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Abstract. For a proper, Gromov-hyperbolic metric space and a discrete, non-elementary,
group of isometries, we define a natural subset of the limit set at infinity of the group called
the ergodic limit set. The name is motivated by the fact that every ergodic measure which
is invariant for the geodesic flow on the quotient metric space is concentrated on geodesics
with endpoints belonging to the ergodic limit set. We refine the classical Bishop–Jones
theorem proving that the packing dimension of the ergodic limit set coincides with the
critical exponent of the group.
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1. Introduction
The critical exponent of a discrete group of isometries of a proper metric space, defined as

h� := lim sup
T →+∞

1
T

log #(�x ∩ B(x, T )), (1)

is a widely studied invariant, especially in the case of negatively curved spaces. The
classical and celebrated Bishop–Jones theorem relates h� to fine analytical properties of
the boundary at infinity of � if X is Gromov-hyperbolic. It states what follows.

THEOREM 1.1. [BJ97, DSU17, Pau97] Let X be a proper, δ-hyperbolic metric space and
let � < Isom(X) be non-elementary and discrete. Then,

h� = HD(�rad).

We briefly explain the terms appearing in Theorem 1.1, we refer to §§2, 3, and 4 for more
details. Every � as in the statement defines a limit set �, which is the set of accumulation
points on the boundary at infinity ∂X of X of the set �x, with x ∈ X fixed. This set does
not depend on the choice of x and it is the smallest closed �-invariant subset of ∂X. The
boundary ∂X of X admits several visual metrics Dx,a depending on the choice of a point
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2 N. Cavallucci

x ∈ X and a parameter a > 0. Given a subset Y ⊆ ∂X, one can compute the classical
notions of fractal dimensions of Y with respect to all these metrics. It turns out that
denoting for instance by HDDx,a (Y ) the Hausdorff dimension of Y computed with respect
to the metric Dx,a , then a · HDDx,a (Y ) = b · HDDx′ ,a′ (Y ) for every admissible value of a
and a′, and every choice of x and x′. This common value is simply denoted by HD(Y )

and it is called the generalized Hausdorff dimension of the set Y. In §3, we will see a
natural construction of HD(·) via generalized visual balls. A similar construction, with
similar properties as above, holds for other notions of dimensions, allowing us to define the
generalized Minkowski dimension MD(·) and the generalized packing dimension PD(·).
We refer to §3 for more details.

By definition, every point z of the limit set � of � is the limit of a sequence of orbit
points {gix}i∈N. However, this sequence can converge to z in different ways. A point
z ∈ ∂X is called radial if there exists a geodesic ray ξ and a sequence {gix}i∈N converging
to z such that supi∈N d(ξ , gix) < ∞. The set of all radial points, denoted by �rad, appears
in Theorem 1.1. In particular, the critical exponent of �, as defined in equation (1),
coincides with the generalized Hausdorff dimension of the radial limit set. In Theorem 5.1,
we will recall the beautiful improvement of [DSU17], stating, among other things, that one
can find a smaller subset �u-rad of �rad, called the set of uniformly radial limit points, for
which the equality in Theorem 1.1 still holds.

However, one might wonder if the conclusion of Theorem 1.1 continues to hold if
we replace the generalized Hausdorff dimension with other fractal dimensions. This is
not possible for the generalized Minkowski dimension since MD(�u-rad) = MD(�rad) =
MD(�), because � is the closure of the other two sets and it is known that, generically,
MD(�) > h� . Indeed in [DPPS09], there is an example of a pinched negatively curved
Riemannian manifold (M , g) admitting a non-uniform lattice � (that is, the volume of
�\M is finite) such that h� < hvol(M), where hvol(M) is the volume entropy of M. Since
� is a lattice, we have � = ∂M , so MD(�) = hvol(M) > h� by [Cav22, Theorem B].

Concerning the packing dimension, our main finding is the following contribution to
Theorem 1.1.

THEOREM A. Let X be a proper, δ-hyperbolic metric space and let � < Isom(X) be
non-elementary and discrete. Then

h� = PD(�erg).

Here �erg, called the ergodic limit set, is a subset satisfying �u-rad ⊆ �erg ⊆ �rad. Its
precise definition will be given in §4. The name will be explained in a moment. Before that,
we report that the same techniques used for the proof of Theorem A, actually a simplified
version of them, will be used to prove that the limit superior in equation (1) is a true limit,
generalizing Roblin’s result (cf. [Rob02]) holding for CAT(−1) spaces.

THEOREM B. Let X be a proper, δ-hyperbolic metric space, and let � < Isom(X) be
discrete and non-elementary. Then

lim sup
T →+∞

1
T

log #(�x ∩ B(x, T )) = lim inf
T →+∞

1
T

log #(�x ∩ B(x, T )) = h� .
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Bishop–Jones’ theorem and the ergodic limit set 3

Let us come back to the motivation behind the name of the ergodic limit set �erg. It is
related to the geodesic flow on the quotient metric space �\X. To be precise, we denote
by Geod(X) the space of geodesic lines of X. The group � acts by homeomorphisms
on Geod(X) and the quotient is denoted by Proj-Geod(X). For instance, it coincides
with the space of local geodesics of �\X when X is CAT(0) and � is torsion-free, see
Remark 6.1. The natural action of R by time reparameterizations �t on Geod(X) descends
to a well-defined flow �t on Proj-Geod(X), called the geodesic flow. In the study of the
dynamical system (Proj-Geod(�\X), �1), it is classically relevant to study �1-invariant
probability measures that are ergodic. The next result motivates the name of the ergodic
limit set.

