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Book review

ML with Concurrency by Flemming Nielson (ed.), Springer-Verlag, 1997.

Overview

Standard ML has spawned a number of extensions for concurrent, parallel and distributed

computing. ML with Concurrency (Nielseon, 1997) describes four of them and discusses their

implementations and semantics. This book is a snapshot of current research, and is aimed

at a researcher or graduate student specializing in concurrent language implementation or

theory. It is divided into two parts:

• Language design of each of the four languages, discussing the extensions each has made

to SML, the type systems, the semantics, and some applications.

• Semantics for concurrent functional languages, giving an analysis of the communication

capabilities of a program, and a denotational semantics for the resulting judgments.

These analyses are carried out for Concurrent ML, but the techniques should be

applicable to the other languages.

These are discussed below, although the chapters are reordered to make comparisons easier.

Language design

The papers in this part are:

• The Essence of Concurrent ML by Panangaden and Reppy,

• Concurrency in Poly/ML by Matthews,

• CCS Programming in an ML Framework: An Account of LCS by Berthomieu, and

• Facile – From Toy to Tool by Thomsen, Leth and Kuo.

Each of these introduces the language, and discusses the design issues, and either the imple-

mentation, the formal semantics, or case studies.

Unfortunately, the main weakness of this part of the book is the lack of comparisons

between the languages. Each of the chapters stands in its own right, but they have very

different emphasis (for example the LCS chapter contains a large amount of formal type

theory, while the Facile chapter is entirely free of mathematics). Combined with the lack of

an overview or common examples this makes it quite difficult to compare the four languages.

I found it useful when reading these chapters to look at a simple example program, to

see how each language would treat it. The example below is chaining two unbounded buffers

together. In CCS (Milner, 1989), the buffer would be defined:

Buffer [ ]⇐ inp?x.Buffer [x]

Buffer (x :: xs)⇐ (inp?y.Buffer (x :: xs@[y])) + (outp!x.Buffer xs)

and the chaining operation:

P � Q⇐ (P [mid/outp] | Q[mid/inp]) \ mid

Two buffers can then be chained as Buffer [ ]� Buffer [ ].
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Poly/ML

Abstract Hardware’s Poly/ML compiler contains a library for concurrent threads with syn-

chronous communication over typed channels. Threads can be spawned for concurrent

computation using fork , and external choice between threads is provided using the binary

choice operator.

For example, an unbounded buffer can be coded:

fun Buffer [ ] (inp, outp) = Buffer [receive inp] (inp, outp)

| Buffer (x :: xs) (inp, outp) = choice (

fn ()⇒ Buffer (x :: xs@[receive inp]) (inp, outp),

fn ()⇒ Buffer (send (x, outp); xs) (inp, outp)

);

with type (for this review, I shall brush the issue of imperative type variables and SML 97

value polymorphism firmly under the carpet):

Buffer : α list → (α channel ∗ α channel )→ unit

Note that in the second clause, the environment is provided with the choice between a inp

action or an outp action. This uses the choice function which executes two thunks until one

of them performs a communication synchronization, at which point the other is killed:

choice : (unit → unit) ∗ (unit → unit)→ unit

Chaining can be defined:

fun f � g (inp, outp) = let val mid = channel ()

in fork (fn ()⇒ f (inp,mid )); g (mid , outp) end;

Apart from some syntax with thunking, this style of programming is very familiar to anyone

used to process algebra. However, there is an implementation cost in allowing choices between

arbitrary thunks, since it means we can have choices between distributed threads, for example:

choice((fn ()⇒ (Buffer [ ]� Buffer [ ]) (a, b)), (fn ()⇒ Buffer [ ] (a, b)))

In process algebra terms, we can write general choice, such as (P | Q) + R, not just guarded

choice such as a.P+b.Q. Because of general choice, the synchronization algorithm in Poly/ML

is quite complex, and is discussed in this chapter in some detail.

This chapter gives an overview of Poly/ML from a programmer’s perspective, and discusses

the single-heap and multi-heap implementations. There is very little formal semantics.

