
i
i

“book” — 2021/8/17 — 7:09 — page 121 — #139 i
i

i
i

i
i

x
xx
x

The Birth of Quantum Computing

I n the 1940s England used its first electronic computers to crack
enemy codes, while the US used its computers to perform compu-
tations for nuclear physics. Eight decades later, these same two
applications are driving interest and investment in quantum com-

puting. If the effort to build large-scale quantum computers is suc-
cessful, these machines will surely be used to crack codes and model
physics. But just as electronic computers eventually had many more
applications than dreamed of in the 1940s, quantum computers will,
in all likelihood, find work solving problems that are not even con-
templated today.

This is the first of three chapters on quantum computing. We
discuss this history in some depth in order to provide an intellectual
foundation for understanding both how different quantum computers
are from classical computers, and for helping readers to form an
appreciation of just how early we are in the development of these
machines. This appreciation will be relevant when we review policy
issues in Chapter 8 and Chapter 9.

This chapter is based on both bibliographic research and inter-
views conducted with many quantum computing pioneers. Readers
uninterested in this history can skip to Chapter 6, where we discuss
the applications of quantum computing likely to be seen in the near
future, the different kinds of quantum computers currently under
development, the challenges facing the field, and the more distant
future outlook for the technology.

121
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 122 — #140 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

4.1 Why Quantum Computers?
Quantum computers are strikingly different from classical comput-
ers, and billions of dollars have been spent developing them today
without any payoffs other than papers in prestigious scientific jour-
nals. To date, this aggressive research program seeks to realize three
specific applications for quantum computers: simulating physics and
chemistry, factoring numbers, and searching for optimal solutions to
specific kinds of mathematical computations (“optimization”).

4.1.1 Richard Feynman and Quantum Computing
In 1981, the American physicist Richard Feynman (1918–1988) pro-
posed that the kinds of mathematical problems that quantum physi-
cists need to solve might be more efficiently worked on using a
computer based on quantum mechanics than one based on classi-
cal physics.1 Feynman was speaking at a conference exploring the
physics of computation co-sponsored by MIT and IBM. Held at MIT
Endicott House Conference Center, a converted mansion built in the
style of a French manor house in the Boston suburbs, the confer-
ence brought together an eclectic collection of roughly 50 renowned
physicists and computer scientists. Feynman was the conference’s big
draw, and his proposal makes this conference the proper birthplace
of quantum computing.

Of course, all present-day computers are based on quantum me-
chanics: computers use the flow of electrons, and electrons are the
quantization of electronic charge. But computer engineers (the pro-
fessionals who design the hardware of computers) go out of their
way to make electrons behave as if they are classical objects – as if
they were little balls traveling along wires, like water through a pipe.
Indeed, in the 1970s, as the feature size of semiconductor lithogra-
phy got smaller and smaller, some scientists were concerned that
the walls between those pipes were getting so thin that electrons
might seep (or “tunnel”) from one pipe to another, causing an error.
Specifically, the fear was that quantum tunneling, a consequence of
the Heisenberg uncertainty principle, might slow or even halt the
relentless march of Moore’s Law (see Section 3.5, “Moore’s Law, Ex-
ponential Growth, and Complexity Theory” (p. 98)). So Feynman’s
idea that computer engineers might actually want to embrace the
uncertainty, nondeterminism and inherent randomness that comes
with quantum phenomena was a radical proposal indeed.

1Feynman, “Simulating Physics with Computers” (1982).

122
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 123 — #141 i
i

i
i

i
i

4.1. WHY QUANTUM COMPUTERS?

Quantum Confusion

Some popular accounts of quantum computing present key con-
cepts inaccurately. Here we set the story straight.

Quantum computers are parallel machines, but they
do not solve hard problems by trying all possible solu-
tions at once. Quantum computers run in parallel, inasmuch
as a machine with 50 qubits uses all 50 at once.a If we build
a quantum system with 10 million qubits, all of those qubits
will compute in parallel. While some quantum speedup comes
from this parallelism, it is thought that more comes from the
ability of quantum computers to compute with quantum wave
equations.

Qubits are a superposition of two possibilities, but
this does not mean that two qubits simultaneously have
four values (00 , 01 , 10 and 11). Qubits do not simul-
taneously have two values any more than Schrödinger’s cat is
both alive and dead at the same time (see p. 523). A qubit has
a single, definite quantum state when it is measured: that state
is either a 0 or 1 , and the probability that it will be in one
state or the other depends on the quantum calculation.

Quantum computers cannot store an exponential
amount of information. Google has built a quantum com-
puter with 53 qubits, but it cannot store 253 bits (8192 TiB) of
information. Google’s quantum computer has no storage at all
in the conventional sense. Each time the computer solves a prob-
lem, it selects a single 53-bit result from 253 possible answers.

Quantum computers use superposition and entanglement,
but they do not simultaneously consider every possible varia-
tion of complex puzzles. That would require cycling repeatedly
forwards and backwards, performing additional computations
with every cycle. Reusing space and time in this manner would
be powerful, but this is not how quantum computers work, and
it’s probably not possible in our universe.b

aLikewise, even the 8-bit microprocessor in the original Apple II was a par-
allel machine, in that it could add and subtract 8 bits in parallel at a given
time. To find a true serial machine, you need to go back to the very first dig-
ital computers and their so-called bit-serial architectures. These machines
added 8-bit numbers a single bit at a time.

bFor a discussion of time-travel computing, see Aaronson, “Guest Column:
NP-Complete Problems and Physical Reality” (2005).