THEOREM C. Let X be a proper, geodesic, δ-hyperbolic space. Let � < Isom(X) be
discrete. Let μ be an ergodic, �1-invariant, probability measure on Proj-Geod(�\X).
Then μ is concentrated on the set of equivalence classes of geodesics with endpoints
belonging to �erg.

The results of Theorems A and C will be used in [Cav24] to provide another proof of
[DT23, §6 and Remark 6.1]. Indeed, in case X is CAT(−1), the packing dimension of �erg

is naturally related to the entropy of a measure as in the statement of Theorem C.

2. Gromov-hyperbolic spaces
Let (X, d) be a metric space. The open (respectively closed) ball of radius r and center
x ∈ X is denoted by B(x, r) (respectively B(x, r)). If we need to specify the metric, we
will write Bd(x, r) (respectively Bd(x, r)). A geodesic segment is an isometric embedding
γ : I → X, where I = [a, b] ⊆ R is a bounded interval. The points γ (a), γ (b) are called
the endpoints of γ . A metric space X is called geodesic if for every couple of points
x, y ∈ X, there exists a geodesic segment whose endpoints are x and y. Every such
geodesic segment will be denoted, with an abuse of notation, by [x, y]. A geodesic ray is an
isometric embedding ξ : [0, +∞) → X while a geodesic line is an isometric embedding
γ : R → X.

Let X be a geodesic metric space and let x, y, z ∈ X. The Gromov product of y and z
with respect to x is defined as

(y, z)x = 1
2 (d(x, y) + d(x, z) − d(y, z)).

The space X is called δ-hyperbolic if for every x, y, z, w ∈ X, the following 4-points
condition holds:

(x, z)w ≥ min{(x, y)w, (y, z)w} − δ (2)

or, equivalently,

d(x, y) + d(z, w) ≤ max{d(x, z) + d(y, w), d(x, w) + d(y, z)} + 2δ. (3)

The space X is Gromov hyperbolic if it is δ-hyperbolic for some δ ≥ 0.
We recall that Gromov-hyperbolicity should be considered as a negative-curvature con-

dition at large scale: for instance, every CAT(κ) metric space, where κ < 0 is δ-hyperbolic
for a constant δ depending only on κ . The converse is false, essentially because the CAT(κ)
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4 N. Cavallucci

condition controls the local geometry much better than the Gromov-hyperbolicity due to
the convexity of the distance functions in such spaces (see for instance [CS21, CS24,
LN19]).

2.1. Gromov boundary. Let X be a proper, δ-hyperbolic metric space and let x be a point
of X. The Gromov boundary of X is defined as the quotient

∂X =
{
(zn)n∈N ⊆ X | lim

n,m→+∞(zn, zm)x = +∞
}

/∼,

where (zn)n∈N is a sequence of points in X and ∼ is the equivalence relation defined by
(zn)n∈N ∼ (z′

n)n∈N if and only if limn,m→+∞(zn, z′
m)x = +∞. We will write z = [(zn)] ∈

∂X for short, and we say that (zn) converges to z. This definition does not depend on the
basepoint x. There is a natural topology on X ∪ ∂X that extends the metric topology of X.

Every geodesic ray ξ defines a point ξ+ = [(ξ(n))n∈N] of the Gromov boundary ∂X:
we say that ξ joins ξ(0) = y to ξ+ = z. Moreover, for every z ∈ ∂X and every x ∈ X,
it is possible to find a geodesic ray ξ such that ξ(0) = x and ξ+ = z. Indeed, if (zn) is
a sequence of points converging to z then, by properness of X, the sequence of geodesics
[x, zn] subconverges to a geodesic ray ξ which has the properties above (cf. [BH13, Lemma
III.3.13]). A geodesic ray joining x to z ∈ ∂X will be denoted by ξx,z or simply [x, z]. The
relation between Gromov product and geodesic ray is highlighted in the following lemma.

LEMMA 2.1. [Cav23, Lemma 4.2] Let X be a proper, δ-hyperbolic metric space, z,
z′ ∈ ∂X, x ∈ X, b > 0. Then:
(i) if (z, z′)x ≥ T , then d(ξx,z(T − δ), ξx,z′(T − δ)) ≤ 4δ;

(ii) if d(ξx,z(T ), ξx,z′(T )) < 2b, then (z, z′)x > T − b.

The following is a standard computation, see [BCGS17, Proposition 8.10] for instance.

LEMMA 2.2. Let X be a proper, δ-hyperbolic metric space. Then every two geodesic rays
ξ , ξ ′ with same endpoints at infinity are at distance at most 8δ, that is, there exist t1, t2 ≥ 0
such that t1 + t2 = d(ξ(0), ξ ′(0)) and d(ξ(t + t1), ξ ′(t + t2)) ≤ 8δ for all t ∈ R.

