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statement on nilpotent groups: G has polynomial growth if and only if it has a nilpotent subgroup
of finite index.

A second problem of Milnor’s—whether every group has either exponential or polynomial
growth—was solved in the negative by Grigorchuk in the 1980s [7]. Grigorchuk’s example of a
group of intermediate growth and other similar examples later constructed by Gupta and Sidki
are often expressed as groups of automorphisms of rooted trees. All these topics, and more, are
covered in the final three hefty chapters of the book.

I do not see this book being usable as a course textbook, for example, because of the com-
bination of style and choice of material. Nevertheless, anyone working seriously in the area of
geometric group theory will want to have access to it as a handy reference manual, and its
appearance is greatly to be welcomed.
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This book is the second, and final, volume of a great work on Banach ∗-algebras. The first
volume [4], which was published in 1994, was devoted to the general theory of algebras and
Banach algebras. This volume was reviewed by me in [1]. This second volume is devoted to
Banach algebras with an involution. It has already been reviewed by George Willis in [7].
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It is immediately obvious that this is a mammoth work; the total number of pages in the two
volumes is almost 1600. The bibliography at the end of this second volume contains over 2000
items, with about 25% dated after 1990; some references have been found in rather obscure
sources. The author has a truly remarkable knowledge of the literature, and this has been
assimilated into the text. The history of the results in the book is given in great detail.

It seems that the author has typeset the whole text by himself; this is a tremendous achieve-
ment in itself. The details seem to be very accurate, and throughout the author is careful to
point out possible ambiguities and pitfalls to be avoided. But the details need to be accurate
because a large amount of information in this text is carried by subscripts and superscripts. For
an example, see Proposition 10.1.2, where A†

R,1 denotes the set of representable positive linear
functionals of norm 1 on an algebra A; it is a challenge to the memory of this reader to recall all
the notation, but there is a clear ‘symbol index’ on pp. 1612–1616. (In this index, A†

R,1 is listed
under the letter ‘R’). Also a large amount of information is displayed in impressive charts of
relationships between various classes of algebras, for example. My small criticisms in this area
include the following: my eyesight prefers T̃ to T̃ and C

2 to C
2; sometimes the braces around

expressions are too small; a few expressions are awkwardly split between lines; and, in general,
a few more equations should have been displayed.

There seem to be very few errors; the author is collecting those that he knows about on his
website.

Naturally, this work is a very complete exposition of the topics that it covers; in the earlier
chapters of this second volume there are only a few points at which reference is made to original
papers for proofs that are omitted, and so the whole development of the subject is before our
eyes.

At one stage the author planned two further chapters, on the cohomology of Banach algebras,
following the style of the major contributions of Barry Johnson, and on the K-theory of Banach
algebras. In the end, it was not possible to include these chapters in either the present or a future
volume. In fact, work in these two areas has advanced very rapidly recently (in particular, Viktor
Losert has recently resolved a long-standing open question by showing that H1(L1(G), M(G)) =
{0} for every locally compact group G), and so perhaps this is not a great loss; we may hope
for a new synthesis, taking account of recent developments, in these two areas sometime in the
fairly near future. Some references to these lost chapters remain in Palmer’s bibliography.

Earlier works on Banach ∗-algebras include the classic text of Rickart [6]. Major examples
of Banach ∗-algebras are, of course, C∗-algebras, and there is a multitude of books on these
examples; the present text subsumes some of this theory, but it is primarily a book on the more
general class. Another recent and long book on Banach algebras is that of the reviewer [2];
however, the overlap between that book and the present volume is very small. (Note that the
involution in a Banach ∗-algebra is required to be an isometry in [2], but in the present work
the involution in such an algebra is not necessarily continuous.)