123
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 124 — #142 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

Before the dawn of quantum computing, computer engineers had
always tried their best to hide the uncertainty and inherent nonde-
terminism of the quantum realm in every circuit that they designed.
Computers built using tubes in the 1950s and transistors ever since
do this by using large ensembles of electrons to represent each 0 and
1 – and by strenuously avoiding the roll of the dice that is inherent
in all things involving quantum mechanics. Instead of building com-
puters that are governed by probability, computer engineers have
traditionally built machines that they hoped would be deterministic.
That is, they hoped that the computer would always generate the
same output given the same input. When their computers didn’t,
they called such behavior a bug. Nowadays, we enjoy the successes
of computer engineers pursuing determinism. One’s computer can
process billions of bits a second and run for years without crashing.

Deterministic machines are great for running spreadsheets and
typesetting books, but they are poorly suited for analyzing quan-
tum systems, such as a the chemistry of a molecule. That is be-
cause the complexity of a quantum system scales exponentially with
the number of particles that the system contains: it might take 16
times longer to analyze a molecule with eight atoms compared to a
molecule with four. A molecule with 10 atoms might take 64 times
longer to study.

Feynman’s key insight was realizing that the exponential scal-
ing inherent in modeling quantum systems with classical computers
might be avoided by using a computer built from the ground up on
the math of quantum mechanics – that is, a computer designed to
preserve and embrace the nondeterminism of quantum states. But
to do that, quantum computers would have to do something that
conventional computers can’t readily do: they would have to be able
to run backwards.

4.2 Reversibility
The idea that quantum processes could represent digital information
and be used for computing emerged slowly in the 1970s. One of the
first building blocks, largely worked out at IBM and MIT, was the
idea of reversible computing.

Reversibility is a property of both classical and quantum physics,
and it has profound implications. In classical physics, reversibility
means that astronomers can take the equations used to predict the
motion of the Sun, Moon, planets, and stars in the future and run

124
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 125 — #143 i
i

i
i

i
i

4.2. REVERSIBILITY

Figure 4.1. A Feynman diagram showing an electron–positron annihilation; rotate it
90° and you have an electron absorbing and then re-emitting a photon (γ). Note that
time flows up in the diagram, along the vertical axis, while the three dimensions of
space are represented as a projection along the horizontal axis.

the equations backwards to determine where those celestial bodies
were located in the past. Indeed, taken from the vantage point of
celestial mechanics, the direction of time is arbitrary.

In quantum physics, reversibility means that quantum processes
can easily go forwards or backwards. In fact, at the quantum level,
it is even possible to swap time with space.

4.2.1 The Arrow of Time
In 1948, Feynman, then a professor at Cornell University, came up
with a visualization for describing how subatomic particles interact.
The diagrams replaced the complex and hard-to-understand mathe-
matics that physicists had previously used with pictures that can be
understood even by a lay audience. They were so revolutionary and
became so ubiquitous that today we call them Feynman diagrams.2

The Feynman diagram in Figure 4.1 depicts what happens when
an electron (e–) collides with a positron (e+). Positrons are basically
electrons that have a positive charge instead of a negative charge.
Otherwise, electrons and positrons are identical. (When looking at
the diagram, remember that time flows up from the bottom of the
page to the top.)

2Feynman’s diagrams were initially rejected by his peers, but gained popularity in
the 1950s as Feynman successively refined his theory of how light and electrons
interact. Feynman went on to share the 1965 Nobel Prize in Physics with Sin-
Itiro Tomonaga and Julian Schwinger, “for their fundamental work in quantum
electrodynamics, with deep-ploughing consequences for the physics of elementary
particles.” Flamboyant and commanding, today Feynman is also known for his
ability to explain physics to lay audiences, for doing so with infectious enjoyment
and captivating joviality, and for his work analyzing the NASA space shuttle
Challenger disaster.

125
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 126 — #144 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

The positron is called an antiparticle because when it interacts
with an electron, the two particles annihilate each other, leaving two
gamma particles3 traveling away from each other each at the speed of
light. This is the classic “matter–antimatter” reaction popularized in
the 1960s television series Star Trek – one of the many bits of science
at the heart of the series’ science fiction.4

Recall that time in the Feynman diagram flows from the bottom
of the page to the top, while the width of the page depicts separation
in space. One of the curious aspects of quantum physics, however, is
that the choice of time’s direction is arbitrary. Swap the direction of
time, and Figure 4.1 equally well describes two photons colliding to
produce an electron–positron pair.5

Given that time appears reversible at both the cosmic and the
quantum level, why then does time to us appear to flow in one direc-
tion – that is, why is there an arrow of time that appears to point
from the past to the future? This is an open question in both physics
and philosophy.