2.2. Visual metrics. When X is a proper, δ-hyperbolic metric space, it is known that the
boundary ∂X is metrizable. A metric Dx,a on ∂X is called a visual metric of center x ∈ X

and parameter a ∈ (0, 1/(2δ · log2 e)) if there exists V > 0 such that for all z, z′ ∈ ∂X, it
holds that

1
V

e−a(z,z′)x ≤ Dx,a(z, z′) ≤ V e−a(z,z′)x . (4)

For every a as before and every x ∈ X, there exists a visual metric of parameter a and
center x, see [Pau96]. As in [Cav23, Pau96], we define the generalized visual ball of
center z ∈ ∂X and radius ρ ≥ 0 as

B(z, ρ) =
{
z′ ∈ ∂X s.t. (z, z′)x > log

1
ρ

}
.

It is comparable to the metric balls of the visual metrics on ∂X.
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Bishop–Jones’ theorem and the ergodic limit set 5

LEMMA 2.3. Let Dx,a be a visual metric of center x and parameter a on ∂X. Then for
every z ∈ ∂X and for every ρ > 0, it holds that

BDx,a

(
z,

1
V

ρa

)
⊆ B(z, ρ) ⊆ BDx,a (z, Vρa).

It is classical that generalized visual balls are related to shadows, whose definition is the
following. Let x ∈ X be a basepoint. The shadow of radius r > 0 caste by a point y ∈ X

with center x is the set:

Shadx(y, r) = {z ∈ ∂X s.t. [x, z] ∩ B(y, r) �= ∅ for every ray [x, z]}.
For our purposes, we just need the following lemma.

LEMMA 2.4. [Cav23, Lemma 4.8] Let X be a proper, δ-hyperbolic metric space. Let
z ∈ ∂X, x ∈ X, and T ≥ 0. Then for every r > 0, it holds that

Shadx(ξx,z(T ), r) ⊆ B(z, e−T +r ).

3. Hausdorff and packing dimensions
In this section, we recall briefly the definitions of Hausdorff and packing dimensions of
a subset of a metric space. Then we will adapt these constructions and results to the case
of the boundary at infinity of a δ-hyperbolic metric space. The facts presented here are
classical and can be found easily in the literature.

3.1. Definitions of Hausdorff and packing dimensions. Let (X, d) be a metric space and
α ≥ 0. The α-Hausdorff measure of a Borel subset B ⊂ X is defined as

Hα
d (B) = lim

η→0
inf

{ ∑
i∈N

rα
i such that B ⊆

⋃
i∈N

B(xi , ri) and ri ≤ η

}
.

The argument of the limit is increasing when η tends to 0, so the limit exists. This formula
actually defines a Borel measure on X. To be precise, what we introduced is the definition of
the spherical Hausdorff measure. It is comparable to the classical Hausdorff measure. The
Hausdorff dimension of a Borel subset B of X, denoted HDd(B), is the unique real number
α ≥ 0 such that Hα′

d (B) = 0 for every α′ > α and Hα′
d (B) = +∞ for every α′ < α.

The packing dimension is defined in a similar way, but using disjoint balls inside B
instead of coverings. For every α ≥ 0 and for every Borel subset B of X, we define

Pα
d (B) = lim

η→0
sup

{ ∑
i∈N

rα
i such that B(xi , ri) are disjoint, xi ∈ B, and ri ≤ η

}
.

This is not a measure on X but only a pre-measure. By a standard procedure, one can define
the α-packing measure as

P̂α
d (B) = inf

{ ∞∑
k=1

Pα
d (Bk) such that B ⊆

∞⋃
k=1

Bk , Bk Borel
}

.

The packing dimension of a Borel subset B ⊆ X, denoted PDd(B), is the unique real
number α ≥ 0 such that P̂α′

d (B) = 0 for every α′ > α and P̂α′
d (B) = +∞ for every
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α′ < α. The packing dimension has another useful interpretation (cf. [Fal04, Proposition
3.8]): for every Borel subset B ⊆ X, we have

PDd(B) = inf
{

sup
k

MDd(Bk) such that B ⊆
∞⋃

k=1

Bk , Bk Borel
}

. (5)

The quantity MDd denotes the upper Minkowski dimension, namely:

MDd(B) = lim sup
r→0

log Covd(B, r)

log(1/r)
, (6)

where B is any subset of X and Covd(B, r) denotes the minimal number of d-balls of radius
r needed to cover B. Taking the limit inferior in place of the limit superior in equation (6),
one defines the lower Minkowski dimension of B, denoted MDd(B).

