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1. Introduction
A Fuchsian group is a discrete group of orientation-preserving isometries acting in the
Poincaré disk model (D, d) of hyperbolic space. Fuchsian groups play an important role in
the uniformization of hyperbolic surfaces and geometric group theory. For the background
on Fuchsian groups, we refer the reader to [3].

Throughout this paper, G denotes a finitely generated non-elementary Fuchsian group.
Having fixed a finite set of generators of G, for g ∈ G, we denote by |g| the minimal
number of generators needed to represent g, called the word length of g. It follows
from the triangle inequality that there exists α+ > 0 such that d(0, g0) ≤ α+|g| for
all g ∈ G. If D/G has no cusps, the Švarc–Milnor lemma implies the existence of
α− > 0 such that d(0, g0) ≥ α−|g|. If D/G has cusps, there exists C > 0 such that
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2 J. Jaerisch and H. Takahasi

FIGURE 1. An oriented geodesic γ crossing copies of the fundamental domain R.

d(0, g0) ≥ 2 log |g| − C by [10]. The complexity of the action of G is reflected in the
fact that the growth rate of d(0, g0)/|g|, as |g| → ∞, takes on uncountably many values,
and rates of convergence are not uniform. In this paper, we perform a multifractal analysis
of this growth rate along oriented geodesics, which are circular arcs orthogonal to the
boundary S

1 of D.
Let R ⊂ D be a convex, locally finite fundamental domain for G which contains 0

in its interior [3]. The finite set of side-pairings of R is denoted by GR and defines a
symmetric set of generators of G. We call R admissible if R has even corners [7, 38] and
satisfies a technical condition. We refer the reader to §2.1 for the details. Let R denote
the set of oriented complete geodesics γ joining two points in S

1 and intersecting the
interior of R. If γ ∈ R cuts through the copies R, g0R, g0g1R, . . . of R, with gi ∈ GR and
i = 0, 1, . . . ∈ N, then g0, g1, g2, . . . is called the cutting sequence of γ (see Figure 1). By
slightly perturbing geodesics passing through a vertex of R, we will define for each γ ∈ R

a unique finite or infinite cutting sequence in §2.1. For γ ∈ R with the cutting sequence
g0, g1, . . . of length at least n ≥ 1, we define

tn(γ ) = d(0, g0g1 · · · gn−10),

and call tn(γ )/n the homological growth rate of γ [17]. Since R has even corners,
g0 . . . gn−1 has word length n with respect to GR (see Proposition 2.1). We denote by
� = �(G) the limit set of G, and by �c = �c(G) the conical limit set of G. We have
�c ⊂ � and by a result of Beardon and Maskit [4], � \ �c is equal to the countable set
of parabolic fixed points of elements of G. It turns out in Lemma 2.2 that γ ∈ R has an
infinite cutting sequence if and only if its positive endpoint γ + belongs to �c. For α ≥ 0,
we define the level set

H (α) =
{
ξ ∈ �c : there exists γ ∈ R such that γ + = ξ and lim

n→∞
tn(γ )

n
= α

}
.

Since the level sets are pairwise disjoint by Remark 2.11, we have a multifractal
decomposition of the conical limit set
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�c =
( ⋃

α≥0

H (α)

)
∪ Hir,

where Hir denotes the set of ξ ∈ �c for which tn(γ )/n does not converge as n → ∞ for
any γ ∈ R whose positive endpoint is ξ .

If G is of the first kind, that is, � = S
1, then there exists a constant αG ≥ 0 such

that H (αG) has full Lebesgue measure in S
1. We refer the reader to §A.3 for a proof

of this claim and more information on αG. For a description of the fine structure of �,
it is necessary to analyse other level sets which are negligible in terms of the Lebesgue
measure. Let dimH denote the Hausdorff dimension on S

1, and for α ≥ 0, let

b(α) = dimH H (α).

Information on the complexity of the limit set is encoded in the function α 	→ b(α) called
the spectrum of homological growth rates, or simply the H -spectrum. Note that the
H -spectrum depends on the choice of the fundamental domain R.

The thermodynamic formalism gives an access to the description of the H -spectrum.
We define

δG = dimH �.

It is well known [2, 25], [39, Corollary 26] that δG is equal to the Poincaré exponent of G
given by

inf
{
β ≥ 0:

∑
g∈G

exp(−βd(0, g0)) < +∞
}

.

Imitating this style, following [21, Theorem 2.1.3], we introduce a generalized Poincaré
exponent at an inverse temperature β ∈ R by

P(β) = inf
{
t ∈ R :

∑
g∈G

exp(−βd(0, g0) − t |g|) < +∞
}

.

We call the function β ∈ R 	→ P(β) the geometric pressure function of G with respect
to R, or simply the pressure function. The negative convex conjugate of P is for α ∈ R

given by

P ∗(−α) = inf{αβ + P(β) : β ∈ R}.
We set

α+ = sup
γ∈R,γ +∈�c

lim sup
n→∞

tn(γ )

n
and α− = inf

γ∈R,γ +∈�c

lim inf
n→∞

tn(γ )

n
,

and define the freezing point by

β+ = sup{β ∈ R : P(β) > −α−β}.
MAIN THEOREM. Let G be a finitely generated non-elementary Fuchsian group with an
admissible fundamental domain R.
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(a) We have α− < α+, and the level set H (α) is non-empty if and only if α ∈ [α−, α+].
The H -spectrum is continuous on [α−, α+], analytic on (α−, α+) and for each
α ∈ [α−, α+] \ {0}, we have

b(α) = P ∗(−α)

α
.

Moreover, the H -spectrum attains its maximum δG at a unique αG ∈ [α−, α+),
is strictly increasing on [α−, αG] and strictly decreasing on [αG, α+], and
limα↗α+ b′(α) = −∞. If G has no parabolic element, then αG > α− > 0 and
limα↘α− b′(α) = +∞. If G has a parabolic element, then αG = α− = 0.

(b) The pressure function P is convex and continuously differentiable on R, and analytic
and strictly convex on (−∞, β+). If G has no parabolic element, then β+ = +∞.
If G has a parabolic element, then β+ = δG and P vanishes on [δG, +∞).

For finitely generated, essentially free Kleinian groups in arbitrary dimension,
Kesseböhmer and Stratmann [17] analysed homological growth rates along geodesic rays,
and analysed the H -spectrum. Our Main Theorem significantly extends [17, Theorem
1.2] to a large class of Fuchsian groups which are not free groups. In particular, the Main
Theorem applies to Fuchsian groups uniformizing compact hyperbolic surfaces.

A key ingredient in [17] is that for essentially free Kleinian groups, cutting sequences
of geodesic rays directly give a symbolic coding of the limit set by a Markov shift. For
Fuchsian groups, essentially free groups are free groups, and hence the Koebe–Morse
coding coincides with the Artin coding [38]. For the Fuchsian groups we consider in
this paper, the Koebe–Morse and Artin codings do not necessarily coincide [38], namely,
cutting sequences do not have a direct link to the dynamics on the limit set. To overcome
this difficulty, we use the results for Fuchsian groups with even corners [7, 38].

The Main Theorem is a manifestation of the familiar thermodynamic and multifractal
picture for conformal expanding Markov maps possibly with neutral fixed points (see e.g.
[11, 12, 18, 23, 26, 28, 29, 31, 32, 36, 42]) in the context of Fuchsian groups. Indeed, one
main step in the proof of the Main Theorem is to clarify an elusive coincidence between
the H -spectrum and the Lyapunov spectrum of the Bowen–Series (BS) map [7].

Let us compare [17, Theorem 1.2] and the Main Theorem in terms of phase transitions,
that is, the loss of analyticity of the pressure function in the case the group has a parabolic
element. For essentially free Kleinian groups, two types of phase transitions were detected
in [17, Theorem 1.2]: the pressure is not differentiable at the freezing point, or the pressure
is continuously differentiable on R and not analytic at the freezing point. For the Fuchsian
groups considered in the Main Theorem, we have shown that only the second type of phase
transition occurs.

In fact, the graphs of the H -spectra in Figure 2 are only schematic. If G has no parabolic
element, we do not know whether the spectrum is concave on [α−, α+] or not (see [13]).
Moreover, if G has a parabolic element and the pressure function is C2, then P ′′(δG) = 0,
which implies that the H -spectrum has an inflection point (see Proposition 5.9).

1.1. Methods of proofs and structure of the paper. Bowen and Series [7, 38] constructed
a piecewise analytic Markov map f : Δ → S

1 which is orbit equivalent to the action of G
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FIGURE 2. The graphs of β ∈ R 	→ P(β) and α ∈ [α−, α+] 	→ b(α): G has no parabolic element (upper); G has
a parabolic element (lower). We have δG = min{β ≥ 0: P(β) = 0}. The constant αG is the unique maximum

point of the H -spectrum, see equation (5.6) for the definition.

on the limit set, now called the Bowen–Series map. See equation (2.1) for the definition
of Δ. To prove our main results, we use three different symbolic codings (partitions)
associated with the limit set � and the map f.

In §2, following [7, 38], we introduce the Bowen–Series map and a non-Markov
partition well adapted to the group structure, and develop various asymptotic results
associated with them. A main conclusion is that (I) the level sets of homological growth
rates coincide with the level sets of the pointwise Lyapunov exponents of the map f
(Proposition 2.10).

The Markov partition constructed in [7] is an infinite partition if and only if G
has a parabolic element. In §3, for groups having parabolic elements, we construct a
finite Markov partition slightly modifying the construction in [7]. Combining this with
the non-Markov partition introduced in §2, we show that (II) the generalized Poincaré
exponent coincides with the geometric pressure (Proposition 3.8).

By virtue of the identities (I) and (II), the proof of the Main Theorem boils down
to implementing the thermodynamic formalism and multifractal analysis for the map f.
Series [37, Theorem 5.1] showed that some power of f is uniformly expanding if G has no
parabolic element. In this case, properties of the pressure function and that of the Lyapunov
spectrum of f are well known [6, 26, 28, 29, 34, 42]. If G has a parabolic element, f has
a neutral periodic point and these classical results do not apply. To deal with this case, we
take an inducing procedure that is now familiar in the construction of equilibrium states
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6 J. Jaerisch and H. Takahasi

(see e.g. [27]). In §4, we construct a uniformly expanding induced Markov map f̃ equipped
with an infinite Markov partition that allows us to represent f̃ with a countable Markov
shift.

Although the construction of the induced Markov map f̃ essentially follows Bowen
and Series [7], one important difference from [7] is that we dispense with the geometric
hypothesis (i) of property (*) in [7, p. 406] which states that each side of the fundamental
domain is contained in the isometric circle of the associated side-pairing. This implies that
f is non-contracting, namely

inf
Δ

|f ′| ≥ 1. (1.1)

This kind of hypothesis is usually imposed in the thermodynamic formalism as well as the
multifractal analysis of pointwise Lyapunov exponents of intermittent Markov maps, to
facilitate arguments, see e.g. [11, 14–16, 20, 23, 32, 40, 43], and also [22]. We exploit the
discrete group structure and dispense with equation (1.1) altogether. If the Fuchsian group
G has no parabolic element, one can apply the Švarc–Milnor lemma to derive that some
iterate of f is uniformly expanding [37]. If G has parabolic elements, we use similar ideas
to derive uniform expansion of the induced map f̃ (see Lemma 4.4 and Proposition 4.5).

In §5 and Appendix A, we verify several conditions on induced potentials associated
with f̃ , and apply results of Mauldin and Urbański [21] (see also e.g. [1, 8, 35]) to
establish the existence and uniqueness of equilibrium states for the induced map f̃ . We
then construct equilibrium states for the original map f, and use them to establish the
analyticity of the pressure function. Further, we combine results in the previous sections
with the dimension formula for level sets of pointwise Lyapunov exponents in [14] to
complete the proof of the Main Theorem.

