to avoid imposing idiosyncratic values on the public. For example, the ICL

group (see Verity et al. 2020) are relatively ‘transparent’ about the fact that they

chose the Hubei data set over the DP data set. (As we saw, Verity et al. (2020)

showed that the estimate of IFR fromHubei was at least twice as large as the one

you would get from the DP, and they chose to use the former exclusively.) But

for ‘transparency’ to mitigate the problems discussed here, it should enable

members of the public to figure out whether the choice the ICL group made is or

isn’t the one they would have made, given their values. If the public can see that

they would have made the same choice, then no idiosyncratic values risk being

involved. If they can’t tell that, then the strong possibility exists that the ICL
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group is being value-laden in a way that the public would fundamentally object

to, and that this fact remains hidden. Therefore, it is a criterion of success for the

transparency proposal, that transparency leads to members of the public being

able to tell if modellers are making choices that fail to accord with their values.

We can call this the ‘congruence’ criterion.

In the kinds of modelling projects we are looking at here, that is, complex

models that incorporate diverse sources of evidence and aim to directly inform

policy, it seems unclear whether the congruency criterion could be met. Indeed,

the inarticulability thesis seems strongly to suggest otherwise. The inarticul-

ability thesis, recall, says that it is unrealistic to ask modellers to articulate all of

the values and probabilities that drive their representational choices. In prin-

ciple, how could modellers say more than ‘We chose the Hubei data over the DP

data’, in a way that would satisfy the congruence criterion? What the literature

seems to suggest is that modellers should issue transparent statements in a form

such as, ‘We chose the data set that erred on the side of overestimating the risk of

death from Covid-19’ (e.g., Douglas 2009). In principle, this sort of statement

could be adequate for satisfying the congruence criterion. However, notice that

it is only adequate if what modellers mean by it is that ‘nomatter how high a risk

estimate a data set would yield, and regardless of our assessment of the quality

or accuracy of a dataset, we would always pick the data set that erred on the side

of overestimating the risk of death from Covid-19’ and if members of the public

share this extreme view. Otherwise, a statement of this type does not allow

members of the public to determine whether they would have acted as the

modellers did, because it doesn’t tell them the ICL group’s relative weighting

of different harms. It doesn’t, crucially, tell a member of the public how much

more the ICL group values avoiding a Covid-19 death than they do a job loss, or

a child losing a year of education. And unless members of the public know this,

they can’t be sure whether they would have chosen the data set that produced

a higher death rate, irrespective of how high that death rate is and how likely that

data set was to be the better one. Unless the ICL group can tell members of the

public what all their value commitments are, in a fine-grained form like ‘We

think avoiding one Covid-19 death is worth losing 100 child learning years’ for

every single relevant policy consequence, then members of the public won’t be

able to tell whether the ICL group made the same representational decisions

they would have. And the inarticulability thesis suggests it is not feasible for

transparency to take this form.

Instead of merely asking for transparency, we could ask that scientists simply

make the choices that reflect the ‘right’ values (Schroeder 2017). But what

would this mean? Roughly speaking, there are two things we could mean by the

‘right’ purposes and the ‘right’ balances of risks. ‘Right’ here could mean the
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ethically correct ones, or it could mean the ones that are actually held by the

public (Schroeder 2017). Arguably, not being the ethically wrong purposes and

balance of risks is a minimal condition on being the satisfactory ones. A model

that assumes men’s health outcomes are more important than women’s is not an

ethically defensible model. But, also arguably, not being ethically wrong is not

a narrow enough constraint on representational choices in a model. There might

have been, for example, a value commitment about the relative value of

preventing Covid-19 deaths versus preventing job losses, and all their attendant

harms, on which choosing the Hubei data set was the right choice, and another

value commitment in relation to the same consequences on which the DP data

set would have been the right choice. And it might very well have been the case

that reasonable people would disagree about which was the right set of values to

have. If that’s right, then having scientists limit themselves to ethically permis-

sible representational choices will underdetermine those choices and leave them

open to making choices that do not reflect the values of the majority of the

people on whose behalf decision-makers will be acting when they make use of

the model.