One possible explanation is that time’s arrow might be an illu-
sion: perhaps time does not flow from the past to the future. Time’s
arrow might simply be a trick of consciousness. Perhaps time is con-
sciousness, and all events in the past and future are already fixed
in four-dimensional space. If true, this explains the pesky riddle of
quantum entanglement – Einstein’s spooky action at a distance –
but it also closes the door on the possibility of free will. That is,
the future might be fixed, but we simply aren’t aware of how it will
unfold. If the future is fixed, then everything that will happen has
already happened, and we have already made all of our choices that
we will ever make – we just don’t know it yet. Although some peo-
ple reject this explanation out-of-hand, anyone who has ever been
surprised by the ending of a novel or a movie has experienced this
effect first-hand.

4.2.2 The Second Law of Thermodynamics
Instead of resorting to metaphysical or religious explanations, physi-
cists typically cite the Second Law of Thermodynamics as the expla-

3Gamma particles are highly energetic photons.
4Star Trek also featured the concept of teleportation – the Star Trek transporter
– which we will revisit in Chapter 7, as well as one of the first popular depictions
of computer forensics.

5Such reactions have never been observed, but there have been proposals for cre-
ating “gamma–gamma” colliders that would do just this.

126
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 127 — #145 i
i

i
i

i
i

4.2. REVERSIBILITY

Burnt Norton (Excerpt)

Time present and time past
Are both perhaps present in time future,
And time future contained in time past.
If all time is eternally present
All time is unredeemable.
What might have been is an abstraction
Remaining a perpetual possibility
Only in a world of speculation.

– T.S. Eliot (1936)

nation of time’s arrow. The Second Law holds that the entropy of a
closed system tends to increase with the passage of time. But this is
a bit self-referential, since what we call the “Laws of Thermodynam-
ics” aren’t really laws at all – they are observations that physicists
have made regarding how energy appears to move through the world
around us.

The so-called Laws of Thermodynamics were worked out between
1850 and 1920 to explain the behavior of heat. They are “laws,” not
theories, because they describe what the scientists observed; they
didn’t try to explain the why behind the observations. And they
aren’t laws, because there is no penalty for violating them.6

The First Law of Thermodynamics holds that the energy of a
closed system remains constant. The Second Law says when two ob-
jects touch, heat naturally flows from the warm object to the cold
object and not the other way around. By the early twentieth century
physicists had learned how to construct devices like heat pumps and
refrigerators that use mechanical energy to move heat “uphill” – that
is, to suck the heat out of cold objects to make them colder, dump-
ing the energy someplace else, making that second place warmer.
These devices don’t actually violate the Second Law, however, when
you take into account the entire system consisting of the object be-
ing cooled, the object being heated, the heat pump, and the energy
source.

6The discipline of quantum thermodynamics derives the modern laws of thermo-
dynamics from quantum mechanics, but since the “laws” of quantum mechanics
are also simply mathematical equations that happen to fit observations made by
physicists of the physical world, even these “laws” are not really laws.

127
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 128 — #146 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

The Third Law of Thermodynamics says that no matter how
hard you work, you cannot cool an object to absolute zero Kelvin
(−273.15 °C, or −459.67 °F). In fact, the colder a system gets, the
more energy is required to cool it further.

There are many formulations for the Laws of Thermodynamics.
Although most are mathematical, one is lyrical: You can’t win, you
can’t break even, and you can’t get out of the game.

Today the Second Law is widely understood in terms of entropy.
A colloquial definition of entropy is that it is the amount of “disor-
der” that exists in a system – the more disorder, the more entropy.
Another way of stating the Second Law is that the entropy of a closed
system will tend to increase over time.

If you have ever made tea, you have experienced the Second Law.
Take an empty teacup, drop in a tea bag, and fill the cup with boiling
water. At first, the various organic molecules that make up the tea
are all located inside the tea leaves.7 The tea bag, its leaves, and the
cup are all cold, the water is hot. This is a highly ordered system.

But as soon as the water and the tea mix, the organic molecules
inside the tea leaves start to diffuse into the hot water, and within
a few minutes the concentration of the molecules that we call “tea”
dissolved in the water and still present in the tea leaves are roughly in
equilibrium. Likewise, the temperature of the tea bag and the inside
of the tea cup both rise, while the temperature of the water falls,
until they too are roughly in equilibrium. If you wait long enough,
the less agreeable molecules from the leaves will also migrate into the
water, and the temperature of the water, the teacup, and the room
will all come into equilibrium, and now you have ruined a perfectly
good cup of tea in the service of science.

You may have also heard that there is a finite probability that all
of the air molecules in a room will move into a corner, resulting in the
asphyxiation of everyone in the room. In practice this never happens,
because that finite probability is fantastically small. Likewise, there
is a finite probability that the heat in the room will move back into
the water, and that the bitter tea molecules will move back into the
bag. But this is also very improbable – so improbable that you will
never experience it, no matter how many cups of tea you forget on
your kitchen counter.

7For a discussion of molecules that make up tea, see C.-T. Ho, Zheng, and Lib,
“Tea Aroma Formation” (2015).

128
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 129 — #147 i
i

i
i

i
i

4.2. REVERSIBILITY

1 2 3 4 5 6
1 ↑ ↑ ↑ ↑ ↑ ↑
2 ↑ ↑ ↑ ↑ ↑ ↑
3 ↑ ↑ ↑ ↑ ↑ ↓
4 ↓ ↓ ↓ ↓ ↓ ↓
5 ↓ ↓ ↓ ↓ ↓ ↓
6 ↓ ↓ ↓ ↓ ↓ ↓

3 6
Figure 4.2. An exercise in entropy. The first roll rotates the arrow at row 3, column
6. Rotate enough arrows and the original pattern will be obscured.