Concurrent ML

Concurrent ML is a library for SML of New Jersey, which adds concurrent threads in a

manner at first sight similar to Poly/ML, for example chaining two processes is:

fun f � g (inp, outp) = let val mid = channel ()

in spawn (fn ()⇒ f (inp,mid )); g (mid , outp) end;

However, there is a subtle difference in the Buffer implementation which reveals an important

difference in the implementation and design philosophy of CML:

fun Buffer [ ] (inp, outp) = Buffer [recv inp] (inp, outp)

| Buffer (x :: xs) (inp, outp) = sync (choose [

wrap (recvEvt inp, fn y ⇒ Buffer (x :: xs@[y]) (inp, outp)),

wrap (sendEvt (outp, x), fn ()⇒ Buffer xs (inp, outp))

]);
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The difference is caused by the fact that CML only allows guarded choice, not arbitrary

choice, and this restriction is enforced by the types of the CML primitives:

recvEvt : α chan → α event

sendEvt : α chan ∗ α→ unit event

choose : α event list → α event

sync : α event → α

wrap : α event ∗ (α→ β)→ β event

Since choose is limited to the event type, this means we can only build guarded choices. In

particular, we cannot build the equivalent of the CCS term (P | Q) +R since P | Q cannot be

expressed as a value of type event .

CML builds on this by allowing computation both before and after the atomic action in

an event, thus allowing three-phase protocols to be defined, with a pre-commitment phase,

an atomic commitment, and a post-commitment phase. Different protocols can then be put

in a common choice.

This chapter gives an overview of the design of the CML language, including a static

and dynamic semantics, and a discussion of how CML (almost) fits Moggi’s (1991) monadic

framework for computation.

Facile

Facile is, on the surface, quite different from Poly/ML and CML since it extends the syntax

of SML. It has a guard type constructor similar to CML’s event , so the code for the buffer is

almost identical:

proc Buffer [ ] (inp, outp) = activate Buffer [recv inp] (inp, outp)

| Buffer (x :: xs) (inp, outp) = activate alternative [

wrapguard (recvguard inp, fn y ⇒ Buffer (x :: xs@[y]) (inp, outp)),

wrapguard (sendguard (outp, x), fn ()⇒ Buffer xs (inp, outp))

];

The alert reader will probably wonder what the new keywords proc and activate are for.

Facile uses a two-level syntax for concurrent programming: SML expressions and Facile

behaviours. Facile also introduces a new type scr with an isomorphism between behaviours

and expressions of type scr given by:

• if e is an expression of type scr then activate e is a behaviour, and

• if b is a behaviour then script e is an expression of type scr .

Programming in Facile seems to involve jumping between these two syntaxes. This is sometimes

confusing (as in the above Buffer example) but does allow process algebra syntax for

concurrency:

proc f � g (inp, outp) = let val mid = channel ()

in activate f (inp,mid ) || activate g (mid , outp) end;

Once the syntactic hurdle has been overcome, however, programming in the small in Facile

is quite similar to programming in CML. However, where the emphasis in CML is on pro-

gramming in the small, for example in writing communications protocols, Facile emphasizes

programming in the large, and in particular distributed client-server systems.

Facile’s alternative to object-based languages such as CORBA is to extend the SML

module system, and to allow virtual machines to negotiate the signature of a module which

is downloaded and linked at run-time. For example, say we wished to make simple queries of

a database:

signature DBQuerySig = sig val dbQuery : string → string end;
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We would like to download a module from a remote server satisfying this signature:

val server = initial library "facile.icl.co.uk";

structure DBQuery = demanding server with DBQuerySig;

The above Facile code downloads an appropriate module. Moreover, SML is extended to

allow structure declarations at run-time, so code can be downloaded when required, not just

at link-time.

This chapter contains some example code (although in order to construct the above

examples I had to read the on-line Facile manuals) and descriptions of the distributed

environment, together with a discussion of implementation trade-offs and case studies. There

is no discussion of static or dynamic semantics.

LCS

LCS also extends SML to include behaviours, with a syntax very similar to that of process

calculus. In particular, note that in the buffer process we do not specify the input and output

channels as parameters:

fun Buffer [ ] = inp?x⇒ Buffer [x]

| Buffer (x :: xs) = (inp?y ⇒ Buffer (x :: xs@[y])) ∨ (outp!x⇒ Buffer xs);

The channels of the process are not given as parameters, but instead are represented in the

type system, using a type and effect system similar to that discussed by Nielson and Nielson

in their chapter. The types are recorded in a style similar to that of extensible records using

Wand’s row type variables. For example, the buffer is typed:

Buffer : α list → {inp : α, outp : α}b
This type records the names of the channels used in the buffer, together with their types. The

b extension is a polymorphic variable indicating that the function does not put any other

constraints on channel types.