3.2. Visual dimensions. Let X be a proper, δ-hyperbolic metric space and let x ∈ X. The
boundary at infinity ∂X supports several visual metrics Dx,a , so the Hausdorff dimension,
the packing dimension, and the Minkowski dimension of subsets of ∂X are well defined
with respect to Dx,a . There is a way to define universal versions of these quantities that do
not depend neither on x nor on a. Fix α ≥ 0. For a Borel subset B of ∂X, we set, following
[Pau96],

Hα(B) = lim
η→0

inf
{ ∑

i∈N
ρα

i such that B ⊆
⋃
i∈N

B(zi , ρi) and ρi ≤ η

}
,

where B(zi , ρi) are generalized visual balls. As in the classical case, the visual Hausdorff
dimension of B is defined as the unique α ≥ 0 such that Hα′

(B) = 0 for every α′ > α and
Hα′

(B) = +∞ for every α′ < α. The visual Hausdorff dimension of the Borel subset B is
denoted by HD(B). By Lemma 2.3, see also [Pau96], we have HD(B) = a · HDDx,a (B)

for every visual metric Dx,a of center x and parameter a.
In the same way, we can define the visual α-packing pre-measure of a Borel subset B of

∂X by

Pα(B) = lim
η→0

sup
{ ∑

i∈N
ρα

i such that B(zi , ρi) are disjoint, xi ∈ B, and ρi ≤ η

}
,

where B(zi , ρi) are again generalized visual balls. As usual, we can define the visual
α-packing measure by

P̂α(B) = inf
{ ∞∑

k=1

Pα(Bk) such that B ⊆
∞⋃

k=1

Bk , Bk Borel
}

.

Consequently, the visual packing dimension of a Borel set B is defined, denoted by PD(B).
Using Lemma 2.3, as in the case of the Hausdorff measure (see [Pau96]), one can check
that for every visual metric Dx,a of center x and parameter a, it holds that

1
V a

P̂α/a
Dx,a

(B) ≤ P̂α(B) ≤ V aP̂α/a
Dx,a

(B)
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Bishop–Jones’ theorem and the ergodic limit set 7

for every α ≥ 0 and every Borel subset B ⊆ ∂X. Therefore, for every Borel set B, it holds
that PD(B) = a · PDDx,a (B).

Using generalized visual balls, instead of metric balls with respect to a visual metric,
one can define the visual upper and lower Minkowski dimension of a subset B ⊆ ∂X:

MD(B) = lim sup
ρ→0

log Cov(B, ρ)

log ρ
, MD(B) = lim inf

ρ→0

log Cov(B, ρ)

log ρ
,

where Cov(B, ρ) denotes the minimal number of generalized visual balls of radius ρ

needed to cover B. Using again Lemma 2.3, one has MD(B) = a · MDDx,a (B) for every
Borel set B, and every visual metric of center x and parameter a. The same holds for the
lower Minkowski dimension.

It is easy to check that for every Borel set B of ∂X, the numbers HD(B), PD(B),
MD(B), MD(B) do not depend on x, see [Pau96, Proposition 6.4], and their definition
is independent also on a. Using the classical facts holding for metric spaces, we get

HD(B) ≤ PD(B) ≤ MD(B) ≤ MD(B) (7)

and

PD(B) = inf
{

sup
k

MD(Bk) such that B ⊆
∞⋃

k=1

Bk , Bk Borel
}

(8)

for every Borel subset B of ∂X.

4. Limit sets of discrete groups of isometries
If X is a proper metric space, we denote its group of isometries by Isom(X) and we endow
it with the uniform convergence on compact subsets of X. A subgroup � of Isom(X) is
called discrete if the following equivalent conditions hold:
(a) � is discrete as a subspace of Isom(X);
(b) for all x ∈ X and R ≥ 0, the set 
R(x) = {g ∈ � such that gx ∈ B(x, R)} is finite.
The critical exponent of a discrete group of isometries � acting on a proper metric space
X can be defined using the Poincaré series, or alternatively [Cav23, Coo93], as

h�(X) = lim sup
T →+∞

1
T

log #(�x ∩ B(x, T )),

where x is a fixed point of X. This quantity does not depend on the choice of x. In the
following, we will often write h�(X) =: h� . Taking the limit inferior instead of the limit
superior, we define the lower critical exponent, denoted by h�(X). In [Rob02], it is proved
that if � is a discrete, non-elementary group of isometries of a CAT(−1) space, then
h�(X) = h�(X). Theorem B generalizes this result to proper, δ-hyperbolic spaces.

We specialize the situation to the case of a proper, δ-hyperbolic metric space X. Every
isometry of X acts naturally on ∂X and the resulting map on X ∪ ∂X is a homeomorphism.
The limit set �(�) of a discrete group of isometries � is the set of accumulation points of
the orbit �x on ∂X, where x is any point of X; it is the smallest �-invariant closed set of
the Gromov boundary (cf. [Coo93, Theorem 5.1]) and it does not depend on x.
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There are several interesting subsets of the limit set: the radial limit set, the uniformly
radial limit set, etc. They are related to important sets of the geodesic flow on the quotient
space �\X. We will see an instance in the second part of the paper. To recall their
definition, we need to introduce a more general class of subsets of ∂X.