1.2. Notation. Throughout, we shall use the notation a � b for two positive reals a, b
to indicate that a/b is bounded from above by a constant which depends only on G or R.
If a � b and b � a, we write a � b. For g ∈ G, the inverse of g is denoted by ḡ, and the
word length of g with respect to GR is denoted by |g|. Let cl(·) and int(·) denote the closure
and interior operations in S

1, respectively. Let | · | denote the Lebesgue measure on S
1,

and let diam(·) denote the Euclidean diameter on R
2. For two distinct points P, Q ∈ S

1,
let [P , Q] denote the closed arc in S

1 that consists of points lying in between P and Q,
anticlockwise from P to Q. Similarly, let [P , Q) = [P , Q] \ {Q}, (P , Q] = [P , Q] \ {P }
and (P , Q) = [P , Q] \ {P , Q}.

2. The Bowen–Series map
In §2.1, we collect basic facts about cutting sequences and fundamental domains with
even corners. In §2.2, we introduce the Bowen–Series map f together with an associated
non-Markov symbolic coding called f -expansion. In §2.3, following Series [38], we
characterize admissible words for this coding that will be used later. In §2.4, we establish
uniform decay of cylinders, and use it in §2.6 to prove a distortion estimate. In §2.5, we
describe two orbits in the hyperbolic space, one from the cutting sequence of a geodesic
and the other from the f -expansion of the positive endpoint of the same geodesic. In §2.7,
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we relate the size of a cylinder with the corresponding homological growth rate, and use
this estimate in §2.8 to show that the level sets of homological growth rates coincide with
the level sets of the pointwise Lyapunov exponents of the map f.

2.1. Cutting sequences for fundamental domains with even corners. Let R ⊂ D be a fun-
damental domain for G. By a fundamental domain, we always mean a convex and locally
finite fundamental domain which contains 0 in its interior [3]. The sides of R are geodesics,
or else arcs contained in S

1. The latter sides are called free sides. Note that G is of the first
kind if and only if R has no free sides [33, Theorem 12.2.12]. Since G is finitely generated,
R has finitely many sides. The sides of R which are not free give rise to a finite set of
side-pairing transformations GR . Recall that GR is a symmetric set of generators of G.

The copies of R adjacent to R along the sides of R are of the form eR, e ∈ GR . For
every g ∈ G and e ∈ GR , we label the side common to gR and geR on the side of geR

by e, and on the side of gR by ē. By a side or vertex of N = G∂R, we mean the G-image
of a side or vertex of R. We say R has even corners if N is a union of complete geodesics
([38], see also [7]). We say R is admissible if R has even corners with at least four sides
and satisfies the following property: if R has precisely four sides with all vertices in D, then
at least three geodesics in N meet at each vertex of R [38, Theorem 3.1]. The even corner
assumption is not as restrictive as it appears. In fact, every surface which is uniformized
by a finitely generated Fuchsian group has a fundamental domain with this property (see
[7, §3] and [38, p. 609, lines 9–10]).

Unless otherwise stated, we assume all geodesics are complete. If γ is an oriented
geodesic which passes through a vertex v of N in D, we make the convention that γ is
replaced by a curve deformed to the right around v. We shall take as understood that all
geodesics have been deformed, where necessary, in this way.

For γ ∈ R, we define a one-sided, finite or infinite sequence g0, g1, g2, . . . of labels in
GR , called the cutting sequence of γ as follows (see Figure 1): g0 is the exterior label of the
side of R across which γ crosses from R to g0R, and for each n ≥ 1, we use gn to denote
the exterior label of the side of g0 · · · gn−1R across which γ crosses from g0 · · · gn−1R

to g0 · · · gnR.
Given a discrete set S and a set Z of one-sided infinite sequences (zn)

∞
n=0 = z0z1 · · · in

the Cartesian product topological space SN, let E(Z) denote the set of finite words in S that
appear in some element of Z. For an integer n ≥ 1, let En(Z) denote the set of elements of
E(Z) with word length n.

A word w ∈ E(GN

R) represents the group element given by the combination of the
symbols under the group operation. From now on, the word length of elements of G is
always understood with respect to GR . We say w is shortest if its word length is equal to
the word length of the element of G represented by w, and we say w is reduced if it does not
contain successive letters e, ē ∈ GR . Shortest words are reduced. We say (gn)

∞
n=0 ∈ GN

R is
shortest if gj · · · gk is shortest, for all j, k ∈ N with j < k.

PROPOSITION 2.1. [38, Theorem 3.1(ii)] If R is admissible, then the cutting sequences of
γ ∈ R are shortest.
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8 J. Jaerisch and H. Takahasi

FIGURE 3. An oriented geodesic γ with the finite cutting sequence g0, g1 for a free Fuchsian group with
two generators.

The cutting sequence of γ ∈ R may not always be infinite. Figure 3 shows an example
with γ + ∈ � \ �c for a group of the first kind. Note that γ + is the image of a cusp of R
under G and γ has no infinite cutting sequence. The next lemma characterizes γ ∈ R with
infinite cutting sequence.

LEMMA 2.2. An element γ ∈ R has an infinite cutting sequence if and only if γ + ∈ �c.
Moreover, for γ ∈ R with an infinite cutting sequence (gn)

∞
n=0, we have

lim
n→∞ g0 · · · gn0 = γ +.

Proof. First assume that γ has an infinite cutting sequence (gn)
∞
n=0. Since cutting

sequences are shortest by Proposition 2.1, (g0 · · · gn)
∞
n=0 ⊂ G are pairwise distinct. Since

R is locally finite, diam(g0 · · · gnR) → 0 as n → ∞. Hence, g0 · · · gn0 → γ + and
therefore, γ + ∈ �. To prove that γ + ∈ �c, we assume for the sake of contradiction that
γ + is fixed by some parabolic element of G. By [3, Corollary 9.2.9], γ + is the G-image
of some cusp of R. This implies that γ has a finite cutting sequence and gives the desired
contradiction. Hence, γ + ∈ �c.

Conversely, assume that γ ∈ R with γ + ∈ � has no infinite cutting sequence. In this
case, γ + belongs to the Euclidean boundary of some image of R under G. Hence, by
[3, Theorem 9.3.8], γ + is fixed by some parabolic element of G and therefore, γ + /∈ �c.
The proof is complete.

2.2. The definition of the Bowen–Series map. Let m denote the number of sides of
the fundamental domain R, with exterior labels e1, . . . , em in anticlockwise order. For
1 ≤ i ≤ m, let C(ēi) denote the Euclidean closure of the geodesic that contains the side
of R with the exterior label ei . We denote the two endpoints of C(ēi) by Pi and Qi+1 in

https://doi.org/10.1017/etds.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.62


Multifractal analysis of homological growth rates 9

FIGURE 4. A fundamental domain R of a finitely generated Fuchsian group of the first kind with eight sides: v
is a cusp, e1 and e8, e2 and e6, e3 and e7, e4 and e5 are identified in pairs, which yields a hyperbolic surface of
genus 2. The bidirectional arrows in the inner (respectively outer) circle indicate the elements of the partition
of S

1 defined by W in equation (3.4) (respectively W ′ in equation (3.6)). In the coarser partition defined by
W ′, the sets Li(v) (i = 2, 3, . . .) are combined into a single set L(v). Similarly, Ri(v) (i = 3, 4, . . .) are

combined into R(v).

anticlockwise order (see Figure 4). If C(ēi) ∩ C(ēi+1) �= ∅, we put Ui+1 = Pi+1, and put
Ui+1 = Qi+1 otherwise. For j ∈ Z with i = j mod m, set ej = ei , Pj = Pi , Qj = Qi

and Uj = Ui . We define

Δ = S
1 \

m⋃
i=1

[Ui , Pi). (2.1)

Note that Δ = S
1 if G is of the first kind. According to [7, 38] (in [7], the Bowen–Series

map is defined only for groups of the first kind), the Bowen–Series map f : Δ → S
1 is

given by

f |[Pi ,Ui+1)(ξ) = ēiξ . (2.2)
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The f -expansion of a point ξ ∈ ⋂∞
n=0 f −n(Δ) is the one-sided infinite sequence

ξf = (ein)
∞
n=0 ∈ GN

R given by

f n(ξ) ∈ [Pin , Uin+1) for n ≥ 0.

We set


+ = {ξf : ξ ∈ �}.
For each i ∈ Z, the restriction of f to (Pi , Ui+1) is analytic and can be extended to a C∞
map on [Pi , Ui+1]. The derivatives of f at points Pi (respectively Ui+1) are the right-sided
(respectively left-sided) derivatives. If Pi (respectively Ui+1) is a cusp, it is a neutral
periodic point of f.

Standing hypotheses for the rest of the paper. R is an admissible fundamental domain
for G, and f is the associated Bowen–Series map.

2.3. Characterization of admissible BS words. If v is a vertex of N in D, let n(v)

denote the number of sides of N through v. A small circle around v has a cutting
sequence g1 · · · g2n(v), and g1 · · · g2n(v) = 1 is one of the defining relations of G. Note
that the relator has even word length since R has even corners. A word w ∈ Ek(GN

R) is
a clockwise (respectively anticlockwise) cycle around v if k ≤ 2n(v) and there exists a
neighbourhood U of v in D such that w appears in the ‘cutting sequence’ of any clockwise
(respectively anticlockwise) circle around v in U. If moreover k = n(v), we call w a
half-cycle, and if k > n(v), we call w a long cycle.

PROPOSITION 2.3. [38, Theorem 4.2] A word in E(GN

R) is contained in E(
+) if and
only if it is shortest and contains no anticlockwise half-cycle.

2.4. Uniform decay of BS cylinders. Let n ≥ 1 and let ei0 · · · ein−1 ∈ En(
+). We
define a BS cylinder, or more precisely a BS n-cylinder, by

�(ei0 · · · ein−1) = {ξ ∈ Δ : f k(ξ) ∈ [Pik , Uik+1) for 0 ≤ k ≤ n − 1}.
In what follows, we denote elements of En(
+) by a0 · · · an−1, ak ∈ GR for 0 ≤ k ≤
n − 1, to make a distinction from cutting sequences of geodesics. Put

�max,n = max
a0···an−1∈En(
+)

|�(a0 · · · an−1)|.

If G has no parabolic element, then �max,n decays as n increases since some power of
f is uniformly expanding [37, Theorem 5.1]. Below we show that this uniform decay of
BS cylinders still holds even if G has a parabolic element. Although some results in [37]
seem to imply this, we give a self-contained proof for the convenience of the readers. For
e ∈ GR , we denote by H(ē) the open half-space in D bordered by C(ē) which does not
contain R.

LEMMA 2.4. Let (an)
∞
n=0 ∈ 
+ and n ≥ 0. We have a0 · · · an0 /∈ a0 · · · anH(an+1), and

for k > n, we have a0 · · · ak0 ∈ a0 · · · anH(an+1).
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Proof. Clearly, a0 · · · an0 /∈ a0 · · · anH(an+1) and a0 · · · an+10 ∈ H(an+1). Since by
Proposition 2.3 the elements of E(
+) are shortest, a0 · · · ak0 ∈ H(an+1) for k > n.
Hence, the lemma follows.

LEMMA 2.5. We have

lim
n→∞ max

a0···an−1∈En(
+)
|S1 ∩ a0 · · · an−1H(an)| = 0.

In particular, we have limn→∞ �max,n = 0.

Proof. Recall that each a0 · · · an−1 ∈ En(
+) has word length n by Proposition 2.3. For
convenience, we work in the upper half-plane H. We choose a conjugacy which maps a
point in the complement of the Euclidean closure of the arc cut off by H(a0) in S

1 to
infinity. Put rn = maxa0···an−1∈En(
+) diam(a0 · · · an−1R). Since R is locally finite, we
have rn → 0 as n → ∞.