The second important class of Banach ∗-algebras is that of group algebras (see below). The
natural class that contains both C∗-algebras and group algebras is exactly that of Banach
∗-algebras; the author seeks and indeed finds a substantial theory of this general class. Each
Banach algebra has an algebraic and a topological structure, and the interest and beauty of
the subject arises from the interplay between these two structures; nevertheless, Palmer’s heart
lies in the algebraic theory, and he first develops the purely algebraic theory of ∗-algebras,
adding extra hypotheses that we shall later see are satisfied by all Banach ∗-algebras. Thus his
development is initially very algebraic, and so this book should be of interest to algebraists as
well as specialists in Banach algebra theory.

This is not a book in which one can find quick summaries of ‘the state of the art’ in, say,
C∗-algebra theory, and it is disjoint from some of the major advances of the last decade. Rather,
the author has reworked many of the foundations of the subject, and has given an account of
results mainly of the 1970s and 1980s; some of the text consists of his own unpublished results
of that time; often the results are given for a wider class of algebras than heretofore. Thus
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this book is what the title implies: a general theory of algebras with an involution. It will be
the definitive text, and an essential reference, for the material that it covers for many years to
come.

I shall now describe the contents of the four chapters of the present volume. Quite often the
author includes summaries of topics in areas that seem somewhat distant from the main theme,
and so there is much more in this volume than is immediately apparent from the titles of the
sections. This is a tribute to the author’s wide-ranging scholarship.

The first chapter (Chapter 9) deals with the algebraic theory of ∗-algebras with no initial
topological structure. It certainly has more details and is cast in greater generality than any
earlier work.

In § 9.1, we find the basic definitions; often the author uses the language of categories (but the
reader does not require prior knowledge of this terminology). Some basic examples, including
group algebras for a discrete group and C∗-algebras, are introduced. Topics discussed include
finite-rank operators, the numerical range of an operator on a Hilbert space, and Hilbert–Schmidt
and trace class operators. There is a very detailed description that I have not seen elsewhere of
low-dimensional ∗-algebras, given in a very careful and full table on pp. 857–859, and a complete
list of all finite-dimensional ∗-simple ∗-algebras. It is good to know that such a list exists, even
if it is not really light reading.

Algebras are fundamentally studied through the theory of representations, and we begin
this study in § 9.2. In this work we are discussing ∗-representations of ∗-algebras on a Hilbert
space H, regarding B(H) as a C∗-algebra. In his quest for generality, the author discusses pre-∗-
representations on pre-Hilbert spaces as well as the better-known ∗-representations on a Hilbert
space. We learn that many of the differences between the theory of representations of algebras
and the theory of ∗-representations, which is our major theme, follow from the fact that every
closed T -invariant subspace of a ∗-representation on a Hilbert space automatically decomposes,
in the sense that orthogonal complements are also T -invariant (Proposition 9.2.4).

The author says that he will omit any systematic study of C∗-algebras, but he does give
a discussion of the various categories in which we can view these algebras (‘their category is
fundamentally algebraic’), and he does prove the von Neumann and Kaplansky density theorems
in § 9.3. He discusses very carefully the definitions of W ∗-algebras and von Neumann algebras,
but does not prove the famous abstract characterization of von Neumann algebras by Sakai.
The spectral theorem for normal operators is proved.

In § 9.4, Palmer discusses the relationship between topologically cyclic ∗-representations and
representable and admissible positive linear functionals. The basic idea follows the seminal one
of Gelfand and Naimark, with contributions of Segal, Rickart and Sebestyen, but the treatment
is the most general possible, and is based on unpublished results of the author from the 1970s.

The main theorem of § 9.5 is the author’s version of the Gelfand–Naimark theorem: an algebra
semi-norm which satisfies the C∗-condition is specified by a ∗-representation. The first proof is
classical and the second is based on numerical range considerations, giving the remarkable fact
that a norm-unital Banach algebra is isometrically isomorphic to a C∗-algebra if and only if
the shape of its unit ball near the identity is the same as that of the unit ball of a C∗-algebra
in its unique C∗-norm. This is a consequence of the Vidav–Palmer theorem. The theory of
topologically irreducible ∗-representations in § 9.6 is again developed for a wider class of ∗-
algebras than heretofore; very general structure spaces are defined and their relationships are
discussed carefully.