We fix a basepoint x ∈ X. Let τ and � = {ϑi}i∈N be respectively a positive real number
and an increasing sequence of real numbers with limi→+∞ ϑi = +∞. We define �τ ,�(�)

as the set of points z ∈ ∂X such that there exists a geodesic ray [x, z] satisfying the
following: for every i ∈ N, there exists a point yi ∈ [x, z] with d(x, yi) ∈ [ϑi , ϑi+1] such
that d(yi , �x) ≤ τ . We observe that up to change τ with τ + 8δ, the definition above does
not depend on the choice of the geodesic ray [x, z], by Lemma 2.2.

LEMMA 4.1. In the situation above, it holds that:
(i) �τ ,�(�) ⊆ �(�);

(ii) the set �τ ,�(�) is closed.

Proof. The first statement is obvious, so we focus on statement (ii). Let zk ∈ �τ ,�(�) be
a sequence converging to z∞. Let ξk = [x, zk] be a geodesic ray as in the definition of
�τ ,�(�). We know that, up to a subsequence, the sequence ξk converges uniformly on
compact sets of [0, +∞) to a geodesic ray ξ∞ = [x, z∞]. We fix i ∈ N and we take points
yk
i with d(x, yk

i ) ∈ [ϑi , ϑi+1] and d(yk
i , �x) ≤ τ . The sequence yk

i converges to a point
y∞
i ∈ [x, z∞] with d(x, y∞

i ) ∈ [ϑi , ϑi+1]. Moreover, clearly d(y∞
i , �x) ≤ τ . Since this

is true for every i ∈ N, we conclude that z∞ ∈ �τ ,�(�).

We can now introduce some interesting subsets of the limit set of �. Let �rad be the
set of increasing, unbounded sequences of real numbers. The radial limit set is classically
defined as

�rad(�) =
⋃
τ≥0

⋃
�∈�rad

�τ ,�(�).

The uniform radial limit set is defined (see [DSU17]) as

�u-rad(�) =
⋃
τ≥0

�τ (�),

where �τ (�) = �τ ,{iτ }(�).
Another interesting set is what we call the ergodic limit set, defined as

�erg(�) =
⋃
τ≥0

⋃
�∈�erg

�τ ,�(�),

where a sequence � = {ϑi} belongs to �erg if there exists limi→+∞(ϑi/i) ∈ (0, +∞).
The name is justified by Theorem C stating that every ergodic measure which is invariant
by the geodesic flow on �\X is concentrated on geodesics whose endpoints belong to �erg.

When � is clear in the context, we will simply write �τ ,�, �rad, �u-rad, �erg, �,
omitting �.

LEMMA 4.2. In the situation above, the sets �rad, �u-rad, and �erg are �-invariant and
do not depend on x.
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Bishop–Jones’ theorem and the ergodic limit set 9

Proof. Let y be another point of X and let z ∈ ∂X. By Lemma 2.2, for every couple
of geodesic rays ξ = [y, z], ξ ′ = [x, z], there are t1, t2 ≥ 0 such that t1 + t2 ≤ d(x, y)

and d(ξ(t + t1), ξ ′(t + t2)) ≤ 8δ. This means that d(ξ(t), ξ ′(t)) ≤ d(x, y) + 8δ for every
t ≥ 0. It is then straightforward to see that if z ∈ �τ ,� (as defined with respect to x), then
it belongs to �τ+d(x,y)+8δ,� as defined with respect to y. This shows the thesis.

5. Bishop–Jones’ theorem
The celebrated Bishop–Jones theorem, in the general version of [DSU17], states the
following.

THEOREM 5.1. [BJ97, DSU17, Pau97] Let X be a proper, δ-hyperbolic metric space and
let � < Isom(X) be discrete and non-elementary. Then

h� = HD(�rad) = HD(�u-rad) = sup
τ≥0

HD(�τ ).

To introduce the techniques we will use in the proof of Theorem A, we start with the
following proof.

Proof of Theorem B. By Theorem 5.1, we have

h�(X) = h� = sup
τ≥0

HD(�τ ) ≤ sup
τ≥0

MD(�τ ).

So it would be enough to show that

sup
τ≥0

MD(�τ ) ≤ h�(X).

We fix τ ≥ 0. For every ε > 0, we take a subsequence Tj → +∞ such that

1
Tj

log #(�x ∩ B(x, Tj )) ≤ h�(X) + ε

for every j. We define ρj = e−Tj : notice that ρj → 0. Let kj ∈ N be such that (kj − 1)τ ≤
Tj < kj τ . If z ∈ �τ , then there exists a geodesic ray [x, z] and a point yj ∈ [x, z] with
d(x, yj ) ∈ [(kj − 3)τ , (kj − 2)τ ] and d(yj , gx) ≤ τ for some g ∈ �. This g satisfies
d(x, gx) ≤ (kj − 1)τ ≤ Tj . Moreover, z ∈ Shadx(gx, τ + 8δ), since d(gx, [x, z]) ≤ τ

and since every two parallel geodesic rays are 8δ apart by Lemma 2.2. We showed that
the set of shadows {Shadx(gx, τ + 8δ)} with g ∈ � such that (kj − 4)τ ≤ d(x, gx) ≤
(kj − 1)τ ≤ Tj cover �τ . The cardinality of this set of shadows is at most e(h�(X)+ε)Tj ≤
e(h�(X)+ε)kj τ . Among these shadows indexed by these elements g ∈ �, we select those
that intersect �τ . For these, the construction above gives a point zg ∈ �τ , a point yg along
[x, zg] such that (kj − 3)τ ≤ d(x, yg) ≤ (kj − 2)τ and d(yg , gx) ≤ τ . Therefore,