You can also demonstrate the Second Law with 36 coins and
a pair of dice. Place the coins in a 6-by-6 grid such that the top
three rows show their heads pointed up and the bottom three rows
show their heads pointed down. Once again, this is a highly ordered
system – it’s low entropy. Roll the dice and rotate the coin at the
row specified by the first die and the column indicated by the second
(see Figure 4.2). Repeat a hundred times, and you won’t be able to
see the original pattern. We have created a web-based version of this
simulation that you can run at www.the-quantum-age.com/quantum-
demos/.

Both tea diffusing into hot water and the coins rotating in ac-
cordance with dice rolls are randomized processes that are reversible
in theory, but not in practice. This is probability at work. If you
roll the dice twice and roll (3,6) followed by (3,6), you will end up
with the original pattern. There is a 1 out of 36 (2.8 percent) chance
that this will happen.8 But if you role the dice four times, there
are only 3888 sequences that will restore the original pattern, while
there are 1 675 728 sequences of dice rolls that will not. The odds
that a sequence of rolls will be such a restorative sequence grow
exponentially worse with each additional pair of rolls. So while it is
theoretically possible that you will one day see the initial checkboard
pattern restored, the odds are vanishingly small. For example, the
odds of restoring the board after six pairs of rolls is significantly

8Because we use the first die to represent the row and the second to specify the
column, there are 36 distinct dice throws. For each of those 36 possible dice rolls,
there is precisely one restorative sequence. Thus, there are a total of 36× 36 dice
rolls, of which 36 are restorative: 36

36×36 =
1
36 = 0.027 = 2.7%.

129
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://www.the-quantum-age.com/quantum-demos/
https://www.the-quantum-age.com/quantum-demos/
https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 130 — #148 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

Our Tools and Our Self-Conceptions

Einstein himself wrestled with the implications of quantum me-
chanics (see the sidebar “Man Plays Dice with Einstein’s Words”
on page 518), but for the average person these implications re-
main an abstraction in our day-to-day lives. As quantum tech-
nologies enter daily life, will we begin to see the world through
the lens of quantum mechanics? After all, some ancients saw the
universe as a geometric ballet, a reflection of the mathematics of
the age. Clockwork and even steam technologies have served as
metaphors to explain the celestial and our place in it. Consider
this argument about our universe:

The mechanism by which quantum mechanics in-
jects an element of chance into the operation of the
universe is called “decoherence.” […] Decoherence ef-
fectively creates new bits of information, bits which
previously did not exist. In other words, quantum
mechanics, via decoherence, is constantly injecting
new bits of information into the world. Every detail
that we see around us, every vein on a leaf, every
whorl on a fingerprint, every star in the sky, can
be traced back to some bit that quantum mechanics
created. Quantum bits program the universe.a

How will we conceive of ourselves differently if the ideas
in this book – the centrality of information and randomness –
come to shape our worldview?

aLloyd, “The Computational Universe” (2014).

less than the odds of winning any lottery on the planet. This is the
Second Law at work, and it is all around us: time moves forward,
eggs cannot be unscrambled, and people grow old. Feynman died of
cancer, a disease caused by a random, uncorrected genetic mutation
in a single cell. He was 69 years old.

4.2.3 Reversible Computation
There is a close relationship between the physics concept of entropy
and the mathematical concept of information; in some formulations,

130
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 131 — #149 i
i

i
i

i
i

4.2. REVERSIBILITY

entropy and information are actually the same thing.9 There is also
a close relationship between the operation of conventional comput-
ers – classical computers – and entropy. Specifically, when classical
computers operate, entropy increases. To give you some intuition as
to why this might be the case, we will examine what happens in a
classical computer when numbers are sorted.

Now we will explore a bit more of the hypothetical computer
language that we explored in the last chapter. Recall that there are
two kinds of information stored in the computer’s memory: variables
and code. Each variable has a name and an initial value. The code
is executed one line at a time. Code can store and retrieve numbers
from locations in its memory (as specified by variable names).

Let’s see what happens when our hypothetical computer executes
this pseudocode program:

PROGRAM SORT_NUMBERS:
BEGIN VARIABLES
A: 3
B: 2
C: 1

BEGIN CODE
1: IF A > B THEN SWAP(A , B)
2: IF B > C THEN SWAP(B , C)
3: IF A > B THEN SWAP(A , B)
4: PRINT-VARIABLES
5: HALT

To run this program, we load it into the computer. That sets the
initial values of the variables and then runs the program one line at
a time. When the computer stops, the output looks like this:

SORT_NUMBERS OUTPUT:
A = 1
B = 2
C = 3

This program sorts the variables A, B, and C and prints the re-
sult.10 These variables are each a physical place inside the computer’s

9Frank, “The Physical Limits of Computing” (2002).
10The program implements a simple sort algorithm called bubble sort. Although
generally bubble sort is viewed as an inefficient sorting algorithm, it’s fine here.