If C(an) is a free side of R, then |∂H ∩ a0 · · · an−1H(an)| ≤ rn. If C(an) is not
a free side, we assume for simplicity that the side s of a0 · · · an−1R contained in
a0 · · · an−1C(an) has one vertex v at infinity, and one vertex v′ in H. Denote the other
side of a0 · · · an−1R emanating from the vertex v′ by s′, and the endpoint of s′ not equal
to v′ by v′′. Denote by s′′ the side of a0 · · · an−1R emanating from the vertex v′′ not equal
to s′. Since the circular arcs containing s and s′′ are disjoint [7, Lemma 2.2], it is easy to
see that |∂H ∩ a0 · · · an−1H(an)| is bounded from above by the Euclidean distance of v
and v′′. Since v and v′′ are vertices of the fundamental domain a0 · · · an−1R, we conclude
|∂H ∩ a0 · · · an−1H(an)| ≤ rn. The remaining cases can be treated in a similar fashion.
The proof of the first assertion is complete. The second assertion follows from the first one
because �(a0 · · · an) is contained in the Euclidean closure of a0 · · · an−1H(an).

2.5. Comparison of BS and cutting orbits. Let γ ∈ R with γ + ∈ �. Since � is
G-invariant and � ⊂ Δ, we obtain � ⊂ ⋂∞

n=0 f −n(Δ). Hence, γ + has an infinite
f -expansion. Let (an)

∞
n=0 denote the f -expansion of γ +. We call (a0 · · · an0)∞n=0 a BS

orbit associated with γ . For BS orbits, the convergence is uniform in the following sense.

LEMMA 2.6. For any ε > 0, there exists n0 ≥ 1 such that if ξ ∈ � has the f-expansion
(an)

∞
n=0, then for all n ≥ n0, we have

|a0 · · · an−10 − ξ | < ε.

Proof. By Lemma 2.4, we have a0 · · · an−10 ∈ a0 · · · an−2H(an−1). By Lemma 2.5,
diam(a0 · · · an−2H(an−1)) tends to zero uniformly, as n → ∞. Since ξ has the
f -expansion (an)

∞
n=0, it belongs to the Euclidean closure of a0 · · · an−2H(an−1) for

each n. The lemma follows.

Let (gn)n denote the finite or infinite cutting sequence of γ . We call (g0 · · · gn0)n the
cutting orbit associated with γ . For free groups, the cutting orbit of γ ∈ R coincides with
the f -expansion of γ +. For non-free groups, this is not always the case. Nevertheless, they
differ only slightly in the sense of the next lemma.
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12 J. Jaerisch and H. Takahasi

LEMMA 2.7. Let γ ∈ R have the infinite cutting sequence (gn)
∞
n=0 and let (an)

∞
n=0 be the

f-expansion of γ +. For any n ≥ 0, g0 · · · gnR and a0 · · · anR share a common side of N,
or else share a common vertex of N in D.

Proof. By Lemmas 2.2 and 2.6, the cutting orbit (g0 · · · gn0)∞n=0 and the BS orbit
(a0 · · · an0)∞n=0 converge to the same point γ +. Hence, the conclusion is a consequence
of [38, Proposition 3.2] and [38, Theorem 3.1].

2.6. Mild distortion on BS cylinders. For n ≥ 1, define

Dn = sup
a0···an−1∈En(
+)

sup
ξ ,η∈�(a0···an−1)

|(f n)′ξ |
|(f n)′η| .

If G has no parabolic element, some power of f is uniformly expanding [37, Theorem 5.1],
and so Dn is uniformly bounded. If G has a parabolic element, Dn grows sub-exponentially
as n increases, which suffices for all our purposes. We say f has mild distortion if
log Dn = o(n) (n → ∞).

PROPOSITION 2.8. The Bowen–Series map f has mild distortion.

Proof. Let n ≥ 2 and let a0 · · · an−1 ∈ En(
+). By the chain rule and the mean value
theorem for log |f ′|, for ξ , η ∈ �(a0 · · · an−1), we have

log
|(f n)′ξ |
|(f n)′η| �

n−1∑
j=0

|f j (�(a0 · · · an−1))| �
n−2∑
j=0

�max,n−j + 2π ,

which is o(n) by Lemma 2.5.

2.7. Decay estimate of BS cylinders. The next proposition connects the size of a BS
n-cylinder with the corresponding growth rate. There exists a constant θ0 > 0 such that for
n ≥ 1 and a0 · · · an−1 ∈ En(
+),

0 < θ0 ≤ |a0 · · · an−1�(a0 · · · an−1)| ≤ 2π . (2.3)

Put

n(R) = max({n(v) : v is a vertex of R in D} ∪ {1}).

PROPOSITION 2.9. For any γ ∈ R with the cutting sequence (gn)
∞
n=0 and the f-expansion

(an)
∞
n=0 of γ +, we have

1 � |�(a0 · · · an−1)|
exp(−tn(γ ))

� Dn.

Proof. By Lemma 2.7, the copies g0 · · · gn−1R and a0 · · · an−1R of R share a common
side of N, or else share a common vertex of N in D. The triangle inequality yields

|tn(γ ) − d(0, a0 · · · an−10)| ≤ n(R) max{d(0, g0) : g ∈ GR} � 1.

https://doi.org/10.1017/etds.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.62


Multifractal analysis of homological growth rates 13

Hence, it suffices to show that for all n ≥ 1 and a0 · · · an−1 ∈ En(
+),

1 � |�(a0 · · · an−1)|
exp(−d(0, a0 · · · an−10))

� Dn. (2.4)

Let n ≥ 1 and let a0 · · · an−1 ∈ En(
+). Let ξ+ and ξ− denote the boundary points
of �(a0 · · · an−1). Let θ > 0 denote the angle between the geodesic arcs joining
a0 · · · an−10 to ξ+ and ξ−. Since all a0, . . . , an−1 are Möbius transformations, equation
(2.3) gives

θ0 ≤ θ ≤ 2π . (2.5)

Split �(a0 · · · an−1) into three disjoint arcs �+, �0, �− so that ξ+ ∈ �+, ξ− ∈ �−
and the a0 · · · an−1-images of the three arcs have the same Euclidean lengths. We use �+
and �− as a buffer, and estimate |�0| rather than |�(a0 · · · an−1)| itself. The mean value
theorem gives

1
3Dn

≤ |�0|
|�(a0 · · · an−1)| ≤ min

{
Dn

3
, 1

}
. (2.6)

Let d(0, a0 · · · an−10) = r . Rotate the Poincaré disk so that a0 · · · an−10 is placed on the
negative part of the real axis. By Lemma 2.6, there exists n0 ≥ 1 such that if n ≥ n0, then
for any a0 · · · an−1 ∈ En(
+), �(a0 · · · an−1) is contained in the Euclidean open ball
of radius 1/100 about −1. In particular, �(a0 · · · an−1) does not contain 1. We apply the
Möbius transformation T : P1 → P

1 given by

T (z) = cosh(r/2)z + sinh(r/2)

sinh(r/2)z + cosh(r/2)
.

This carries the four geodesics through a0 · · · an−10 separating �+, �0, �− to
rays through 0 at an equal angle θ/3. Since 1 /∈ �(a0 · · · an−1) and T (1) = 1,
1 /∈ T (�(a0 · · · an−1)) holds. Therefore, T (�0) lies in the complement of the domain
{z ∈ D : |arg(z)| ≤ θ0/3}. A calculation shows

|(T −1)′z| =
∣∣∣∣cosh

r

2
− Re(z) sinh

r

2
− √−1Im(z) sinh

r

2

∣∣∣∣
−2

.

Since T (�0) is uniformly bounded away from 1 in the Euclidean distance, we have
|(T −1)′z| � e−r . Since |�0| = ∫

T (�0)
|(T −1)′z||dz|, this yields

|�0| � θe−r . (2.7)

Combining equations (2.5), (2.6) and (2.7), we obtain equation (2.4).

2.8. Equality of level sets, boundary of the H -spectrum. The upper and lower point-
wise Lyapunov exponents at a point ξ ∈ � are given by

χ(ξ) = lim sup
n→∞

1
n

log |(f n)′ξ | and χ(ξ) = lim inf
n→∞

1
n

log |(f n)′ξ |,
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14 J. Jaerisch and H. Takahasi

respectively. If χ(ξ) = χ(ξ), this common value is called the pointwise Lyapunov
exponent at η and denoted by χ(ξ). For each α ∈ R, define the level set

L (α) = {ξ ∈ �c : χ(ξ) = χ(ξ) = α}.
The next proposition indicates that the level sets of homological growth rates and that of
pointwise Lyapunov exponents coincide.

PROPOSITION 2.10. For every γ ∈ R such that γ + ∈ �c and every n ≥ 1,

D−1
n � exp(log |(f n)′γ +| − tn(γ )) � D2

n.

In particular, for every α ≥ 0, H (α) = L (α).

Proof. Let (an)
∞
n=0 denote the f -expansion of γ +. By the mean value theorem, there

exists ξ ∈ �(a0 · · · an−1) such that |(f n)′ξ ||�(a0 · · · an−1)| = |f n(�(a0 · · · an−1))|.
By equation (2.3), we have |f n(�(a0 · · · an−1))| ∈ [θ0, 2π ], and

θ0D
−1
n |�(a0 · · · an−1)|−1 ≤ |(f n)′γ +| ≤ 2πDn|�(a0 · · · an−1)|−1.

This together with Proposition 2.9 yields the desired double inequalities. The rest of the
assertions follow from Proposition 2.8.

Remark 2.11. By Proposition 2.10, the level sets H (α) are pairwise disjoint.

LEMMA 2.12. We have α− = 0 if and only if G has a parabolic element.

Proof. If G has no parabolic element, some power of f is uniformly expanding [37,
Theorem 5.1]. Hence, we have α− > 0 by Proposition 2.10. If G has a parabolic
element, then R has a cusp, which is a neutral periodic point of f. By [14], the
set {x ∈ � : χ(x) = χ(x) = 0} has positive Hausdorff dimension, while � \ �c is a
countable set. Hence, we have L (0) �= ∅ and H (0) �= ∅ by Proposition 2.10. Hence, we
obtain α− = 0.

Remark 2.13. In the definition of tn(γ ), we may replace the cutting sequence of γ by the
f -expansion of the positive endpoint γ +. By Lemma 2.7, this does not change the level
sets H (α).

3. Finite Markov structures
In this section, starting with the definition of Markov maps in §3.1, we construct a finite
Markov partition for the Bowen–Series map f in §3.2 by slightly modifying the Markov
partition constructed in [7]. In §3.3, we use this finite Markov partition to identify the
maximal invariant set of the Markov map f as the limit set of G. In §3.4, we introduce
a geometric pressure function using the free energy of f -invariant Borel probability
measures, and show that the generalized Poincaré exponent coincides with the geometric
pressure.

3.1. Markov maps. Let S be a discrete set with #S ≥ 2. A Markov map is a map
F : � → S

1 such that the following hold.
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Multifractal analysis of homological growth rates 15

(M0) There exists a family (�(a))a∈S of pairwise disjoint arcs in S
1 such that

� = ⋃
a∈S �(a).

(M1) For each a ∈ S, the restriction F |�(a) extends to a C1 diffeomorphism from
cl(�(a)) onto its image.

(M2) If a, b ∈ S and F(�(a)) ∩ �(b) has non-empty interior, then F(�(a)) ⊃ �(b).
The family (�(a))a∈S of arcs is called a Markov partition of F.