Shadx(gx, τ + 8δ) ⊆ Shadx(yg , 2τ + 8δ) ⊆ B(zg , e2τ+8δe−d(x,yg))

⊆ B(zg , e5τ+8δρj ), (9)
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10 N. Cavallucci

by Lemma 2.4. This shows that �τ is covered by at most e(h�(X)+ε)kj τ generalized visual
balls of radius e5τ+8δρj . Therefore,

MD(�τ ) ≤ lim inf
j→+∞

log Cov(�τ , e5τ+8δρj )

log(1/e5τ+8δρj )

≤ lim inf
j→+∞

(h�(X) + ε)kj τ

−5τ − 8δ + (kj − 1)τ
= h�(X) + ε.

By the arbitrariness of ε, we conclude the proof.

There are several remarks we can do about this proof.
(a) The proof is still valid for every sequence Tj → +∞, so it implies also

that supτ≥0 MD(�τ ) ≤ h� . Therefore, we have another improvement of the
Bishop–Jones theorem, namely:

sup
τ≥0

HD(�τ ) = sup
τ≥0

MD(�τ ) = sup
τ≥0

MD(�τ ) = h� . (10)

(b) �u-rad = ⋃
τ∈N �τ , so by item (a) and equation (8), we deduce that PD(�u-rad) = h� .

(c) We can get the same estimate of the Minkowski dimensions from above,
weakening the assumptions on the sets �τ . Indeed, take a set �τ ,� such that
lim supi→+∞(ϑi+1/ϑi) = 1. Then we can cover this set by shadows caste by points
of the orbit �x whose distance from x is between ϑij and ϑij +1, with ij → +∞
when j → +∞. Therefore, arguing as before, we obtain

MD(�τ ,�) ≤ lim inf
j→+∞

(h�(X) + ε)ϑij +1

ϑij −1
≤ h�(X) + ε,

where the last step follows by the asymptotic behavior of the sequence �. A similar
estimate holds for the upper Minkowski dimension.

(d) One could be tempted to conclude that the packing dimension of the set⋃
τ≥0

⋃
� �τ ,�, where � is a sequence such that lim supi→+∞(ϑi+1/ϑi) = 1,

is ≤ h� . However, this is not necessarily true since in equation (8), a countable
covering is required and not an arbitrary covering. That is why the estimate of
the packing dimension of the ergodic limit set �erg in Theorem A is not so easy.
However, as we will see in a moment, the ideas behind the proof are similar to those
used in the proof of Theorem B.

Proof of Theorem A. We notice it is enough to prove that PD(�erg) ≤ h� . The strategy is
the following: for every ε > 0, we want to find a countable family of sets {Bk}k∈N of ∂X

such that �erg ⊆ ⋃∞
k=1 Bk and supk∈N MD(Bk) ≤ (h� + ε)(1 + ε). Indeed, if this is true,

then by equation (8):

PD(�erg) ≤ sup
k∈N

MD(Bk) ≤ (h� + ε)(1 + ε),

and by the arbitrariness of ε, the thesis is true.
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So we fix ε > 0 and we proceed to define the countable family. For m, n ∈ N and
l ∈ Q>0, we define

Bm,l,n =
⋃
�

�m,�,

where � is taken among all sequences such that for every i ≥ n, it holds that

l − ηl ≤ ϑi

i
≤ l + ηl ,

where ηl = (ε/(2 + ε)) · l.
First of all, if z ∈ �erg, we know that z ∈ �m,� for some m ∈ N and � satisfying

limi→+∞(ϑi/i) = L ∈ (0, ∞), in particular, there exists n ∈N such that L−β ≤ ϑi/i ≤
L + β for every i ≥ n, where β = ((2 + ε)/(4 + 3ε)) · ηL. Now we take l ∈ Q>0 such that
|L − l| < β. Then it is easy to see that [L − β, L + β] ⊆ [l − 2β, l + 2β] and ηl ≥
ηL − (ε/(2 + ε))β ≥ 2β. So by definition, z ∈ Bm,l,n; therefore, �erg ⊆ ⋃

m,l,n Bm,l,n.
Now we need to estimate the upper Minkowski dimension of each set Bm,l,n. We take

T0 big enough such that
1
T

log #(�x ∩ B(x, T )) ≤ h� + ε

for every T ≥ T0. Let us fix ρ ≤ e− max{T0,n(l−ηl)}. We consider j ∈ N with the following
property: (j − 1)(l − ηl) < log(1/ρ) ≤ j (l − ηl). We observe that the condition on ρ

gives log(1/ρ) ≥ n(l − ηl), implying j ≥ n.
We consider the set of elements g ∈ � such that

j (l − ηl) − m ≤ d(x, gx) ≤ (j + 1)(l + ηl) + m. (11)

For any such g, we consider the shadow Shadx(gx, 2m + 8δ). We claim that this
set of shadows covers Bm,l,n. Indeed, every point z of Bm,l,n belongs to some �m,�

with l − ηl ≤ ϑi/i ≤ l + ηl for every i ≥ n. In particular, this holds for i = j , and so
j (l − ηl) ≤ ϑj ≤ j (l + ηl). Hence, there exists a point y along a geodesic ray [x, z]
satisfying:

j (l − ηl) ≤ ϑj ≤ d(x, y) ≤ ϑj+1 ≤ (j + 1)(l + ηl), d(y, �x) ≤ m.