LCS allows visible channels to be renamed and restricted in a style similar to CCS:

fun p� q = (p{mid/outp} ∧ q{mid/inp}){/mid};
Note that channels are not first class values. For example, there is no way to code up a router

which uses a lookup table to decide which channel to forward a packet on; in CML this

would be:

fun Router (tbl , inp) = let val (dest , payload ) = recv inp

in send (lookup (tbl , dest), payload ); Router (tbl , inp) end;

This chapter presents the dynamic and static semantics of LCS, and briefly discusses the

concurrent and parallel implementations. A distributed implementation is planned, based on

the same architecture as Poly/ML.

Semantics

The papers in the semantics part are:

• A Semantic Theory for ML Higher-Order Concurrency Primitives by Debbabi and Bolig-

nano, and

• Communication Analysis for Concurrent ML by Nielson and Nielson.

The first paper builds upon techniques defined in the second paper, so I shall consider them

in reverse order.
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Communication analysis

By comparing the type system of CML with that of LCS we can see that there are two ways

to give a type system for a concurrent language. Either the communication possibility of a

process are hidden (as in CML) or they are made explicit (as in LCS). In the latter case,

it is possible to infer information about the dynamic behaviour of terms from their static

semantics.

In a type and effect system for concurrent languages, the communication possibilities of a

process are recorded in the type system. For example the CML type system has:

a : α chan , b : α chan ` Buffer [ ] (a, b) : unit

whereas a type and effect system would record the communication possibilities as:

a : α chan l1 , b : α chan l2 ` Buffer [ ] (a, b) : unit & l1?α+ l2!α

Here we have tagged the channels with regions l1 and l2, and we have recorded that the buffer

can input on a channel from region l1 and output on a channel from region l2.

Nielson and Nielson extend this even further by recording the trace semantics of a process

in its type for example:

a : α chan l1 , b : α chan l2 ` Buffer [ ] (a, b) : unit & recX . l1?α;X + l2!α;X

Compare this with a process which first inputs on a:

a : α chan l1 , b : α chan l2 ` Buffer [recv a] (a, b) : unit

& l1?α; (recX . l1?α;X + l2!α;X)

In fact, the type system is even stronger than trace equivalence, since it records the channel

creation and concurrent behaviour of the processes. For example chaining two buffers together

creates a new channel and spawns off a buffer before running a buffer:

a : α chan l1 , b : α chan l2 ` (Buffer [ ]� Buffer [ ]) (a, b) : unit

& chanl3 α; forkπ(recX . l1?α;X + l3!α;X); recX . l3?α;X + l2!α;X

This type system is very strong (for example, it distinguishes between bisimilar terms such

as Buffer [ ] and Buffer [ ]� Buffer [ ]) and the usual definition of subject reduction fails to

hold. Instead, the paper shows that as a process evolves, its type also evolves, using a labelled

transition system for types.

This paper investigates this type and behaviour inference system in some depth, and

concludes with examples of how it might be used in practice for analyzing communication

topologies, or for processor scheduling.

Denotational semantics

Debbabi and Bolignano’s chapter discusses a denotational semantics for CML based on

acceptance trees. This is an active area of research, since providing a denotational semantics

for languages which include a unique name generator like CML’s channel () is non-trivial.

The search for suitable models led Pitts and Stark (1993) to look at functor categories as

an appropriate setting for such languages. This approach has had some success, in particular

Hennessy (1996) has shown how to lift acceptance trees into this world, and provide a fully

abstract model for the π-calculus. Unfortunately, Debbabi and Bolignano do not refer to any

of this body of research.

Their semantics is an example of Moggi’s (1991) monadic semantics for the computational

call-by-value λ-calculus, although the monad Tσ (their notation is D Routine ( , σ)) is param-

eterized on the side-effects σ of the process. They present Moggi’s monadic semantics, and

prove that Tσ contains enough structure to define communication, choice and concurrency,
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which provides them with their model. Tσ also appears to model channel generation, but the

relevant clause is missing from the denotational semantics, so it is difficult to tell.

There are interesting ideas in this paper, such as using a monad Tσ parameterized on

side-effects, and basing a denotational semantics on a type and effect system, but they are

obscured by the presentation.

Conclusion

The language design papers in this book are of a high quality, and will be useful references.

Although they do not contain large amounts of new work, they are good summaries of

current research, and will be of interest to anyone implementing or providing semantics for

concurrent functional languages.

The semantics papers are much more specialized, although still may be worth reading

for experts in type and effect systems or denotational semantics for higher-order concurrent

languages.
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