BULL. AUSTRAL. MATH. SOC. VOL. 6 (1972). 25-30.

Relations between boundaries of a riemannian manifold

J.L. Schiff

For a noncompact riemannian manifold R, let $M_p(R)$ be the P-algebra, and R_P^* the P-compactification, with the assumption that $\int_R PdV = \infty$. If s is the P-singular point of the P-harmonic boundary Δ_p , and Δ is the harmonic boundary of Royden's compactification R^* , we construct a continuous mapping $\pi : R^* \to R_P^*$ such that $\pi(\Delta) = \Delta_p$ or $\pi(\Delta) = \Delta_p - s$. In the former case, $\pi(p) = s$ if and only if $\int_{U \cap R} PdV = \infty$ for every neighborhood U of p. For the open set

$$\Delta^{P} = \left\{ p \in \Delta \mid \int_{U \cap R} P dV < \infty \text{ for some neighborhood } U \text{ of } p \right\}$$

considered by Kwang-nan Chow ["Representing measures on the Royden boundary for solutions of $\Delta u = Pu$ on a Riemannian manifold", (Doctoral dissertation, California Institute of Technology, Pasadena, 1970)], we have $\pi : \Delta^P \neq \Delta_P - s$ is a homeomorphism if Δ^P is closed. If U_{HD} (U_{PE}) denotes the class of Riemann surfaces which carry HD-minimal (PE-minimal) functions, then $\Delta = \Delta^P$ implies $U_{HD} = U_{PE}$.

Received 10 August 1971.

25

Let R be an arbitrary noncompact riemannian manifold, and $P \ddagger 0$ a nonnegative density function in $C^2(R)$. Denote by M(R) Royden's algebra and by R^* Royden's compactification. By means of the subalgebra $M_p(R)$ of bounded energy-finite Tonelli functions on R, one constructs the P-compactification R_P^* of R_p (Nakai and Sario [8], Kwon, Sario and Schiff [5, 6]).

Consider the continuous open mapping

$$\pi : \mathbb{R}^{\star} \to \mathbb{R}_{P}^{\star} \subset \prod_{f \in M_{p}(\mathbb{R})} I_{f} , \quad I_{f} = \left[-\|f\|_{\infty}, \|f\|_{\infty}\right] ,$$

defined by

$$(\pi(p))_f = f(p)$$
, $p \in R^*$, $f \in M_p(R)$

Let Δ be the Royden harmonic boundary, and Δ_p the *P*-harmonic boundary of *R* (*loc. cit.*). We shall assume that $\int_R PdV = \infty$. Then Δ_p contains a unique point *s*, called the *P*-singular point, at which all functions in $M_p(R)$ vanish (*loc. cit.*).

2.

It was shown by Wang [10] that either $\pi(\Delta) = \Delta_p$ or $\pi(\Delta) = \Delta_p - s$, with the latter a homeomorphism. We shall call the pair (R, P) singular or nonsingular according as the former or latter alternative occurs.

THEOREM 1. $\pi(p) = s$ if and only if $\int_{U \cap R} PdV = \infty$ for every neighborhood U of p.

We remark that in the terminology of Glasner and Katz [3], $\pi(p) = s$ if and only if " P has infinite integral at p ".

Proof. Suppose $\pi(p) = s$ for some $p \in \Gamma = R^* - R$. For every $f \in M_p(R)$, $f(p) = f(\pi(p)) = 0$. Let U be a neighborhood of p. By Uryschn's property for Royden's compactification, there exists a function

 $g \in M(R)$ such that $0 \leq g \leq 1$ on R^* , g(p) = 1, and $\operatorname{supp} G \subset U$. Since $g(p) \neq 0$, $g \notin M_p(R)$. Therefore $E_R(g) = D_R(g) + \int_R Pg^2 dV = \infty$. But $g \in M(R)$ implies $D_R(g) < \infty$, and thus $\int_R Pg^2 dV = \infty$. It follows that

$$\int_{U \cap R} P dV \ge \int_{U \cap R} P g^2 dV = \int_R P g^2 dV = \infty .$$

Conversely, suppose $\int_{U \cap R} P dV = \infty$ for every neighborhood U of p. We claim that $\pi(p) = s$. In fact, if $\pi(p) = q \neq s$, then there exists a neighborhood N of q for which $\int_{N \cap R} P dV < \infty$ (Kwon and Sario [4]). Since π is continuous, we can choose a neighborhood U of p such that

$$\pi(U) \subset \mathbb{N}$$
. In view of the fact that $U \cap R \subset \pi(U) \cap R$, we have

$$\int_{U\cap R} PdV \leq \int_{\pi(U)\cap R} PdV \leq \int_{N\cap R} PdV < \infty ,$$

a contradiction. This proves the theorem.

3.

Suppose (R, P) is nonsingular. Then for any $p \in \Delta$, $\pi(p) \neq s$, and we conclude as above that there exists a neighborhood U of p with $\int_{U \cap R} PdV < \infty$. In the general case consider the open set

$$\Delta^{P} = \left\{ p \in \Delta \mid \int_{U \cap R} PdV < \infty \text{ for some neighborhood } U \text{ of } p \right\}$$

(Chow [1]). A point $p \in \Delta^{P}$ has been termed a *P-nondensity point* by Nakai [7].