So there is g ∈ � satisfying equation (11) such that z ∈ Shadx(gx, 2m + 8δ), by Lemma
2.2. Moreover, these shadows are caste by points at distance at least j (l − ηl) − m from
x, so at distance at least log(1/emρ) from x. We need to estimate the number of such
g elements. By the assumption on ρ, we get that this number is less than or equal to
e(h�+ε)[(j+1)(l+ηl)+m]. Hence, using again Lemma 2.4, we conclude that Bm,l,n is covered
by at most e(h�+ε)[(j+1)(l+ηl)+m] generalized visual balls of radius e5m+8δρ. Thus,

MD(Bm,l,n) = lim sup
ρ→0

log Cov(Bm,l,n, e5m+8δρ)

log(1/e5m+8δρ)

≤ lim sup
j→+∞

(h� + ε)[(j + 1)(l + ηl) + m]
−5m − 8δ + (j − 1)(l − ηl)

≤ (h� + ε)(1 + ε),

where the last inequality follows from the choice of ηl .
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6. An interpretation of the ergodic limit set
Let X be a proper metric space. The space of parameterized geodesic lines of X is

Geod(X) = {γ : R → X isometric embedding},
considered as a subset of C0(R, X), the space of continuous maps from R to X endowed
with the uniform convergence on compact subsets of R. By lower semicontinuity of
the length under uniform convergence (cf. [BH13, Proposition I.1.20]), we have that
Geod(X) is closed in C0(R, X). There is a natural action of R on Geod(X) defined by
reparameterization:

�tγ (·) = γ (· + t)

for every t ∈ R. It is a continuous action, that is, the map �t is a homeomorphism of
Geod(X) for every t ∈ R and �t ◦ �s = �t+s for every t , s ∈ R. This action is called the
geodesic flow on X.

Let � be a discrete group of isometries of X. We consider the quotient space �\X and
the standard projection π : X → �\X. On the quotient, a standard pseudometric is defined
by d(πx, πy) = infg∈� d(x, gy). Since the action is discrete, then this pseudometric is
actually a metric. Indeed, if d(πx, πy) = 0, then for every n > 0, there exists gn ∈ � such
that d(x, gny) ≤ 1/n. In particular, d(x, gnx) ≤ d(x, gny)+d(gny, gnx) ≤ d(x, y)+1
for every n. The cardinality of these gn is finite, and thus there must be one of these gn

such that d(x, gny) = 0, that is, x = gny, and so πx = πy.
The group � acts on Geod(X) by (gγ )(·) = g(γ (·)). This action is by homeomorphisms

and we define the space

Proj-Geod(�\X) := �\Geod(X),

endowed with the quotient topology. The elements of Proj-Geod(�\X) will be denoted
by [γ ], where γ ∈ Geod(X) is a representative. The action of � commutes with the flow
�t in the sense that g ◦ �t = �t ◦ g for every g ∈ � and t ∈ R. Therefore, the flow �t

defines a flow on Proj-Geod(�\X), that is, an action of R by homeomorphisms. This flow,
still denoted �t , is called the geodesic flow on �\X.

Remark 6.1. The name is a bit improper in this generality. Indeed, Proj-Geod(�\X) does
not coincide with the space of local geodesics of �\X. However, when � acts freely, then
every element of Proj-Geod(�\X) is a local geodesic of �\X. If, additionally, every local
geodesic of X is a geodesic, then Proj-Geod(�\X) is naturally homeomorphic to the space
of local geodesics of �\X. In this case, the flow on Proj-Geod(�\X) coincides with the
geodesic flow on the space of all local geodesics of �\X. The assumptions above are
satisfied for instance when X is Busemann convex (e.g. CAT(0)) and � is torsion-free.
Observe that the space Proj-Geod(�\X) is that studied also in [DT23] in the CAT(−1)

setting.

The couple (Proj-Geod(�\X), �1), where �1 is the geodesic flow of �\X at time 1,
is a dynamical system. An important role in its study is played by �1-invariant prob-
ability measures, that is, Borel measures μ on Proj-Geod(�\X) with total mass 1 and
such that (�1)#μ = μ, where (�1)# denotes the pushforward. The set of �1-invariant
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probability measures is a closed, convex subset of all Borel measures on Proj-Geod(�\X),
whose extremal points are ergodic. We recall that a �1-invariant probability measure
is ergodic if for every �1-invariant subset A ⊆ Proj-Geod(�\X), that is, such that
�−1

1 (A) = �−1(A) ⊆ A, we have μ(A) ∈ {0, 1}. Ergodic measures satisfy the famous
Birkhoff ergodic theorem that we now state in our specific situation.