131
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 132 — #150 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

Step PC A B C
start 0000 0000 0000 0011 0000 0010 0000 0001
1 0000 0001 0000 0010 0000 0011 0000 0001
2 0000 0010 0000 0010 0000 0001 0000 0011
3 0000 0011 0000 0001 0000 0010 0000 0011
4 0000 0100 0000 0001 0000 0010 0000 0011

Figure 4.3. The value of each variable as the program SORT_NUMBERS runs

memory that can store a number. Our computer is a classical digital
computer, so A is actually a set of bits. (See the footnote on page 85
and page 86 for a discussion of bits.) In our computer, A has 8 bits,
and we encode them as an unsigned 8-bit integer (see p. 88).

It turns out that there’s another variable in this computer pro-
gram that we haven’t mentioned yet. This variable is called the pro-
gram counter (PC): it keeps track of the current line that the com-
puter is executing. The PC starts at the first line (0000 0001), and
ends on the fifth line (0000 0101). Figure 4.3 shows the value of
each of the registers at the completion of each line of the program.

Bits are not abstract things: there is a physicality to each bit
inside a computer. In the case of our hypothetical computer, each
bit is built from a little bucket that can hold electrons. Each 1
corresponds to a small electronic charge and each 0 represents the
absence of charge. In the case of this specific hypothetical computer,
each bucket can hold between 0 and 400 electrons (see Figure 4.4).11

The bucket controls a switch that the computer uses to determine
if the number of electrons in the bucket represents a 1 or a 0 . If
the bucket has no electrons, the switch is closed and the computer
treats the bit as a 0 . If there are more than 200, the switch engages,
and the computer treats the bit as a 1 . Every time the computer
reads the bit, it then drains the bucket. If the computer reads a 1 ,
it reloads the bucket back to its full capacity of 400 electrons. This
read combined with a write is called a refresh operation, and forcing
each bit to be either a 0 or a 1 is called the digital discipline, which

11The buckets actually hold excess electrons, since the bucket itself is made out
of atoms, and each of those atoms also have their own electrons. However, it is
easier to ignore the electrons that are part of the register’s walls and just think
about the excess elections.

132
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 133 — #151 i
i

i
i

i
i

4.2. REVERSIBILITY

e-e-
e-e-

e-e-
e-e-

e-e-
e-e-

e-e-
e-e-

e-e-
e-e-

e-e-
e-e-

e-e-
e-e-

e-e-
e-e-

e-e-
e-e-

e-e-
e-e-

e-e- e-

e- e-e-
e-e-

e-e-
e-

e-
e-

Figure 4.4. A bit in a computer’s storage can be thought of as a bucket that can hold
excess electrons. The bucket on the left holds no excess electrons and represents a 0.
The bucket on the right holds 400 excess electrons and represents a 1.

we discuss in Section 3.3 (p. 84).12

From the First Law of Thermodynamics, we know that energy
cannot be destroyed. When the computer starts up, the variables A, B,
C, and PC are all 0000 0000 . The computer needs 4 bits (1600 elec-
trons) to initialize A, B, and C. These electrons come from a massive
reservoir of electrons called the computer’s ground, which is drawn
like this: .13 Pulling those 400 electrons from the ground and drop-
ping them into the buckets takes work. This work is performed using
energy from the computer’s power supply.14

As the computer program runs, electrons are being constantly
sent from the memory back to the ground, and pulled back from
ground into memory locations. For example, when the PC gets in-

12Readers with a background in electronics may realize that each bucket is actually
a random access memory (DRAM) cell.

13On some computers, the computer’s ground is actually connected to the third
prong on of the electrical outlet – the ground prong – which connects to a green
wire that eventually goes to the earth, hence the name ground on these computers
is actually the ground! However, many computers these days don’t have a wire
connected to the earth. Instead, they have a floating ground, which is typically
the negative terminal of a rechargeable battery.

14In a laptop or cell phone, the energy required to flip bits comes from a chemical
reaction. In computers that are plugged into the wall, the energy might come
from an electric dynamo powered by a wind turbine, or from photons sent to the
Earth by the Sun.

133
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 134 — #152 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

cremented from 0000 0000 to 0000 0001 , those electrons come
from the ground. When it gets incremented from 0000 0011 to
0000 0100 , the extra electrons go back to the ground.

All of this work generates heat, which is why a laptop gets warm
when it is worked hard. The heat comes both from chemical reactions
in the laptop battery to make the electronic energy that’s needed to
move the electrons, and from the movement of the electrons through
the computer circuits, which also generates heat because the elec-
trical wires have resistance. Overcoming that resistance also takes
work.

Aside from the program counter, the SORT_NUMBERS program is
pretty efficient in terms of electrons. All of the data movements are
done with the SWAP function, which swaps the values in the two
variables.15 Nevertheless, when this program runs, information is
destroyed. We know this because after the program runs, we’ve lost
the original values of the variables A, B, and C, and there’s no way
to get them back.

In fact, there are other hidden sources of energy loss going on. The
swap itself requires no energy, but IF statements in lines 1, 2, and 3
all generate a bit of information (whether to swap or not to swap)
and then destroy that bit. And we are ignoring all of the bits that are
set and then cleared when the computer executes PRINT-VARIABLES.
Conservatively, that program is probably destroying billions of bits
every time it runs.