Since π is an open mapping we obtain:

THEOREM 2. If s is a point of accumulation of Δ_p , then $\pi(\Delta) = \Delta_p$ and $\pi(\Delta \setminus \Delta^p) = s$. The following result relates the set Δ^P to Δ_p (cf. Wang [10]):

THEOREM 3. If Δ^P is closed in R^* , then $\pi:\Delta^P \to \Delta_P - s$ is a homeomorphism.

Proof. Clearly $\pi(\Delta^P) \subset \Delta_p$. Suppose $\pi(p) = s$ for some point $p \in \Delta^P$. Then as above, we have for every neighborhood U of p

$$\int_{U\cap R} PdV = \infty ,$$

a contradiction. Therefore $\pi(\Delta^P) \subset \Delta_P - s$.

To show that π is surjective, assume there existed a point $q \in \Delta_p - s \setminus \pi(\Delta^P)$. Since Δ^P is closed in R^* , $\pi(\Delta^P)$ is compact in R_P^* . In analogy with the proof in Kwon, Sario and Schiff [6] of the Urysohn-type property for $M_P(R)$, we conclude that there exists a function $f \in M_P(R)$ with $0 \le f \le 1$ on R_P^* , $f \mid \pi(\Delta^P) = 0$, and f(q) = 1. Let u be the *P*-harmonic projection of f. Then $u \mid \Delta^P = 0$, and therefore $u \equiv 0$ on R (Chow [1]). But this is in violation of u(q) = 1.

On the other hand, π will be injective if for any two points $p \neq q$ in Δ^P we can find a function $f \in M_P(R)$ such that $f(p) \neq f(q)$. Since π is continuous and surjective, $\Delta_P - s$ and $\{s\}$ are disjoint compact subsets of R_P^{\star} . Thus there exists a function $g \in M_P(R)$ with $0 \leq g \leq 1$ on R_P^{\star} , $g \mid \Delta_P - s = 1$, and therefore $g \mid \Delta^P = 1$. Let $h \in M(R)$ be such that $h(p) \neq h(q)$, and $0 \leq h \leq 1$ on R^{\star} . On setting f = gh we obtain $f \mid \Delta^P = h \mid \Delta^P$, and consequently $f(p) \neq f(q)$. Moreover, $0 \leq f \leq g$ implies $f \in M_P(R)$ as desired.

28

5.

The following is an immediate consequence of Theorem 3.

THEOREM 4. (R, P) is nonsingular if and only if $\Delta = \Delta^P$.

COROLLARY 1 (cf. Glasner and Katz [3]). $\overline{\Delta} = \overline{\Delta}^{\overline{P}} = n$ if and only if dimHBD = dimPBE = n, for $1 \le n < \infty$.

We denote by U_{HD} (U_{PE}) the class of Riemann surfaces on which there exist HD-minimal (PE-minimal) functions.

COROLLARY 2. If $\Delta = \Delta^P$, there exists a one-to-one correspondence between the HD-minimal functions on R and the PE-minimal functions on R. Hence $U_{HD} = U_{PE}$ in this case.

This can be seen by observing that the isolated points of Δ are in a one-to-one correspondence with the *HD*-minimal functions on *R* (*cf*. Sario and Nakai [9]), and similarly for the isolated points of $\Delta_p - \varepsilon$ and the *PE*-minimal functions on *R* (Kwon, Sario and Schiff [5]).

References

- [1] Kwang-nan Chow, "Representing measures on the Royden boundary for solutions of $\Delta u = Pu$ on a Riemannian manifold", (Doctoral dissertation, California Institute of Technology, Pasadena, 1970).
- [2] Corneliu Constantinescu und Aurel Cornea, Ideale Ränder Riemannscher Flächen (Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F., Band 32. Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963).
- [3] Moses Glasner and Richard Katz, "On the behavior of solutions of $\Delta u = Pu$ at the Royden boundary", J. Analyse Math. 22 (1969), 343-354.
- [4] Y.K. Kwon and L. Sario, "The *P*-singular point of the *P*-compactification for $\Delta u \approx Pu$ ", *Bull. Amer. Math. Soc.* 77 (1971), 128-133.

- [5] Y.K. Kwon, L. Sario, and J. Schiff, "The *P*-harmonic boundary and energy-finite solutions of $\Delta u = Pu$ ", Nagoya Math. J. 42 (1971), 31-41.
- [6] Y.K. Kwon, L. Sario, and J. Schiff, "Bounded energy-finite solutions of $\Delta u = Pu$ on a Riemannian manifold", Nagoya Math. J. 42 (1971), 95-108.
- [7] Mitsuru Nakai, "Dirichlet finite solutions of $\Delta u = Pu$, and classification of Riemann surfaces", *Bull. Amer. Math. Soc.* 77 (1971), 381-385.
- [8] Mitsuru Nakai and Leo Sario, "A new operator for elliptic equations and the *P*-compactification for $\Delta u = Pu$ ", *Math. Ann.* 189 (1970), 242-256.
- [9] L. Sario; M. Nakai, Classification theory of Riemann surfaces (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 164. Springer-Verlag, Berlin, Heidelberg, New York, 1970).
- [10] C. Wang, "Quasibounded P-harmonic functions", (Doctoral dissertation, University of California, Los Angeles, 1970).

University of Auckland, Auckland, New Zealand.