PROPOSITION 6.2. Let X be a proper metric space, let � < Isom(X) be discrete. Let
(Proj-Geod(�\X), �1) be the geodesic flow on �\X as defined above. Let μ be an ergodic,
�1-invariant probability measure. For every f ∈ L1(μ), it holds that

lim
N→+∞

1
N

N−1∑
j=0

(f ◦ �j)([γ ]) =
∫

f dμ (12)

for μ-almost every (a.e.) [γ ] ∈ Proj-Geod(�\X). In other words, the limit in equation (12)
exists for μ-a.e. [γ ] ∈ Proj-Geod(�\X) and equals the right-hand side.

The next result, which is a reformulation of Theorem C, motivates the name of the
ergodic limit set.

THEOREM 6.3. Let X be a proper, δ-hyperbolic space. Let � < Isom(X) be discrete
and non-elementary. Let μ be an ergodic, �1-invariant, probability measure on
Proj-Geod(�\X). Then μ is concentrated on the set

{[γ ] ∈ Proj-Geod(�\X) : γ ± ∈ �erg}.
Notice that the property γ ± ∈ �erg is well defined, that is, it does not depend on the

representative of the class [γ ]. This follows by the �-invariance of �erg, see Lemma 4.2.

Proof. Since X is proper, we can find a countable set {xi}i∈N ⊆ X such that X =⋃
i∈N B(xi , 1). For every i, we define the sets

Vi := {γ ∈ Geod(X) : γ (0) ∈ B(xi , 1)}
and

Ui := �\Vi ⊆ Proj-Geod(�\X).

Since {Vi}i∈N is a covering of Geod(X), then also {Ui}i∈N is a covering of
Proj-Geod(�\X). In particular, there must be some i0 ∈ N such that μ(Ui0) = c > 0. To
every [γ ] ∈ Ui0 , we associate the set of integers �([γ ]) = {ϑi([γ ])} defined recursively
by

ϑ0([γ ]) = 0, ϑi+1([γ ]) = min{n ∈ N, n > ϑi([γ ]) such that �n([γ ]) ∈ Ui0}.
We apply Proposition 6.2 to the indicator function of the set Ui0 , namely χUi0

, obtaining
that for μ-a.e. [γ ] ∈ Proj-Geod(�\X), it holds that

there exists lim
N→+∞

1
N

N−1∑
j=0

(χUi0
◦ �j)([γ ]) = μ(Ui0) = c ∈ (0, 1].
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We remark that (χUi0
◦ �j)([γ ]) = 1 if and only if j ∈ �([γ ]) and it is 0 otherwise. So

lim
N→+∞

1
N

N−1∑
j=0

(χUi0
◦ �j)([γ ]) = lim

N→+∞
#�([γ ]) ∩ [0, N − 1]

N
,

and the right-hand side is by definition the density of the set �([γ ]). It is classical that,
given the standard increasing enumeration {ϑ0([γ ]), ϑ1([γ ]), . . .} of �([γ ]), it holds that

lim
N→+∞

#�([γ ]) ∩ [0, N − 1]
N

= lim
N→+∞

N

ϑN([γ ])
.

Putting all together, we conclude that for μ-a.e.[γ ] ∈ Proj-Geod(�\X), the following is
true:

there exists lim
N→+∞

ϑN([γ ])
N

= 1
c

∈ [1, +∞). (13)

In the same way, applying the same argument to the flow at time −1, we get that for μ-a.e.
[γ ] ∈ Proj-Geod(�\X), we have

there exists lim
N→+∞

ϑN([−γ ])
N

= 1
c

∈ [1, +∞). (14)

Here, −γ denotes the curve −γ (t) = γ (−t). We deduce that equations (13) and (14) hold
together for μ-a.e. [γ ] ∈ Proj-Geod(�\X). Finally, we need to prove that for every [γ ] ∈
Proj-Geod(�\X) satisfying equations (13) and (14), we have γ ± ∈ �erg. We show that
γ + ∈ �erg, the other being similar. We notice that an integer n satisfies n ∈ �([γ ]) if and
only if there exists a representative gγ of [γ ], with g ∈ �, such that �n(gγ ) ∈ Vi0 , that is,
gγ (n) ∈ B(xi0 , 1). In other words, n ∈ �([γ ]) if and only if

d(γ (n), �xi0) < 1. (15)

We choose xi0 as the basepoint of X. We fix a geodesic ray ξ = [xi0 , γ +]. By Lemma 2.2,
we have that d(ξ(t), γ (t)) ≤ 8δ + 1 for every t ≥ 0. This, together with equation (15) says
that d(ξ(ϑN([γ ])), �xi0) < 8δ + 2. By definition, this means that γ + ∈ �τ ,�([γ ]), where
τ = 8δ + 2. Finally, we observe that the sequence �([γ ]) = {ϑN([γ ])} satisfies equation
(13), which is exactly the condition that defines a sequence involved in the definition of
�erg. Repeating the argument for γ −, we get the thesis.
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