Topologically irreducible ∗-representations are plentiful whenever there are enough ∗-repre-
sentations. In the classical theory a ∗-algebra A is reduced if the reducing ideal AR, which is the
intersection of the kernels of the ∗-representations, is the zero ideal. This ideal defines a radical
in certain categories of ∗-algebras, but not in the category of all ∗-algebras, as examples make
clear; in this category one naturally considers pre-∗-representations, which give the pre-reducing
ideal ApR. (The latter ideal is called the ∗-radical and is denoted by ∗-radA in [2]). It seems
to be open whether or not ApR always contains the radical of A. The author also introduces
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the ∗-representation topology, not explicitly defined elsewhere. This is all explored in § 9.7. The
author studies particular classes of ∗-algebras in this section; these are the regular, very proper,
proper, semiproper, quasi-proper, and ordered ∗-algebras. In a diagram, he shows all the known
relations between these properties, and then, in a series of carefully worked-out examples, gives
counterexamples to nearly all the other possible relationships. The most interesting example is
the ∗-algebra B consisting of all N × N-matrices that have only finitely many non-zero entries
in each row and in each column; it seems to be open whether or not the spectrum of b ∈ B is
contained in R whenever b = b∗ in B.

The remaining sections of this first chapter deal with hermitian, symmetric and completely
symmetric ∗-algebras, and with various linear maps between ∗-algebras; again the results are
given in a general algebraic setting extending earlier more special results.

It is the author’s credo that the objects of primary interest, Banach ∗-algebras, are best studied
by defining various additional hypotheses that general ∗-algebras might satisfy. For example, he
defines in Definition 10.1.1 the Gelfand–Naimark semi-norm γ on a ∗-algebra A by setting γ(a),
for a ∈ A, to be the supremum of ‖Ta‖ when T ranges through the class of all ∗-representations
of A on a Hilbert space; he coins the term ‘G∗-algebra’ for the class of ∗-algebras for which
γ(a) is finite for each a ∈ A. The justification for this approach is as follows: first, the various
classes of ∗-algebras which he defines have an intrinsic interest; more importantly, the classes
lend themselves to particularly simple proofs of the main theorems because they isolate exactly
the property which is required; furthermore, the categories that the properties define are much
better behaved than the rather awkward category of Banach ∗-algebras, and so constructions
and proofs are facilitated. Most of the categories have been defined by the author himself, and
this is their first connected exposition. In my opinion, the case for each particular definition is
well made, and the author’s personal experience and very detailed calculations have provided
a coherent and attractive setting for the various theorems. The important point to remember
when one is seeking to apply the results is that essentially all the classes contain the class of
Banach ∗-algebras, or at least the class of hermitian Banach ∗-algebras.

The notion of a G∗-algebra is natural, inter alia, because many simple conditions on a ∗-algebra
are equivalent to it being a G∗-algebra. The Gelfand–Naimark semi-norm γ is the largest C∗-
seminorm on a ∗-algebra A; its kernel is AR, and the completion of (A/AR, γ) is the enveloping
C∗-algebra C∗(A) of A. However, there is a problem with the class of G∗-algebras: little of the
∗-representation theory of Banach ∗-algebras can be carried through for this class. Thus the
author defines a slightly smaller class, that of BG∗-algebras, and then shows that essentially
all the features of the known theory of Banach ∗-algebras can be carried through for BG∗-
algebras. In particular, every ∗-representation of a ∗-ideal in a BG∗-algebra can be extended to
a ∗-representation of the whole algebra on the same Hilbert space (Theorem 10.1.21).