4.2.4 The Landauer Limit
In 1961, Rolf Landauer (1927–1999) at IBM Research considered the
operation of computers at the information-theoretic level. Landauer
concluded that practical computation required that information be
destroyed, resulting in the inevitable increase in entropy. Landauer
showed16 that even in an ideal computer, every bit of information
that is lost must generate a tiny amount of heat – at least 3 × 10−21 J
at room temperature. Today this is called the Landauer limit.

This amount of heat was insignificant compared to the other
processes running inside IBM’s computers of the early 1960s; no IBM

15Most computers have such swap instructions, although in practice what they
do is far more complicated and electronically expensive than simply exchanging
electrons between two memory locations.

16R. Landauer, “Irreversibility and Heat Generation in The Computing Process”
(1961).

134
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 135 — #153 i
i

i
i

i
i

4.2. REVERSIBILITY

engineer had ever observed it. It’s still insignificant today. A typical
modern desktop computer consumes roughly 10 × 10−15 J to convert
a 0 to a 1 – roughly a million times more than heat generated by
the information loss.

Landauer became IBM’s assistant director of research in 1965,17

and became an IBM Fellow in 1969. In 1972, he recruited Charles
H. Bennett (b. 1943) to join the research staff at Yorktown Heights.
At the time, Bennett had been thinking about quantum information
for nearly a decade (see the sidebar “The Birth of Quantum Cryp-
tography” on page 137) and was working on a paper that challenged
Landauer’s fundamental finding – that is, he found a way around the
Landauer limit. Bennett published that paper shortly after joining
IBM.

Bennett’s paper starts out by restating Landauer’s conclusion:

The usual digital computer program frequently performs
operations that seem to throw away information about
the computer’s history, leaving the machine in a state
whose immediate predecessor is ambiguous. Such opera-
tions include erasure or overwriting of data, and entry
into a portion of the program addressed by several dif-
ferent transfer instructions. In other words, the typical
computer is logically irreversible.18

But in the pages that follow, Bennett showed that Landauer had
overlooked something: Landauer had assumed that computers neces-
sarily had to destroy information when they operate. Bennett showed
that this need not be the case: it is possible to compute entirely with
reversible operations. Such a computer would be more complex than
a computer built from conventional logic – computers like the ones
that IBM was building in 1973 – but in theory could be just as pow-
erful. That is, it would be a Turing machine, a generalized computer
that can run any program and simulate any other computer. Bennett
showed how to build a reversible Turing machine.

Bennett didn’t actually build a reversible Turing machine, of
course, any more than Alan Turing built a Turing machine when
he published On Computable Numbers.19 Bennett merely showed

17Physics Today, “Rolf Landauer” (2019).
18C. H. Bennett, “Logical Reversibility of Computation” (1973).
19Turing, “On Computable Numbers, with an Application to The Entschei-
dungsproblem” (1936).

135
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 136 — #154 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

that it is theoretically possible to build such a machine. Bennett also
showed that such a machine would be significantly more complicated
to design, harder to program, and would typically take twice as many
steps as a non-reversible Turing machine to solve the same problem.
But a reversible Turing machine would have a significant advantage
over today’s non-reversible systems: it would be liberated from Lan-
dauer’s limit, and be able to compute with essentially no lower bound
on energy loss.

As will be shown later in this chapter, reversible computation is
also the key to solving problems on quantum computers.

4.3 Cellular Automata and Conway’s Life
Bennett was not the only person in the 1970s interested in reversible
computing. Another was Tommaso Toffoli, who developed his ap-
proach for reversible computation using a different approach to com-
puting called cellular automata.

A graduate student at the University of Michigan, Toffoli had
studied physics in Italy before moving to the US as part of the Ful-
bright Foreign Student Program. He eventually met up with Arthur
Burks (1915–2008), a mathematician who had worked on the design
of the EDVAC with John von Neumann (see the sidebar “John von
Neumann” on page 138). After von Neumann’s death, Burks com-
pleted and edited von Neumann’s final book, which introduced the
idea of cellular automata.20 and explores many of their theoretical
capabilities.

With his background in physics, Toffoli was interested in tak-
ing the research of von Neumann and Burks in a different direction.
Specifically, he wanted to know if it was possible to build a reversible
cellular automata. Toffoli recalled in an interview for this book that
Burks and others thought that it wouldn’t be possible to create such
cellular automata, but Toffoli showed that it was, and published the
work as his PhD thesis, with Burks as his thesis advisor.

4.3.1 Computing with CPUs, GPUs, and CA(s)
To understand the significance of Toffoli’s question, and of what he
discovered, we are going to look deeper into how computation works
in a conventional computer.

The “brain” of the contemporary computer is a small device
called the central processing unit (CPU). Inside the CPU there is

20von Neumann and Burks, Theory of Self-Reproducing Automata (1966).