4.7 Public Participation in Modelling

In modelling projects that aim to directly inform public policy, it seems to us

that scientists have an obligation to make the ‘right’ choices in the sense of

‘right’ that means ‘in accord with publicly held values’. Something like this line

of argument is defended by Alexandrova and Fabian (2021) with respect to

decisions regarding which ‘thick concepts’ to employ in science. Their idea is

that if scientists are going to theorize about something like ‘well-being’, they

need to use a concept of well-being that accords with the public’s. Here, we are

in broad agreement with them: in fact, we think their basic idea needs to be

extended far more widely to include representational decisions in modelling

generally. To ensure that thick concepts in science reflect public values,

Alexandrova and Fabian (2021) propose a process of ‘co-production’, whereby

scientists and members of the public work together to determine how to

construct relevant measures such as ‘well-being’. A similar process of co-

production to build policy-relevant models seems like a fruitful one to explore,

and in fact various research groups across disciplines have endeavoured to

involve members of the public in participatory modelling projects (Bunka

et al. 2022; Gray et al. 2016; Staniszewska et al. 2021; Voinov and Bousquet

2010; Xie et al. 2021). Currently, it is unclear whether participatory modelling

projects are meeting the goal of ensuring that models reflect public values, and

various challenges with this type of co-production will have to be addressed in
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future research. Among various challenges are the idea that co-production could

become a ‘box-checking’ exercise (Alexandrova and Fabian 2021), that mem-

bers of the public won’t be able to understand what’s going on in the modelling

process, or that modellers won’t be able to articulate the relevant considerations

that would link their values to representational choices.

Prima facie, it seems like asking the public to co-produce a model is a bigger

ask than co-producing a thick concept like well-being. For example, asking

members of the public to weigh in on what aspects of well-being are most

important to them (e.g., having a feeling of purpose in life) requires much less

technical understanding than does expecting them to recognize that shortening

the latency period of a virus will make NPIs look more effective than lengthen-

ing it and therefore implicitly weights as more serious the risk of allowing too

many Covid-19 deaths than the risk of unduly damaging the economy, and by

how much. Or figuring out that one version of a sensitivity analysis privileges

precision over confidence, and by how much. What seems to be required are

normative guidelines for public modelling projects that articulate how repre-

sentational decisions should be made collaboratively between modellers and

stakeholders (Harvard andWinsberg 2023; Husereau et al. 2022). In addition to

this, one might think that normative guidelines are required not only with

respect to how representational decisions should be made, but with respect to

how those decisions should be implemented in codewhen the representations in

question are complex computational models. Indeed, this is the focus of Horner

and Symons (2020), who point to the concrete challenges involved in software

engineering and the various potential errors that can result from this aspect of

modelling practice (cf. Primiero 2014). Horner and Symons (2020) argue that

software engineering standards, too, are negotiable matters that should involve

public deliberation concerning trade-offs (e.g., regarding safety, uncertainty,

urgency, resources, risk, etc.). As representational decisions intersect with

numerous other socially significant decisions throughout the modelling process

(What software should modellers use? Should all models for public decision-

making be ‘open source’? How should such models be validated?), an important

initial question concerns the appropriate scope for public participation in

modelling and corresponding normative guidelines. More philosophical and

empirical work is required to conceptualize and address these questions.

4.8 Conclusion

In this section we used ‘CovidSim’ as an example to illustrate the ways in which

representational choices in modelling, and the stage of model interpretation at

which facts are endorsed, both involve values, and we argued that this places
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moral responsibilities on model-builders, model interpreters, and the policy-

makers who engage with them. Regarding model-builders, we canvassed three

different ways in which they can discharge their responsibilities: by being

transparent about their values, by using ethically correct values, or by appealing

to publicly held values. We highlighted the respects in which the third way

seems to be the only fully satisfactory one of the three, but also by far the most

difficult to achieve.
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