Chapter 10 is devoted to ∗-algebras that satisfy some extra conditions. In § 10.2, the author
introduces T ∗-algebras, S∗-algebras and Sq∗-algebras; they seem destined to be minor players
in the ongoing drama, but they have a role in the process of staging the full and important
proof that each Banach ∗-algebra is a BG∗-algebra, and their introduction clarifies the logic of
the proof of this latter theorem. The Raikov–Ptak functional τ : a �→ ρ(a∗a)1/2 is important
here (where ρ denotes the spectral radius). All known proofs that Banach ∗-algebras are BG∗-
algebras depend on finding square roots of certain hermitian elements by using some form of
the Shirali–Ford square-root lemma; this result is captured by the definition of Sq∗-algebras. By
Theorem 10.2.8, every ∗-ideal in a Banach ∗-algebra is an Sq∗-algebra.

A U∗-algebra, from § 10.3, is a ∗-algebra A such that the unitization of A is the linear span
of its unitary group. Each Sq∗-algebra is a U∗-algebra. This notion was devised by the author
around 1972; many of the properties of BG∗-algebras given here for the first time were originally
proved for U∗-algebras. A γS∗-algebra, from § 10.4, is the natural generalization of a hermitian
Banach ∗-algebra; the seminorms γ and τ coincide on a γS∗-algebra; furthermore, the Jacobson
radical of a γS∗-algebra coincides with its reducing ideal. It is open whether or not γS∗-algebras
are always BG∗-algebras.
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In Chapter 11, the author turns to Banach ∗-algebras themselves. First, § 11.1 helpfully sum-
marizes, and sometimes reproves, much of the earlier theory as it applies to Banach ∗-algebras.
Similarly, § 11.4 summarizes the satisfying theory of hermitian Banach ∗-algebras; the seminal
work on these algebras is due to Raikov, to Ptak, and to the author in the 1970s, and it was
the knowledge of this theory that led the author to write the first version of his magnum opus
at that time. In § 11.2, the author discusses the unitary structure of Banach ∗-algebras; the
development using the Mobius–Potapov–Harris transform is still very attractive; strengthened
forms of the Russo–Dye theorem are obtained. In § 11.3, there is a brief account of the auto-
matic continuity of positive linear functionals on a Banach ∗-algebra A (it is still not known
whether or not all such functionals are continuous whenever A2 is closed and of finite codi-
mension in A) and of homomorphisms from A; on this topic, the account in [2] is much more
comprehensive.

The remaining sections of this chapter deal with the ideal structure of Banach ∗-algebras,
with minimal ideals, with H∗-algebras (showing in Theorem 11.6.18 that essentially the only
examples are ∗-algebras of Hilbert–Schmidt matrices on an index set), and with Hilbert and
Tomita algebras (the treatment is based on the approach of Rieffel in 1969). These algebras fit
into the present chapter because a full left Hilbert algebra is a hermitian Banach ∗-algebra, and
so earlier results apply. In fact we even see a study of quasi-left Hilbert algebras; it is comforting
to see that left Hilbert algebras obtain their ‘fulfillment’ in § 11.7, even if British eyes would prefer
a fulfilment. There is rather a long discussion of Tomita–Takesaki theory, including substantial
preliminaries on unbounded operators which are defined on a dense subspace of a Hilbert space.

As we stated, the two most important classes of Banach ∗-algebras are those of C∗-algebras
and of group algebras. Indeed, if it were not for the enormous importance, in both general theory
and applications, of these particular classes of algebra, it would be hard to justify the study
of Banach ∗-algebras, their common generalization. It is in the final chapter, Chapter 12, of
this work that the author applies his general theory to the study of group algebras. These are
algebras of the form L1(G), where G is a locally compact group with left Haar measure λ. The
product that makes L1(G) into a Banach algebra is convolution, which is denoted by ∗, so that

(f ∗ g)(u) =
∫

f(v)g(v−1u) dv (u ∈ G)

for f, g ∈ L1(G), and the involution ∗ is defined by

f∗(u) = ∆(u−1)f(u−1) (u ∈ G)
for f ∈ L1(G), where ∆ is the modular function. (There are small differences of notation between
the present work, [2] and [3]; a comprehensive table of notation is given on p. 1484. Palmer uses
∗ for both convolution product and the involution; in [2], I use � for the convolution product.)
A closely related Banach ∗-algebra is M(G), the measure algebra of G. The algebra L1(G) is
a closed ∗-ideal in M(G), and M(G) is the multiplier, or double centralizer, algebra of L1(G).
However, the complicated structure of the character space of M(G) in the case where G is abelian
is not discussed in this book; a modern text on this topic is a major gap in the literature.