Condition (M2) determines a transition matrix (Mab) over the countable alphabet S
by the rule Mab = 1 if F(�(a)) ⊃ �(b) and Mab = 0 otherwise. This transition matrix
determines a countable topological Markov shift Y = Y (F , (�(a))a∈S) by

Y = {y = (yn)
∞
n=0 ∈ SN : Mynyn+1 = 1 for n ≥ 0}. (3.1)

We endow Y with the metric dY (y, z) = exp(− inf{n ≥ 0: yn �= zn}), where we set
exp(−∞) = 0. For n ≥ 1 and ω0 · · · ωn−1 ∈ Sn, write

[ω0 · · · ωn−1] = {y ∈ Y : yk = ωk for 0 ≤ k ≤ n − 1}. (3.2)

Subsets of Y of this form are called cylinders. The collection of all cylinders forms a base
of the topology on Y.

For ω ∈ Sm and κ ∈ Sn, write ωκ for ω0 · · · ωm−1κ0 · · · κn−1 ∈ Sm+n. For conve-
nience, put E0 = {∅}, |∅| = 0 and ω∅ = ω = ∅ω for all ω ∈ E(Y ). The Markov map F
is finitely irreducible [21] if there exists a finite subset � of E(Y ) ∪ E0 such that for all
ω, κ ∈ E(Y ), there exists λ ∈ � such that ωλκ ∈ E(Y ).

The symbolic dynamics and the dynamics of F are related by the coding map πY : Y →
S

1 given by

πY ((yn)
∞
n=0) ∈

∞⋂
n=1

cl(�(y0 · · · yn−1)), (3.3)

where

�(y0 · · · yn−1) =
n−1⋂
k=0

F−k(�(yk)).

We shall always assume that the Markov map F has decay of cylinders [14], that is, the
right-hand side in equation (3.3) is a singleton. We will treat two Markov maps introduced
in §§3.2 and 4.1.

3.2. Construction of a finite Markov partition for the Bowen–Series map. We recall
the construction of a Markov partition for the Bowen–Series map carried out in [7]. Our
presentation of this is a slightly expanded version so as to include groups of the second
kind. All lemmas quoted from [7] below remain valid for groups of the second kind.

A point v ∈ S
1 is a proper vertex of R at infinity if v is the common endpoint of two

sides of R. A point v ∈ S
1 is called an improper vertex of R at infinity if v is the common

endpoint of a side and a free side of R. A proper vertex at infinity is also called a cusp.
The set of all cusps of R is denoted by Vc. Note that each v ∈ Vc is a fixed point of some
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16 J. Jaerisch and H. Takahasi

parabolic element of G. Conversely, if G has a parabolic element, then Vc is non-empty.
Let V denote the set of all vertices of R in D ∪ S

1.
For each vertex v ∈ V , we denote by N(v) the set of geodesics in N passing through v,

and by W(v) the set of points where the geodesics in N(v) meet S1. We set

W =
⋃
v∈V

W(v). (3.4)

By [7, Lemma 2.3] and the definition of f in equation (2.2), we have f (W) ⊂ W , and
limξ↗Ui+1 f (ξ) ∈ W for any i ∈ Z, where the one-sided limit on S

1 is understood in
anticlockwise order. Hence, W induces a Markov partition for f. This partition is an infinite
partition if and only if R has a cusp.

If R has a cusp, f is not finitely irreducible with respect to this Markov partition, and
so results on the multifractal analysis in [14] are not directly applicable. To make use of
the results in [14], we construct a coarser Markov partition below with respect to which f
becomes finitely irreducible.

If v ∈ Vc, then we denote the arcs of S
1 cut off by successive points of W(v) in

clockwise order from Qi+1 to Qi = v by L1(v), L2(v), . . ., and in anticlockwise order
from Qi+1 to Qi by R1(v), R2(v), . . ., and set

L(v) =
⋃
r≥2

Lr(v) and R(v) =
⋃
r≥3

Rr(v).

By [7, (2.4.1)], we have

f |Lr(v) = ēi , f (Lr(v)) = Lr−1(ēi (v)) for r ≥ 2, and
f |Rr(v) = ēi−1, f (Rr(v)) = Rr−1(ēi−1(v)) for r ≥ 2.

(3.5)

For each v ∈ V , we define

W ′(v) =
{

W(v) if v /∈ Vc,

∂L1(v) ∪ {v} ∪ ∂R2(v) if v ∈ Vc,

and set

W ′ =
⋃
v∈V

W ′(v). (3.6)

Note that W ′ is a finite subset of W. We define a partition of Δ into arcs with endpoints
given by two consecutive points in W ′. We choose all partition elements to be of the form
[P , Q), P, Q ∈ S

1. We label the partition elements by integers in a finite subset S of N,
and denote the element labelled with a ∈ S by Δ(a).

PROPOSITION 3.1. The Bowen–Series map f : Δ → S
1 defines a finitely irreducible

Markov map with a finite Markov partition (Δ(a))a∈S .

Proof. By [7, Lemmas 2.3 and 2.5], f |� is a transitive Markov map with respect to
the partition of Δ into arcs with endpoints given by two consecutive points in W. By
Lemma 3.2 below, the proof of which is similar to that of [7, Lemma 2.3], f is also a
transitive Markov map with respect to the finite Markov partition (Δ(a))a∈S .
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LEMMA 3.2. We have f (W ′) ⊂ W ′, and limξ↗Ui+1 f (ξ) ∈ W ′ for any i ∈ Z.

Let P ∈ W ′. Since f clearly preserves cusps and improper vertices of R, we may assume
in the following that P is neither a cusp nor an improper vertex of R.

First suppose that there exists a vertex v ∈ V ∩ D such that P ∈ W ′(v). Let i ∈ Z satisfy
v ∈ C(ēi−1) ∩ C(ēi). We distinguish three cases. (i) If P ∈ [Pi−1, Pi), then f (P ) ∈
ēi−1(P ) ∈ W(ēi−1(v)) = W ′(ēi−1(v)). (ii) If P ∈ [Pi , Pi+1), then f (P ) ∈ ēi+1(P ) ∈
W(ēi+1(v)) = W ′(ēi+1(v)). (iii) If P ∈ [Pi+1, Pi−1), then, by [7, Lemma 2.2], we have
P = Qi+1. Since P is neither a cusp nor an improper vertex, it follows that P ∈ W ′(v′)
for the vertex v′ ∈ V ∩ D of R next to v in anticlockwise order. Hence, by case (i) with v
replaced by v′, we obtain f (P ) ∈ W ′.

Next we suppose that there exists a cusp v′ ∈ Vc such that P ∈ W ′(v′). Let j ∈ Z satisfy
v′ ∈ C(ēj−1) ∩ C(ēj ). Then we have P ∈ ∂L1(v

′) or P ∈ ∂R2(v
′). First suppose that

P ∈ ∂R2(v
′). By equation (3.5), we have f (P ) ∈ ∂R1(ēj−1(v

′)) ⊂ W ′(ēj−1(v
′)). Now

suppose that P ∈ ∂L1(v
′). If P ∈ ∂L1(v

′) ∩ ∂L2(v), then we have f (P ) ∈ ∂L1(ēj (v
′)) ⊂

W ′(ēj (v
′)) by equation (3.5). Otherwise, we have P = Qj+1 ∈ ∂L1(v

′) ∩ ∂R1(v
′). Since

P is neither a cusp nor an improper vertex, it follows that P ∈ W ′(v′′) for the vertex
v′′ ∈ V ∩ D of R next to v′ in anticlockwise order. Hence, by case (i) with v replaced
by v′′, we obtain f (P ) ∈ W ′. This completes the proof of f (W ′) ⊂ W ′.

It remains to show limξ↗Ui+1 f (ξ) ∈ W ′ for any i ∈ Z, where Ui+1 = Pi+1 if C(ēi) ∩
C(ēi+1) �= ∅ and Ui+1 = Qi+1 otherwise (see §2.2). In the former case, with v ∈ C(ēi) ∩
C(ēi+1), we have limξ↗Ui+1 f (ξ) = limξ↗Pi+1 ēi (ξ) ∈ W ′(ēi(v)). In the latter case, we
have limξ↗Ui+1 f (ξ) = ēi (Qi+1) ∈ W ′, because ei(Qi+1) is an improper vertex of R. This
completes the proof of the lemma and that of Proposition 3.1.

The Bowen–Series map f determines by equation (3.1) a finitely irreducible Markov
shift

X = X(f , (Δ(a))a∈S).

The left shift σ : X → X is given by (σx)n = xn+1 for n ≥ 0. By Lemma 2.5, the coding
map π = πX given by equation (3.3) is well defined and continuous. We have

f ◦ π = π ◦ σ .

BS cylinders and the cylinders in X are related as follows. For each a0 · · · an−1 ∈
En(
+), the corresponding BS n-cylinder �(a0 · · · an−1) is the union of finitely
many n-cylinders in X, the number of which is at most 2n(R). Conversely, for each
ω0 · · · ωn−1 ∈ En(X), there exists a unique element a0 · · · an−1 of En(
+) such
that Δ(ω0 · · · ωn−1) ⊂ �(a0 · · · an−1). For convenience, we will sometimes identify
ω0 · · · ωn−1 with the Möbius transformation a0 · · · an−1 in G, and write �(ω0 · · · ωn−1)

for �(a0 · · · an−1).

3.3. Identifying the maximal invariant set. The proposition below asserts that the
maximal invariant set of f coincides with the limit set of G. This clearly holds for groups
of the first kind, and is known for free groups of the second kind [38, Lemma 2.2].
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PROPOSITION 3.3. We have

� =
∞⋂

n=0

f −n(Δ) = π(X).

Proof. If G is of the first kind, then clearly all the three sets are equal to S
1. Suppose G

is of the second kind. Then Δ is the union of finitely many arcs. Points in ∂Δ \ Δ are
improper vertices of R. Since each improper vertex of R is paired with another, it is easy
to see that improper vertices of R are not limit points and, in particular, ∂Δ \ Δ is not
contained in �. Interior points of the complement of Δ are not limit points, because no
copy of R can accumulate at such a point. We have verified that � ⊂ Δ.

Since � is G-invariant and � ⊂ Δ, we obtain � ⊂ ⋂∞
n=0 f −n(Δ). To prove the

equalities in the proposition, we first show the next lemma.

LEMMA 3.4. We have
⋂∞

n=0 f −n(Δ) ⊂ π(X).

Proof. Let ξ ∈ ⋂∞
n=0 f −n(Δ). Define x = (xn)

∞
n=0 ∈ SN by f n(ξ) ∈ Δ(xn). This is well

defined since the elements Δ(a), a ∈ S of the Markov partition are pairwise disjoint. Since
f preserves orientation and the elements of the Markov partition are arcs of the form
[P , Q), P, Q ∈ S

1, x belongs to X. Clearly, we have ξ ∈ π(x).

To complete the proof of Proposition 3.3, it remains to show π(X) ⊂ �. Since f |�
is transitive by Proposition 3.1, the periodic points of σ are dense in X. Since π is
continuous, it suffices to show that for any k ≥ 1 and any fixed point x = (xn)

∞
n=0 ∈ X

of σk , π(x) ∈ � holds. Observe that the Möbius transformation x0 · · · xk−1 ∈ G satisfies
x0 · · · xk−1(π(x)) = π(x). Since x0 · · · xk−1 is not the identity in G by Proposition 2.3,
and since � contains all fixed points of elements of G \ {1} in S

1, we obtain π(x) ∈ �.

Let Y be a topological space, Y0 ⊂ Y and let F : Y0 → Y be a Borel map. Let
M(Y0, F) denote the set of Borel probability measures on

⋂∞
n=0 F−n(Y0) which are

invariant under the restriction of F to this set. For each μ ∈ M(Y0, F), let h(μ) denote
the measure-theoretic entropy of μ with respect to F.