136
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 137 — #155 i
i

i
i

i
i

4.3. CELLULAR AUTOMATA AND CONWAY’S LIFE

The Birth of Quantum Cryptography

QIS pioneer Gilles Brassard (b. 1955) traces quantum cryptogra-
phy’s start to a friendship between Charles Bennett and Stephen
Wiesner, who met while they were undergraduates at Brandeis
University in the 1960s. Bennett went to Harvard to pursue
his PhD, while Weisner went to Columbia University. Weisner
came up with an idea he called “Conjugate Coding,” which used
a pair of entangled particles to do things like create electronic
banknotes that would be impossible to counterfeit and create
pairs of messages, of which only one could be read by the recip-
ient. Wiesner submitted a paper on his thought experiment to
IEEE Transactions on Information Theory, but the paper was
rejected and Wiesner went on to other projects.a

The possibility of using entanglement for some kind of com-
munication stuck with Bennett and he shared it from time to
time with others. More than ten years later, Bennett and Bras-
sard were at an IEEE conference in Puerto Rico, where Brassard
was giving a talk that touched on quantum concepts. Bennett
thought that Brassard might be interested in Weisner’s idea
of conjugate coding. Brassard was, and the two expanded the
idea into the basic concept of “quantum cryptography,” which
they presented at the Crypto ’82 conference. The following
year, Bennett and Brassard presented their groundbreaking ar-
ticle, “Quantum Cryptography: Public Key Distribution and
Coin Tossing”b (frequently called simply BB84). We will take
up the story of quantum cryptography in the next chapter. And
if you are interested in the original Conjugate Coding paper,
you can read it too,c since the success of the BB84 convinced
Wiesner to get his original paper published.

aG. Brassard, “Brief History of Quantum Cryptography: a Personal Perspec-
tive” (2005).

bC. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Dis-
tribution and Coin Tossing” (1984).

cWiesner, “Conjugate Coding” (1983).

137
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 138 — #156 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

John von Neumann
Born in Budapest in 1903, John von Neumann was one of the
most gifted scientists of the twentieth century. At the age of
eight von Neumann was familiar with calculus; fluent in five
languages, he published his first groundbreaking mathematical
paper at the age of 19. Eager to escape Europe, he was offered
one of the first professorships at the Institute of Advanced Study
in Princeton, NJ, which he joined in 1933.

Von Neumann worked out the complex nonlinear equations
describing the physics of shock waves; this had direct application
to the design of explosives. Based on this work, he was invited
to join the Manhattan Project in 1943, where he worked on the
explosive “lens” for the implosion bomb. He was successful: the
first implosion “gadget” detonated at the Trinity test site on
July 16, 1945; the second detonated over the city of Nagasaki,
Japan, on August 9, 1945, killing as many as 80 000 people.

At a chance meeting at the Aberdeen train station in Au-
gust 1944, army lieutenant Herman Goldstine told von Neu-
mann of a research project at the University of Pennsylvania
to create a device that would be able to compute artillery ta-
bles far faster than the human “computers” that had been hired
for the task.a Von Neumann joined the group, hoping that the
Electronic Numerical Integrator and Computer (ENIAC) under
construction, along with its successor Electronic Discrete Vari-
able Automatic Computer (EDVAC), would be able to speed
the Los Alamos bomb computations.

Goldstine typed up the group’s design notes and gave them
to von Neumann for editing during a train ride to New Mex-
ico. When the report was distributed later that summer, First
Draft of a Report on The EDVACb carried von Neumann’s name
alone on its cover. This mistake is memorialized in the term von
Neumann architecture, which describes the EDVAC’s approach
of storing both data and code in the computer’s main mem-
ory. Today von Neumann architectures dominate the computer
landscape. Quantum computers do not have von Neumann ar-
chitectures, but they are controlled by conventional computers
that do.

aSee Grier, When Computers Were Human (2007) and LeAnn Erickson’s
2011 documentary Top Secret Rosies: The Female Computers of WWII.

bvon Neumann, First Draft of a Report on The EDVAC (1945).

138
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 139 — #157 i
i

i
i

i
i

4.3. CELLULAR AUTOMATA AND CONWAY’S LIFE

a complex circuit where the actual computing – the addition, the
subtraction, and so on – takes place. This circuit is literally the
computer’s processor, although on some computers it is called a
core; until the early 2000s most home computers had a single core,
whereas today most home computers have anywhere between two
and twelve.21 The rest of the computer exists to move data and code
from the Internet into the computer’s memory, and then from the
computer’s memory into CPU, and then to move the results back to
the outside world.

Cellular automata take a different approach to computation. In
these systems, computation takes place in the memory itself. Imag-
ine a large rectangular grid of cells, like a massive checkerboard that
extends to the horizon. Each square is a processor that has a small
amount of memory and executes its small program in step with all of
the other squares. Each square can also communicate with its neigh-
bors. By itself, each square can’t compute much, but the assemblage
of all of the squares could be much faster than today’s fastest com-
puters, for the simple reason that more instructions are executing at
any given moment. That is, whereas contemporary computers have
between two and twelve cores, and whereas graphic processing units
might have a few hundred or even a few thousand cores, a large
system based on cellular automata principles might have millions or
billions of cores.

The phrase self-reproducing in the title of von Neumann’s last
book asks not if it is possible to create a robotic factory that is
programmed to produce robot factories, but if it is possible, using
computation, to have an underlying mathematical pattern that can
reproduce itself. Such a structure could be the core idea that em-
powered a robotic robot factory, but the underlying design pattern
might show up in other systems as well.22

21Contemporary computers also typically have graphic processing units (GPUs),
which can have dozens, hundreds, or even thousands of cores. These cores are
less flexible than the cores in the CPU and are optimized for performing the
kind of math necessary to render complex scenes. Each specialized GPU core
is typically slower than a general purpose microprocessor core in the CPU, but
the GPU has many more cores than the CPU, so the net result is that it runs
much faster. Although, as their name implies, GPUs were originally created for
graphical processing, another common use for GPUs today is performing the mas-
sive and repetitive mathematical algorithms required by contemporary artificial
intelligence algorithms.