In § 12.1, the theory of locally compact groups is reviewed; for details and proofs that are
omitted the reader is often referred to [3]. It is well known that the class of locally compact
groups is a zoo; a plethora of subclasses has been introduced. Many of these classes are described
by Palmer; there is a list on p. 1485 (where, for example, ‘5.13’ means that the definition is given
in subsection 12.5.13). The present section presents the details of several important examples,
including the Heisenberg groups, and introduces the theory of group extensions in our setting; it
shows that the study of topological groups reduces to the study of connected groups, of totally
disconnected groups, and of group extensions.

The first of these classes of groups is studied in § 12.2; in fact, the author introduces the wider
class of almost connected groups. Within this section, we find a reasonably detailed introduction
to Lie groups and Lie algebras, to Hilbert’s fifth problem, and to the Iwasawa decomposition.
The structure of the special linear group SL(2, R) is worked out in detail. The results of this
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section are rather classical. The second class, that of totally disconnected groups, is studied
in § 12.3. We note that the compact, totally disconnected groups are just the pro-finite groups;
we also see here a summary of Galois theory, its applications to topological groups, and some
connections with number theory (especially using the p-adic integers); here one again realizes
the author’s substantial erudition on many diverse topics. Theorem 12.3.12 is a full and detailed
classification of non-discrete, locally compact division rings, a theorem which descends from the
work of van Dantzig in the 1930s. The section continues with some much more recent work: this
is the theory of Willis ‘that gives a whole new level of insight into the structure and classification
of [totally disconnected, locally compact] groups’. The key notions are those of ‘scale function’
and ‘tidy subgroup’, which were introduced by Willis. As usual, the author gives the details of
the key examples; this will surely be very valuable for future advances in the general theory.

It is well known and of fundamental importance that continuous, unitary representations of
a locally compact group G correspond to ∗-representations of L1(G) and of M(G) in a natural
way. Full details of this correspondence are given in § 12.4. This leads to the Gelfand–Raikov
theorem that there are enough topologically irreducible, continuous, unitary representations of
each locally compact group to separate its points, and to a characterization of the positive-
definite functions on the group. In this setting we are introduced to further classes of groups:
these include the Moore groups [Moore], the maximally almost periodic groups [MAP], and the
classes [CCR] and [Type I]. The relationships of these classes and the theory of their ideals
is delineated with care and summarized in diagrams. This section includes a careful summary
(with few proofs) of results about the Fourier algebra and the Fourier–Stieltjes algebra of an
arbitrary locally compact group; this is at present a very fashionable area of research.

In §§ 12.5 and 12.6, the author defines 22 important classes of groups (and some less impor-
tant classes) are defined, sometimes repeating earlier definitions. The relationships between the
classes are determined; this work updates and expands the author’s seminal survey paper [5].
A typical heading of a subsection is ‘A compactly generated, totally disconnected, Takahashi
group that is not a central group’. The account of amenable groups, a class that attracts much
attention at present, is rather brief; many other texts give fuller accounts. I find the classes of
groups determined by Banach ∗-algebraic properties of L1(G) to be particularly interesting. For
example, G is said to be hermitian if the Banach ∗-algebra L1(G) is hermitian; no simple charac-
terization of such groups is known. Is every hermitian group an amenable group? Very detailed
references to the history of the various theorems are given. The tables at the end of § 12.6 give all
known interrelationships between the defined classes of groups and list, for many explicit exam-
ples, the classes that the examples belong to; usually we see ‘Y’ or ‘N’ in the various columns,
but sometimes there is a ‘?’, and these question marks are obvious challenges for the future.
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