We will use the following correspondence of invariant measures on X and �.

LEMMA 3.5. For any μ ∈ M(�, f ), there exists ν ∈ M(X, σ) such that μ = ν ◦ π−1

and h(μ) = h(ν). Conversely, for any ν ∈ M(X, σ), the measure μ = ν ◦ π−1 belongs
to M(�, f ) and satisfies h(μ) = h(ν).

Proof. The coding map π is one-to-one except on the preimage of the countable set
B = ⋃∞

n=0 f −n(
⋃

a∈S ∂Δ(a)). Since S1 is one-dimensional, π is at most two-to-one on B.
Since f preserves boundary points of the elements of the Markov partition, f −1(B) = B

and so σ−1(π−1(B)) = π−1(B).
We have f ◦ π = π ◦ σ , and the restriction of π to X \ π−1(B) has a continuous

inverse. Hence, π induces a measurable bijection between X \ π−1(B) and π(X) \ B.
This and � ⊂ π(X) in Proposition 3.3 imply that for any μ ∈ M(�, f ) with μ(B) = 0,
there exists ν ∈ M(X, σ) such that μ = ν ◦ π−1 and h(μ) = h(ν).
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If μ ∈ M(�, f ) and μ(B) > 0, there exist ρ ∈ (0, 1] and μ1, μ2 ∈ M(�, f ) such
that μ1(B) = 0, μ2(B) = 1 and μ = (1 − ρ)μ1 + ρμ2. Since B is a countable set, μ2 is
supported on a periodic orbit of f. By Proposition 3.3, there exists ν2 ∈ M(X, σ) that is
supported on a periodic orbit of σ and satisfies μ2 = ν2 ◦ π−1. By the previous paragraph,
there exists ν1 ∈ M(X, σ) with μ1 = ν1 ◦ π−1. Set ν = (1 − ρ)ν1 + ρν2. Then μ = ν ◦
π−1 and h(μ) = (1 − ρ)h(μ1) = (1 − ρ)h(ν2) = h(ν), as required in the first assertion
of the lemma. A proof of the second one is analogous.

3.4. Equality of pressure and generalized Poincaré exponent. The piecewise analytic
function φ : � → R given by

φ = − log |f ′|
plays an important role. For μ ∈ M(�, f ), define the Lyapunov exponent of μ by
χ(μ) = − ∫

φ dμ. The geometric pressure function, or simply the pressure, is the function
β ∈ R 	→ P(βφ, f ) given by

P(βφ, f ) = sup{h(μ) − βχ(μ) : μ ∈ M(�, f )}.
A measure in M(�, f ) which attains this supremum is called an equilibrium state for the
potential βφ. By the affinity of entropy and Lyapunov exponent on measures in M(�, f ),
the geometric pressure function is convex. It is non-increasing since any measure in
M(�, f ) has a non-negative Lyapunov exponent as in Lemma 3.7 below.

LEMMA 3.6. We have

α+ = sup{χ(μ) : μ ∈ M(�, f )} and α− = inf{χ(μ) : μ ∈ M(�, f )}.
Proof. Using Proposition 2.8 and the irreducibility of the finite Markov shift X in
Proposition 3.1, we can construct a measure supported on periodic points whose Lyapunov
exponent is arbitrarily close to α+. Hence, sup{χ(ξ) : ξ ∈ �c} ≤ sup{χ(μ) : μ ∈
M(�, f )} holds. The reverse inequality follows from Birkhoff’s ergodic theorem.
Combining this equality with α+ = sup{χ(ξ) : ξ ∈ �c} which follows from Proposition
2.10, we obtain the first equality in the lemma. A proof of the second one is analogous.

LEMMA 3.7. For any μ ∈ M(�, f ), we have χ(μ) ≥ 0.

Proof. From Lemma 3.6 and α− ≥ 0.

Although φ may have discontinuities, the function ϕ : X → R given by

ϕ = φ ◦ π (3.7)

is continuous. For β ∈ R, the topological pressure of the potential βϕ : X → R with
respect to σ is given by

P(βϕ, σ) = lim
n→∞

1
n

log
∑

ω∈En(X)

sup
[ω]

exp
(

β

n−1∑
k=0

ϕ ◦ σk

)
,
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under the cylinder notation in equation (3.2). Since ϕ is continuous, the variational
principle holds:

P(βϕ, σ) = sup
{
h(ν) + β

∫
ϕ dν : ν ∈ M(X, σ)

}
.

Since σ is expansive and X is a subshift over the finite set S, the entropy function is upper
semicontinuous on M(X, σ). Since ϕ is continuous and M(X, σ) is compact with respect
to the weak* topology, this supremum is attained. By Lemma 3.5, there is an equilibrium
state for the potential βφ.

PROPOSITION 3.8. For all β ∈ R, we have

P(β) = P(βϕ, σ) = P(βφ, f ).

Let g ∈ G. A shortest representation of g is a representation of g that contains exactly
|g| generators in GR . A shortest representation of g is admissible if it is contained in
E(
+).

LEMMA 3.9. Every g ∈ G \ {1} has a unique admissible shortest representation.

Proof. Let g = ei1 · · · ei|g| be a shortest representation of g. We replace all anticlockwise
half-cycles in this representation by the corresponding clockwise half-cycles, and obtain
(possibly) another shortest representation g = ej1 · · · ej|g| that contains no anticlockwise
half-cycle. By Proposition 2.3, ej1 · · · ej|g| ∈ E(
+) holds.

Let g = ej1 · · · ej|g| , g = ek1 · · · ek|g| be two admissible shortest representations of g.
Suppose ej1 �= ek1 . Then we have a relation ēk|g| · · · ēk1ej1 · · · ej|g| = 1. Since the vertex
cycles give a complete set of the relations of G and both representations of g are shortest,
ēk|g| · · · ēk1ej1 · · · ej|g| contains a cycle that contains ēk1ej1 . It follows that one of the two
representations of g contains an anticlockwise half cycle, and this yields a contradiction
since both representations are admissible. Hence, we obtain ej1 = ek1 . Repeating this
argument, we obtain eji

�= eki
for 1 ≤ i ≤ |g|.

Proof of Proposition 3.8. For n ≥ 1 and a0 · · · an−1 ∈ En(
+), let En(X, a0 · · · an−1)

denote the set of elements of ω in En(X) such that Δ(ω) ⊂ �(a0 · · · an−1). Clearly,

1 ≤ #En(X, a0 · · · an−1) ≤ 2n(R). (3.8)

By equation (2.3), for x ∈ �(a0 · · · an−1),

θ0D
−1
n ≤ |�(a0 · · · an−1)|

|(f n)′x|−1 ≤ 2πDn. (3.9)

By Proposition 2.9, and equations (3.8) and (3.9), there exists a constant C ≥ 1 such that
for all β, t ∈ R, we have

C−βD−2β
n (2π)−β ≤

∑
ω∈En(X,a0···an−1)

sup[ω] exp(β
∑n−1

k=0 ϕ ◦ σk)e−tn

exp(−βd(0, a0 · · · an−10))e−tn (3.10)

≤ 2n(R) · CβD2β
n θ

−β

0 .
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By Lemma 3.9 and Proposition 2.3, there is a one-to-one correspondence between G \ {1}
and E(
+). Therefore, rearranging the double inequalities in equation (3.10), summing
the result over all words in En(
+), then summing the result over all n ≥ 1 and then using
[21, Theorem 2.1.3], we obtain

P(βϕ, σ) ≤ inf
{
t ∈ R :

∞∑
n=1

D2β
n

∑
g∈G,|g|=n

exp(−βd(0, g0) − t |g|) < +∞
}

,

and P(βϕ, σ) ≤ P(β). A similar reasoning shows the reverse inequality. Lemma 3.5
implies P(βϕ, σ) = P(βφ, f ). This completes the proof of Proposition 3.8.

4. Building-induced expansion
The aim of this section is to construct from the Bowen–Series map f a uniformly expanding
induced Markov map f̃ . We construct the induced Markov map f̃ in §4.1 as a first return
map to a large subset of Δ which misses small neighbourhoods of the cusps. Although
this construction is essentially the same as in [7], to build a uniform expansion without
assuming the non-contracting condition in equation (1.1), we use a linear growth lemma
on induced scale (Lemma 4.3) that relies on a geometric ingredient developed in §4.2.
Finally, in §4.3, we verify the uniform expansion of f̃ .

4.1. Construction of an induced Markov map. Let f be the Bowen–Series map with the
finite Markov partition (Δ(a))a∈S constructed in §3.2. Note that Δ(a) ∩ � �= ∅ for a ∈ S.
Define the inducing domain

Δ0 = Δ \
( ⋃

v∈Vc

L(v) ∪ R(v)

)

and the first return time t : Δ0 → N ∪ {∞} to Δ0 by

t (ξ) = inf{n ≥ 1: f n(ξ) ∈ Δ0}.
Define

Δ̃ = {ξ ∈ Δ0 : t (ξ) < +∞}.
Note that both Δ0 and Δ̃ are non-empty sets, which are illustrated in Figure 5. We now
define the induced map

f̃ : Δ̃ → S
1, ξ 	→ f t(ξ)(ξ),

and set

�̃ =
∞⋂

n=0

f̃ −n(Δ̃).

Replacing each Δ(a), a ∈ S, by the countably many cylinders on which t is finite and
constant, we obtain a Markov partition for f̃ given by the sets (Δ̃(ã))

ã∈S̃
, where S̃ is a

countably infinite subset of E(X) and each Δ̃(ã) has the form Δ̃(ã) = Δ(a1) ∩ {t = n} ∩
f −n(Δ(a2)) for some n ≥ 1 and a1, a2 ∈ S. This determines by equation (3.1) a countable
Markov shift

X̃ = X̃(f̃ , (Δ̃(ã))
ã∈S̃

).
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FIGURE 5. A free Fuchsian group with two generators and one cusp v in its fundamental domain R. The sides of
R with the same colour are identified. The coloured complete circles are mapped to the bigger ones with the same
colour (partially drawn) by the corresponding Möbius transformations defining f. The outer dotted bidirectional
arrows altogether indicate the inducing domain Δ0 ⊂ S

1. The inner bidirectional arrows altogether indicate the
domain Δ̃ that is contained in Δ0. The first return time t to Δ0 is 1 except at points in the four red circles

where it is 2, 3, 4, . . . .

4.2. Control of deviations of cutting orbits. Let γ ∈ R with the infinite cutting
sequence (gn)

∞
n=0. If G has a parabolic element, R has a cusp and the cutting orbit

(g0 · · · gn0)∞n=0 may deviate from γ . In this subsection, we elaborate on uniform bounds
on this deviation using f̃ .

For ξ ∈ D and A ⊂ D, we denote d(ξ , A) = inf{d(ξ , η) : η ∈ A}.
LEMMA 4.1. There exist C0 > 0 and an integer M0 ≥ 1 such that if γ ∈ R satisfies
γ + ∈ �c and f k(γ +) ∈ Δ̃ for some k ≥ M0, then there exists n∗ ∈ {k − M0, . . . , k + M0}
such that

d(g0 · · · gn∗0, γ ∩ g0 · · · gn∗R) ≤ C0,

where (gn)
∞
n=0 denotes the cutting sequence of γ .

Proof. Let C0 > 0 be so large that the hyperbolic disk around 0 of radius C0 covers all of
the intersection of R and the Nielsen region of G [3, §8.5] except small neighbourhoods of
the cusps. Let M0 ≥ 1 be a large number to be determined later.
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Suppose for a contradiction the assertion of the lemma fails. Then there exists γ ∈ R

with infinite cutting sequence (gn)
∞
n=0 (see Lemma 2.2) and there exists k ≥ M0 such that

f k(γ +) ∈ Δ̃ and, for every n ∈ {k − M0, . . . , k + M0},
d(g0 · · · gn0, γ ∩ g0 · · · gnR) > C0.

This means that γ performs a deep cusp excursion between the (k − M0)th and
the (k + M0)th crossing of fundamental domains and therefore, the cutting symbols
gk−M0 , . . . , gk+M0 of γ are given by the periodic sequence of labels of sides ending
at one of the cusps of R, say v0 ∈ Vc. We conclude by Lemmas 2.4 and 2.7 that the
partial BS orbit (a0 · · · an0)n : |n−k|≤M0−2 appears in the same order in the partial
cutting orbit (g0 · · · gn0)n : |n−k|≤M0 . This implies that the first M0 − 2 symbols of
the f -expansion of f k(γ +) are given by the periodic sequence of sides ending at the
cusp v0. If M0 is large enough depending on the prime periods of the cusps, this implies
f k(γ +) ∈ L(v0) ∪ R(v0) contradicting f k(γ +) ∈ Δ̃.

PROPOSITION 4.2. There exists C > 0 such that for all n ≥ 1 sufficiently large and
ω̃0 · · · ω̃n−1 ∈ En(X̃), and for all γ ∈ R with γ + ∈ Δ̃(ω̃0 · · · ω̃n−1) ∩ �c,

d(ω̃0 · · · ω̃n−10, γ ) ≤ C.

Proof. Let C0 and M0 denote the constants in Lemma 4.1. Let n > M0. There exists k ≥ n

and a1 · · · ak ∈ Ek(
+) such that ω̃0 · · · ω̃n−1 = a1 · · · ak and f k(γ +) = (f̃ )n(γ +) ∈ Δ̃.
By Lemma 4.1, there exists n∗ ∈ {k − M0, . . . , k + M0} such that d(g0 · · · gn∗0, γ ∩
g0 · · · gn∗R) ≤ C0. By the triangle inequality, we have

d(a1 · · · ak0, γ ) ≤ 2M0 max
g∈GR

d(0, g0) + d(a1 · · · an∗0, g0 · · · gn∗0) + C0.

Since the second term of the right-hand side does not exceed n(R) maxg∈GR
{d(0, g0)} by

Lemma 2.7, the proposition follows.

4.3. Uniform expansion of the induced map. If the Fuchsian group G has no parabolic
element, that is, G is convex cocompact, then the next lemma follows from the
Švarc–Milnor lemma.

LEMMA 4.3. (Linear growth on induced scale) There exists α0 > 0 such that for all
sufficiently large n ≥ 1 and every ω̃0 · · · ω̃n−1 ∈ En(X̃), we have

d(0, ω̃0 · · · ω̃n−10) ≥ α0n.

Proof. Let C0 and M0 denote the constants in Lemma 4.1. Let n > M0 and ω̃0 · · · ω̃n−1 ∈
En(X̃). Let γ ∈ R such that γ + ∈ �c ∩ Δ̃(ω̃0 · · · ω̃n−1) with the cutting sequence
(gj )

∞
j=0. By Lemma 4.1, for each k ∈ {M0, . . . , n − 1}, we fix an integer j (k) such that

|j (k) − |ω̃0 · · · ω̃k|| ≤ M0 and

d(g0 · · · gj(k)0, γ ∩ g0 · · · gj(k)R) ≤ C0. (4.1)

We write all the distinct elements of the sequence j (M0), . . . , j (n − 1) as j1, j2, . . . , jq

in the increasing order with some q ≥ (n − 1 − M0)/(2M0). For each 1 ≤ k ≤ q, there
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exists pk ∈ γ ∩ g0 · · · gjk
R such that d(g0 · · · gjk

0, pk) ≤ C0. Using equation (4.1) and
Lemma 2.7, we derive the existence of a uniform constant C ′ > 0 such that

d(0, ω̃0 · · · ω̃n−10) ≥ d(p1, pq) − C′.

Divide the geodesic segment from p1 to pq into segments of hyperbolic length C0,
with one shorter segment, say γ1, . . . , γN , for some N ≥ 1. By equation (4.1), for each
1 ≤ � ≤ q, the orbit point g0 · · · gj�

0 is within the hyperbolic distance C0 of one of the
geodesic segments γ1, . . . , γN .

Partition the set {g0 · · · gj�
0: 1 ≤ � ≤ q} into subsets O1, . . . , ON so that

d(Ok , γk) ≤ C0 for 1 ≤ k ≤ N . Since G acts properly discontinuously on D, there exists
an integer M ≥ 1 such that #Ok ≤ M for 1 ≤ k ≤ N . Hence, N ≥ q/M . Combining this
with equation (4.1) yields

d(0, ω̃0 · · · ω̃n−10) ≥ C0

(
q

M
− 1

)
− C′ ≥ C0

(
n − 1 − M0

2M0M
− 1

)
− C′.

Hence, the lemma follows for α0 = C0/(3M0M) and sufficiently large n.

PROPOSITION 4.4. There exists α0 > 0 such that for all sufficiently large n ≥ 1, we have

inf
ω̃0···ω̃n−1∈En(X̃)

inf
ξ∈Δ̃(ω̃0···ω̃n−1)∩�c

|(f̃ n)′ξ | � eα0n

and

diam(Δ̃(ω̃0 · · · ω̃n−1) ∩ �c) � e−α0n.

Proof. Let C > 0 denote the constant in Proposition 4.2. Let n ≥ 1 and ω̃0 · · · ω̃n−1 ∈
En(X̃) and let ξ ∈ Δ̃(ω̃0 · · · ω̃n−1) ∩ �c. Let γ ∈ R be the ray through zero with γ + = ξ .
By Proposition 4.2, for all sufficiently large n ≥ 1, we have

d(ω̃0 · · · ω̃n−10, γ ) ≤ C. (4.2)

Since f̃ n(γ +) = (ω̃0 · · · ω̃n−1)
−1γ +, it follows from the well-known properties of the

Poisson kernel [3] that

log |(f̃ n)′γ +| = d(0, p),

where p ∈ D denotes the point of intersection between γ and the horocircle at γ + through
ω̃0 · · · ω̃n−10. By equation (4.2), we have d(p, ω̃0 · · · ω̃n−10) ≤ 2C and thus,

| log |(f̃ n)′γ +| − d(0, ω̃0 · · · ω̃n−10)| ≤ 2C.

The first assertion of the proposition now follows from Lemma 4.3.
To prove the second assertion, first note that the estimate in equation (4.2) remains

intact if γ ∈ R is a ray through zero whose endpoint γ + is in between two points in
Δ̃(ω̃0 · · · ω̃n−1) ∩ �c. Consequently, the first assertion of the proposition also holds if ξ

is taken from the smallest arc in S
1 containing Δ̃(ω̃0 · · · ω̃n−1) ∩ �c. From this and the

mean value theorem, the second assertion of the proposition follows.

LEMMA 4.5. We have α− < α+.
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Proof. If G has a parabolic element, then α− = 0 by Lemma 2.12, and α+ > 0 since the
induced Markov interval map f̃ is uniformly expanding by Proposition 4.4. If G has no
parabolic element, it follows from [19, Corollary 11.3] that the function ϕ in equation
(3.7) is not cohomologous to a constant. Since f is piecewise C2 and some iterate of f is
uniformly expanding, ϕ is Hölder continuous. By a standard argument [6, Proposition 4.5],
we conclude that α− < α+.

5. Thermodynamic formalism and multifractal analysis
In this section, we implement the thermodynamic formalism and the multifractal analysis
for the Bowen–Series map. In §5.1, we establish the uniqueness of equilibrium states and
the analyticity of the geometric pressure function. In §§5.2 and 5.3, we apply results in [14]
to obtain formulae for the Hausdorff dimension of level sets and the limit set. In §5.4, we
derive formulae for the H -spectrum and its first-order derivative in terms of the pressure.
In §5.5, we complete the proof of the Main Theorem.

5.1. Uniqueness of equilibrium states, regularity of pressure. The next proposition is a
key ingredient for the proofs of our main results. The proof relies heavily on the existence
of an induced system which is uniformly expanding (see Proposition 4.4). Except for this
geometrical fact, the arguments are well known, and can be found in [17], [21, §8] and
[27], for example. For the convenience of the reader, we include a proof in Appendix A.

PROPOSITION 5.1. The Bowen–Series map f satisfies all of the following.
(a) For any β ∈ (−∞, β+), there exists a unique equilibrium state for the potential

−β log |f ′|, denoted by μβ . We have β+ = +∞ if and only if G has no parabolic
element.

(b) The geometric pressure function P is analytic on (−∞, β+).
(c) For all β ∈ (−∞, β+), P ′(β) = −χ(μβ). In particular, the function β ∈

(−∞, β+) 	→ χ(μβ) is analytic.

5.2. Dimension formula for level sets. We recall a few relevant definitions in [14].
A measure μ ∈ M(�, f ) is expanding if χ(μ) > 0. The dimension of a measure
μ ∈ M(�, f ) is defined by

dim(μ) =
⎧⎨
⎩

h(μ)

χ(μ)
if μ is expanding,

0 otherwise.

For an ergodic expanding measure μ, the dimension dim(μ) is equal to the infimum of
the Hausdorff dimensions of sets with full μ-measure (see e.g. [21, Theorem 4.4.2]). In
particular, δG ≥ dim(μ) holds for any μ ∈ M(�, f ).

We say f is saturated if

δG = sup{dim(μ) : μ ∈ M(�, f )}. (5.1)

If G has no parabolic element, it is known [5, 37] that the supremum in equation (5.1)
is attained by a unique element and, in particular, f is saturated. This unique measure
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is equivalent to the normalized δG-dimensional Hausdorff measure on � [25, 39]. The
saturation is important because it ensures that the the dimension formula in [14, Main
Theorem] accounts for any level set of positive Hausdorff dimension. Even in the case
where G has a parabolic element, the saturation still holds, although there is no measure
which attains the supremum in equation (5.1).

PROPOSITION 5.2. The Bowen–Series map f is saturated.

Proof. The case where G has no parabolic element has already been explained. Suppose
G has a parabolic element. If equation (1.1) holds, then f is a non-uniformly expanding,
finitely irreducible Markov map in the sense of [14]. Since � \ ⋃∞

n=0 f −n(Vc) is contained
in

⋃∞
n=0 f −n(�̃) and Vc is countable, we have dimH(�) = dimH(�̃). Hence, f is saturated

by [14, Proposition 5.2(c)]. Even if equation (1.1) does not hold, we have shown in
Proposition 4.4 that some power of the induced Markov map f̃ is uniformly expanding.
Hence, the argument in the proof of [14, Proposition 5.2(c)] works almost verbatim to
conclude that f is saturated.

PROPOSITION 5.3. The Bowen–Series map f satisfies all of the following.
(a) We have H (α) �= ∅ if and only if α ∈ [α−, α+].
(b) For all α ∈ [α−, α+], we have

b(α) = lim
ε→0

sup{dim(μ) : μ ∈ M(�, f ), |χ(μ) − α| < ε}. (5.2)

(c) For all α ∈ [α−, α+] \ {0}, we have

b(α) = max{dim(μ) : μ ∈ M(�, f ), χ(μ) = α}.
Proof. Proposition 2.10 gives H (α) = L (α), and so b(α) = dimH L (α). If G has no
parabolic element, then some power of f is uniformly expanding [37, Theorem 5.1], and so
the result is well known, see for example [24, 26, 28, 29, 42].

Suppose G has a parabolic element. The assertion in item (a) follows from [14,
Main Theorem(a)]. To derive the desired formula in item (b), we aim to apply [14,
Main Theorem(b)]. By Proposition 3.1, f is a finitely irreducible Markov map. By
Proposition 2.8, f has mild distortion, and by Proposition 5.2, f is saturated. In addition
to these conditions, in [14, Main Theorem(b)], it is assumed that the map satisfies a
non-contracting condition as in equation (1.1). However, the non-contracting condition was
used in [14] only to ensure the non-existence of points with negative pointwise Lyapunov
exponent. Although we do not assume the Bowen–Series map f satisfies equation (1.1), the
formulae in [14, Main Theorem(b)] remain intact for the level sets L (α) since all points
in these sets have non-negative pointwise Lyapunov exponents. This proves the desired
formula in item (b).

Let α ∈ [α−, α+] \ {0}. To remove the limit ε → 0 in equation (5.2), we use Lemma 3.5
to transfer the problem to M(X, σ). Since the function ϕ : X → R is continuous and the
entropy function is upper semicontinuous on the compact space M(X, σ), we can choose
a convergent sequence {μn}∞n=1 in M(X, σ) with positive entropy such that its weak*
limit point μ∞ is an expanding measure satisfying dim(μ∞ ◦ π−1) = b(α). This yields
the desired formula in item (c).

https://doi.org/10.1017/etds.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.62


Multifractal analysis of homological growth rates 27

5.3. Bowen’s formula. The next type of formula, first established in [5] for Fuchsian
groups without parabolic elements, is called Bowen’s formula. It is known for conformal
graph directed Markov systems [21, Theorem 4.2.13] which, in dimension one, correspond
to uniformly expanding finitely irreducible Markov maps. Bowen’s formula is also known
for parabolic iterated function systems [21, Theorem 8.3.6] and essentially free Kleinian
groups with parabolic elements [17].

PROPOSITION 5.4. (Bowen’s formula) We have

δG = min{β ≥ 0: P(β) = 0}.
Proof. Put δ0 = sup{dim(μ) : μ ∈ M(�, f )}. Since f is saturated by Proposition 5.2, we
have δ0 = δG. Set δ1 = min{β ≥ 0: P(β) = 0}. It suffices to show δ0 = δ1. By definition,
δ0 ≥ dim(μ) holds for any expanding measure μ ∈ M(�, f ). Hence, P(δ0) ≤ 0 and so
δ0 ≥ δ1. Suppose for a contradiction that δ0 > δ1. Then there exists ε > 0 such that δ0 >

δ1 + ε and an expanding measure μ such that dim(μ) > δ1 + ε, and so P(δ1 + ε) > 0.
However, by the definition of δ1 and the monotonicity of pressure, we have P(δ1 + ε) ≤
P(δ1 + ε/2) ≤ 0, and a contradiction arises. Therefore, δ0 = δ1 holds.

5.4. Dimension formula for level sets in terms of pressure. We call μ ∈ M(�, f )

satisfying dim(μ) = δG a measure of maximal dimension for G. For the proof of the next
proposition, we refer the reader to Appendix A.2.

PROPOSITION 5.5. There exists a measure of maximal dimension for G if and only if G
has no parabolic element.

LEMMA 5.6. If G has a parabolic element, then limβ↗β+ P ′(β) ≥ 0.

Proof. By Proposition 5.1(a), we have β+ < ∞. Suppose for a contradiction that
limβ↗β+ P ′(β) < 0. Take a sequence {βn}∞n=1 with βn ↗ β+ as n → ∞ and
limn→∞ P ′(βn) < 0. Let μβn be the equilibrium state for the potential −βn log |f ′| and let
μ be an weak* accumulation point of {μβn}∞n=1. Recall that X is a finite Markov shift where
the entropy function is upper semicontinuous, and the function ϕ : X → R in equation
(3.7) is continuous. Hence, μ is an equilibrium state for the potential −β+ log |f ′|,
namely, h(μ) − β+χ(μ) = 0. Since P ′(βn) = −χ(μβn) by Proposition 5.1(c), we have
χ(μ) = limn→∞ χ(μβn) = − limn→∞ P ′(βn) > 0. By Proposition 5.4, μ is a measure
of maximal dimension for G, which is a contradiction to Proposition 5.5.

PROPOSITION 5.7. If G has a parabolic element, then the pressure is equal to zero on
[β+, +∞), β+ = δG and the pressure function P is C1 on R. Moreover, P is strictly convex
on (−∞, δG).

Proof. Lemma 2.12 gives α− = 0. By the definition of β+, the pressure is equal to zero on
[β+, +∞). By Proposition 5.4, we have β+ = δG. By Proposition 5.1(b), P is analytic on
(−∞, β+). The continuous differentiability of P at β = δG is a consequence of Lemma 5.6
and the convexity of P. This shows that P is C1 on R. Since P is analytic, convex
and non-increasing on (−∞, δG), an elementary inductive argument on the power series
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expansion of P shows that either P is affine on (−∞, δG) or strictly convex on (−∞, δG).
The first case is ruled out by Lemma 5.6 and the assumption that G is non-elementary,
which gives δG > 0.

From Lemma 3.6, Proposition 3.8 and Proposition 5.7, we have

α+ = − lim
β↘−∞ P ′(β) and α− = − lim

β↗β+
P ′(β).

By Proposition 5.1(c), Proposition 5.7 and the implicit function theorem, there
exists a strictly decreasing analytic function β : (α−, α+) → (−∞, β+) satisfying
−P ′(β(α)) = χ(μβ(α)) = α. We have

lim
α↘α−

β(α) = β+ and lim
α↗α+

β(α) = −∞. (5.3)

PROPOSITION 5.8. For all α ∈ (α−, α+), we have

αb(α) = P(β(α)) + αβ(α) and b(α) = P ∗(−α)

α
. (5.4)

Moreover, the H -spectrum is analytic on (α−, α+) and satisfies

b′(α) = −P(β(α))

α2 . (5.5)

Proof. We have P(β(α)) + αβ(α) = h(μβ(α)) − β(α)α + αβ(α) = h(μβ(α)) ≤ αb(α),
where the last inequality follows from Proposition 5.3(c). Again by Proposition 5.3(c),
there exists an expanding measure μ ∈ M(�, f ) such that χ(μ) = α and dim(μ) = b(α).
Then, αb(α) = h(μ) = h(μ) − β(α)α + αβ(α) ≤ P(β(α)) + αβ(α), and so the first
equality in equation (5.4) holds.

The second equality in equation (5.4) follows from the first. Since P and β are
analytic, the H -spectrum is analytic on (α−, α+) by the first formula in equation (5.4).
Differentiating the first equality in equation (5.4), and combining with the first equality in
equation (5.4) and the fact that P ′(β(α)) = −α, yields the equality in equation (5.5).

5.5. Proof of the Main Theorem. Lemma 4.5 gives α− < α+. By Proposition 5.3(a),
we have H (α) �= ∅ if and only if α ∈ [α−, α+]. The analyticity of the H -spectrum
on (α−, α+) is due to Proposition 5.8. Equation (5.2) implies that the H -spectrum
is upper semicontinuous on [α−, α+]. The lower semicontinuity of the spectrum at
α ∈ {α−, α+} \ {0} can be derived from Proposition 5.3(c). To prove this, we may assume
that b(α) > 0 and denote by μ ∈ M(�, f ) an expanding measure with dim(μ) = b(α).
Let α′ ∈ (α−, α+) with α′ �= α and μ′ ∈ M(�, f ) such that χ(μ′) = α′. Applying
Proposition 5.3(c) to convex combinations pμ + (1 − p)μ′ and letting p → 1 shows
that the spectrum is lower semicontinuous at α. The remaining case α− = 0 is covered by
[14, Main Theorem(b)(ii)]. We have thus shown that b is continuous on [α−, α+]. By the
second formula in equation (5.4), we have b(α) = P ∗(−α)/α for α ∈ (α−, α+). Since P ∗
is continuous on [α−, α+], this formula extends to [α−, α+] \ {0}.

To complete the proof of item (a), we define

αG = −P ′(δG). (5.6)
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If G has no parabolic element, we have β(αG) = δG, and so b′(αG) = 0, and
b′(α)(α − αG) < 0 for α ∈ (α−, α+) \ {αG} by equation (5.5). If G has a parabolic
element, then Proposition 5.7 gives αG = 0, and [14, Main Theorem(b)(ii)] gives
limα↘α− b(α) = b(α−) = δG. Moreover, equation (5.5) implies b′(α) < 0 for α ∈
(α−, α+), and so the H -spectrum is strictly monotone decreasing on [α−, α+].

Finally, it follows from equations (5.3) and (5.5) that limα↗α+ b′(α) = −∞. Similarly,
if G has no parabolic element, then equations (5.3) and (5.5) give limα↘α− b′(α) = +∞.
The proof of item (a) is complete. The assertions in item (b) follow from Proposition 5.7.

Finally, we show that the regularity of the pressure is related to the existence of an
inflection point in the spectrum.

PROPOSITION 5.9. If G has a parabolic element and the geometric pressure function is
C2, then P ′′(δG) = 0 and the H -spectrum has an inflection point.

Proof. Recall that β(α) is the unique solution of the equation P ′(β) + α = 0. By the
implicit function theorem, α ∈ (α−, α+) 	→ β(α) is differentiable and

β ′(α) = − 1
P ′′(β(α))

. (5.7)

We apply l’Hôpital’s rule to equation (5.5) together with equation (5.7) to obtain
limα↘α− b′(α) = − limβ↗δG

1/(2P ′′(β)) when one of the two limits exists. Since
P ′′(β) > 0 for β < δG, we obtain limα↘α− b′(α) = −∞. Since limα↗α+ b′(α) = −∞
by the Main Theorem, we must have b′′(α∗) = 0 for some α∗ ∈ (α−, α+).
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A. Appendix. Supplementary proofs
A.1. Proof of Proposition 5.1. All the statements for G without parabolic elements are
well known [6, 34], since some power of f is uniformly expanding [37, Theorem 5.1] in
this case. Hence, we assume G has a parabolic element. Our strategy is to apply to X̃ the
results in [21] on the thermodynamic formalism for countable Markov shifts.

Let σ̃ : X̃ → X̃ denote the left shift. We write π̃ for π
X̃

and t̃ for t ◦ π̃ . Note that t̃ is
constant on each 1-cylinder Δ̃(ã) in X̃. Let t̃ (ã) denote the constant value of t̃ on each
partition element Δ̃(ã). For n ≥ 1, we set

S̃(n) = {ã ∈ S̃ : t̃ (ã) = n}.
LEMMA A.1. There exists n0 ≥ 2 such that for all n ≥ n0, we have 1 ≤ #S̃(n) ≤ (#S)3.

Proof. From the definition of the Markov map f̃ in §4.1, for each ã ∈ S̃ with
t̃ (ã) = n ≥ 2, there exists a unique element ω0ω1 · · · ωn of En+1(X) with
Δ(ω0ω1 · · · ωn) = Δ̃(ã). Let v denote the cusp that is contained in cl(Δ(ω1)). Since
f i(v) ∈ cl(Δ(ωi+1)) for 0 ≤ i ≤ n − 1, the sequence ω0ω1 · · · ωn is determined by the
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three symbols ω0, ω1 and ωn in S. Hence, the upper bound follows. The lower bound
immediately follows from equation (3.5).

LEMMA A.2. For any ã ∈ S̃ and ξ ∈ Δ̃(ã), we have |(f̃ )′ξ | � t̃ (ã)2.

Proof. Follows from [7, Lemma 2.8].

For (β, ζ ) ∈ R
2, we define an induced potential �β,ζ : X̃ → R by

�β,ζ (x̃) = −β log |(f̃ )′π̃(x̃)| − ζ t̃(x̃),

and an induced pressure

P(β, ζ ) = lim
n→∞

1
n

log
∑

ω̃0···ω̃n−1∈En(X̃)

sup
[ω̃0···ω̃n−1]

exp
( n−1∑

k=0

�β,ζ ◦ σ̃ k

)
,

under the cylinder notation in equation (3.2). Since logarithm of the series is sub-additive
in n, this limit exists and is never −∞. By [21, Theorem 2.1.8], the variational principle
holds:

P(β, ζ ) = sup
{
h(μ̃) +

∫
�β,ζ dμ̃ : μ̃ ∈ M(X̃, σ̃ ),

∫
�β,ζ dμ̃ > −∞

}
.

In the case P(β, ζ ) < +∞, measures which attain this supremum are called equilibrium
states for the potential �β,ζ .

We aim to verify sufficient conditions in [21, Theorem 2.2.9, Corollary 2.7.5] for the
existence and uniqueness of a shift-invariant Gibbs state and the equilibrium state for the
potential �β,ζ . (The term ‘bounded function’ in [21, Corollary 2.7.5] should be ‘function
bounded from above’.) We say �β,ζ is summable if∑

ã∈S̃

sup
[ã]

exp �β,ζ < +∞.

It is easy to see that the summability of �β,ζ implies the finiteness of P(β, ζ ).

LEMMA A.3. The potential �β,ζ is summable if and only if ζ > 0 or (β, ζ ) = (β, 0) with
β > 1/2.

Proof. By combining Lemmas A.1 and A.2.

Recall that d
X̃

denotes the metric on X̃. A function � : X̃ → R is locally Hölder
continuous if there exist constants C > 0 and θ ∈ (0, 1] such that for any ã ∈ S̃ and all
x̃, ỹ ∈ [ã], we have

|�(x̃) − �(ỹ)| ≤ C(d
X̃
(x̃, ỹ))θ .

LEMMA A.4. For any (β, ζ ) ∈ R
2, �β,ζ is locally Hölder continuous.

Proof. Let ã ∈ S̃ and let x̃, ỹ ∈ [ã]. Let n ≥ 1 be such that d
X̃
(x̃, ỹ) = e−n. By the mean

value theorem and Proposition 4.4 there exists α0 > 0 such that |π̃(σ̃ x̃) − π̃(σ̃ ỹ)| �
e−α0(n−1). Combining this with the Rényi condition in [7, Lemma 2.8] we obtain

|log |(f̃ )′π̃(x̃)| − log |(f̃ )′π̃(ỹ)|| � e−α0(n−1).
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This implies that log |(f̃ )′| ◦ π̃ is locally Hölder continuous with θ = min{α0/2, 1}.
Moreover, t̃ is locally Hölder continuous since it is constant on each induced 1-cylinder.
Hence, �β,ζ is locally Hölder continuous.

LEMMA A.5. The Markov map f̃ with the Markov partition (Δ̃(ã))
ã∈S̃

is finitely
irreducible.

Proof. By the definition of f̃ and the transitivity of the Markov map f, the proof is
straightforward.

By [21, Corollary 2.7.5] together with Lemmas A.3 and A.4 and Proposition 5.7, for any
β ∈ R, there exists a unique σ̃ -invariant Gibbs state μ̃β for �β,P (β), namely, there exists a
constant C ≥ 1 such that for any x̃ ∈ X̃ and n ≥ 1,

C−1 ≤ μ̃β [x̃0 · · · x̃n−1]

exp(−P(β, P(β))n + ∑n−1
k=0 �β,P (β)(σ̃ kx̃))

≤ C. (A.1)

LEMMA A.6. If β < β+, then
∫

t̃ dμ̃β < +∞ and
∫

�β,P (β) dμ̃β > −∞. If β ≥ β+,
then

∫
t̃ dμ̃β = +∞ if and only if β ≥ 1.

Proof. Let β < β+. Let C denote the constant given by equation (A.1). By Lemma A.2,
we have

∞∑
n=1

n
∑

ã∈S̃(n)

μ̃β [ã] � Ce−P(β,P (β))
∞∑

n=1

n1−2βe−P (β)n, (A.2)

which is finite since P(β) > 0. From equation (A.2) and Lemma A.1, we obtain∫
t̃ dμ̃β = ∑

ã∈S̃
t̃ (ã)μ̃β [ã] < +∞, and also

∫
log |(f̃ )′| ◦ π̃ dμ̃β < +∞. Therefore,∫

�β,P (β) dμ̃β > −∞ holds. If β ≥ β+, then P(β) = 0 by Proposition 5.7. By
Lemma A.1, we obtain

∫
t̃ dμ̃β = ∑

ã∈S̃
t̃ (ã)μ̃β [ã] � ∑∞

n=1 n1−2β < +∞ if β > 1 and∫
t̃ dμ̃β = +∞ if β ≤ 1.

Now let β < β+. By [21, Theorem 2.2.9] together with Lemma A.6, μ̃β is the unique
equilibrium state for the potential �β,P (β), namely

P(β, P(β)) = h(μ̃β) +
∫

−β log |(f̃ )′| ◦ π̃ − P(β)t̃ dμ̃β . (A.3)

The measure given by

μβ = 1∫
t̃ dμ̃β

∞∑
n=0

μ̃β |{t̃>n} ◦ (f n ◦ π̃)−1

belongs to M(�, f ) and by the Abramov–Kac formula [27, Theorem 2.3] satisfies

P(β, P(β)) = (h(μβ) − βχ(μβ) − P(β))

∫
t̃ dμ̃β . (A.4)

LEMMA A.7. If β < β+, then P(β, P(β)) = 0.
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Proof. Let ε > 0. From Lemma 3.5 and the fact that any measure in M(X, σ) is
approximated in the weak* topology by ergodic ones with similar entropy [9, Theorem B],
it follows that there exists an ergodic ν ∈ M(�, f ) with h(ν) > 0 and h(ν) − βχ(ν) >

P (β) − ε. Since � \ ⋃∞
n=0 f −n(Vc) ⊂ ⋃∞

n=0 f −n(�̃), measures in M(�, f ) supported
in the complement of �̃ have zero entropy, and so ν(�̃) > 0. The normalized restriction
ν̄ of ν to �̃ is f̃ -invariant and so the measure ν̃ = ν̄ ◦ π̃−1 belongs to M(X̃, σ̃ ). The
variational principle for the potential �β,P(β) yields

P(β, P(β) − ε) ≥ h(ν̃) +
∫

−β log |(f̃ )′| ◦ π̃ − (P (β) − ε)t̃ dν̃

= (h(ν) − βχ(ν) − P(β) + ε)

∫
t̃ dν̃ ≥ 0.

Since β < β+, we have P(β) > 0. By Lemma A.3, P(β, P(β) − ε) is finite for suf-
ficiently small ε ≥ 0. The variational principle [21, Theorem 2.1.8] implies that the
non-negative function ε 	→ P(β, P(β) − ε) is convex on a neighbourhood of ε = 0.
Hence, we obtain P(β, P(β)) ≥ 0. Combining this with equation (A.4), we conclude
that P(β, P(β)) = 0.

From equation (A.4) and Lemma A.7, μβ is an equilibrium state of f for the potential
βφ. From the uniqueness of μ̃β , such an equilibrium state is unique, namely μβ is the
unique equilibrium state of f for this potential. Since P(0) > 0, α− = 0 and P(1) = 0, we
have 0 < β+ ≤ 1. This completes the proof of item (a).

Next we show the analyticity of the pressure. Let β0 ∈ (−∞, β+). By [21, Theorem
2.6.12] together with Lemma A.3, P(β, ζ ) is analytic at (β0, P(β0)), and so can
be extended to a holomorphic function in a complex neighbourhood of (β0, P(β0)).
Note that the analyticity results in [21] continue to hold for finitely irreducible shift
spaces, see also [30]. Lemma A.7 gives P(β0, P(β0)) = 0, and equation (A.3) shows
∂P(β, P(β))/∂ζ = − ∫

t̃ dμ̃β �= 0. By the implicit function theorem for holomorphic
functions, the pressure is analytic at β = β0. This completes the proof of item (b).

Finally, we verify item (c). By [21, Theorem 2.6.13], we have that
∂P(β, P(β))/∂β = − ∫

log |f̃ |dμ̃β . The implicit function theorem gives

P ′(β) = −∂P(β, P(β))/∂β

∂P(β, P(β))/∂ζ
= −

∫
log |f̃ | dμ̃β∫

t̃ dμ̃β

= −χ(μβ),

as required. The proof of Proposition 5.1 is complete.

A.2. Proof of Proposition 5.5. It is well known that G has a measure of maximal
dimension if G has no parabolic element. Now assume that G has a parabolic element
and assume for a contradiction that there exists a measure of maximal dimension μ. From
Proposition 5.4, μ ◦ π is an equilibrium state for the potential −δG log |f ′| ◦ π . Since
δG > 0 by Proposition 5.4, we have h(μ ◦ π) > 0, and hence, μ(�̃) > 0. The normalized
restriction μ̃ of μ ◦ π to π−1(�̃) is σ̃ -invariant and satisfies

∫
t̃ dμ̃ < +∞ by Kac’s

formula. Moreover,
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h(μ̃) +
∫

�δG,0 dμ̃ = (h(μ) − δGχ(μ))

∫
t̃ dμ̃ = 0.

Proposition 5.4 and approximations by finite subsystems together imply P(δG, 0) ≤ 0.
Hence, P(δG, 0) = 0 and by [21, Theorem 2.1.9], �δG,0 is summable. By [21, Corollary
2.7.5], μ̃ is the unique Gibbs-equilibrium state for the potential �δG,0. By Lemma A.2,
we obtain a constant C > 0 with

∫
t̃ dμ̃ ≥ C

∑∞
n=1 n · n−2δG = +∞, which is a

contradiction.

A.3. Typical homological growth rates. Recall that αG is the unique maximal point of
the H -spectrum: b(αG) = δG by the Main Theorem. It is well known [2, Theorem 1.2]
that G is of the second kind if and only if δ(G) < 1. Hence, b(αG) = 1 if and only if G is
of the first kind. Even more, the following holds.

PROPOSITION A.8. If G is of the first kind, then |� \ H (αG)| = 0.

Proof. By Proposition 2.10, it is enough to show that (1/n) log |(f n)′| converges
Lebesgue almost everywhere (a.e.) to the constant αG in equation (5.6) as n → ∞. If
G has no parabolic element, there exists an ergodic f -invariant probability measure μac

that is absolutely continuous with respect to the Lebesgue measure. Since σ : X → X

is transitive, the support of μac is equal to �. By Birkhoff’s ergodic theorem,
(1/n) log |(f n)′| converges Lebesgue a.e. to the Lyapunov exponent of μac, namely,
the Lebesgue measure of the set � \ H (χ(μac)) is 0 and χ(μac) = αG holds.

If G has a parabolic element, then αG = 0 by the Main Theorem. It suffices to show
that for any open set U containing all neutral periodic points of f,

lim
n→∞

1
n

#{0 ≤ i ≤ n − 1: f i(ξ) ∈ U} = 1 (A.5)

for Lebesgue almost every ξ ∈ �. From the ergodicity and the Gibbs property of the
σ̃ -invariant measure μ̃1, it follows that the f -invariant measure μac = ∑∞

n=0 μ̃1|{t̃>n} ◦
(f n ◦ π̃)−1 is ergodic and absolutely continuous with respect to the Lebesgue measure.
Moreover, the density of μac is positive everywhere and infinite only at the neutral periodic
points of f. Since β+ = δG = 1, by Lemma A.6, we have μac(�) = ∫

t̃ dμ̃1 = +∞. By
[41, Theorem 1.14], for h ∈ L1(μac), we have limn→∞(1/n)

∑n−1
k=0 h ◦ f k = 0 μac-a.e.

Since � \ U has finite μac measure, taking h as the indicator of � \ U proves
equation (A.5) for Lebesgue almost every η ∈ �.
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