22Design patterns used in nature frequently show up in engineered systems, im-

139
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 140 — #158 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

That is, the self-reproducing automata that are the subject of von
Neumann’s book could be a factory of robots, placed in a complicated
arrangement so that the factory of robots created new factories of
robots. Alternatively, it might be a collection of math problems that,
when solved, created a new set of the same math problems. This is
fundamentally the advantage that von Neumann and Burks enjoyed
by working with mathematical abstractions, rather than trying to
actually build self-reproducing automata out of wires, relays, and en-
gines: the abstract mathematical system allows the thinker to focus
on the conceptually relevant part of the problem without worrying
about the details. As theoreticians, they could consider their theoret-
ical models and determine if the models would work (if they could
possibly build the systems), or if the models wouldn’t work (even if
they spent their lifetimes trying to build the system perfectly). This
interplay between theory and practice shows up again and again in
the history of computing, and it is the reason why theoreticians be-
lieved that quantum computers would be so powerful even before
the first quantum computer was ever constructed.

4.3.2 Life (The Game)
Probably the best known cellular automata is Life, invented by the
British mathematician John Horton Conway FRS (1937–2020). Life
is not reversible, but its influence is great to this day, so we use Life
here to present the concept of cellular automata, which will then give
us a tool for thinking about quantum computers.

Conway designed the rules of Life through trial-and-error; we
present the rules in Figure 4.5. Conway’s goal was to create a simple
set of rules that nonetheless produced successive generations with
unexpected complexity. Below we will look at a few simple examples
that do not have such complexity, followed by two examples that
remain fascinating to this day.

plying that the underlying requirements for both natural and engineered systems
may share fundamental commonalities. For example, both bacterial and computer
programs called quines are self-reproducing automata that are structured in two
parts: the first part is the genetic material or information that describes the ma-
chinery necessary to reproduce, and the second part is the machinery itself, which
reads the information and reproduces both the information and the machinery.
A factory of computers that built computers would probably be based on similar
principles. See also Bratley and Millo, “Computer Recreations: Self-Reproducing
Programs” (1972).

140
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 141 — #159 i
i

i
i

i
i

4.3. CELLULAR AUTOMATA AND CONWAY’S LIFE

The rules of Life:
1. Gameplay is on a square grid of cells, such that each cell

has eight neighbors.
2. Each cell can either be empty or alive.
3. There is a global clock. Each time the clock ticks, every

empty cell that is surrounded by exactly three live cells
transitions from empty to alive. (A “birth.”)

4. Alive cells that have two or three live neighbors remain
alive.

5. Alive cells with less than two alive neighbors become empty.
(They die of “loneliness.”) Alive cells with four or more alive
neighbors become empty. (They die of “overpopulation.”)

Figure 4.5. Rules for John Conway’s “Life”

A grid with no live cells remains eternally empty:
→

A single live cell also becomes empty and remains that way for-
ever:

→

The three possible arrangements of two live cells also die out:
→

→

→

With three live cells there are three possibilities. A triangle of
three live cells becomes a 2-by-2 square, which is eternally stable:

→

Three cells arranged in a diagonal will take two generations to die
out. More exciting are three cells arranged in a horizontal row: they
became a vertical row, which then became a horizontal row again.
This repeating pattern is called a blinker:

141
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 142 — #160 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

→ → → → → …

Start with five live cells and things get complicated fast. For ex-
ample, there is the glider, which moves one cell to the right and one
cell down every four generations, as demonstrated by this progres-
sion:

→ → → →

A slightly different collection of five cells called R-pentomino pro-
duces a staggering amount of complexity. The initial pattern runs
without a repeat for 1103 generations and ends up producing eight
2x2 blocks, six gliders, four six-celled “beehives,” four blinkers, and a
collection of other objects. It must be watched on a computer screen
to see this in all its glory. Below are the results at 150 generations
using the web-based LifeViewer.23 Look carefully and you can see
that three of the pattern’s gliders have already been launched and
are sailing off to infinity:

→ 150 generations →

Conway invented Life in 1969 and sent a typewritten letter about
it to Martin Gardner (1952–2000), editor of the popular “Mathemat-
ical Games” column in Scientific American. Gardner featured the
game a few months later,24 igniting an interest in both Life and cel-

23See www.conwaylife.com/wiki/R-pentomino
24Gardner, “The Fantastic Combinations of John Conway’s New Solitaire Game
‘Life’” (1970).

142
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://www.conwaylife.com/wiki/R-pentomino
https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 143 — #161 i
i

i
i

i
i

4.3. CELLULAR AUTOMATA AND CONWAY’S LIFE

lular automata that continues to this day. Indeed, when Conway died
in 2020 (one of the early notable deaths in the COVID-19 pandemic),
the obituary in the New York Times quoted Gardner stating that
at the peak of its popularity, “one quarter of the world’s computers
were playing [Life].”25 The obituary also quoted musician Brian Eno,
who said “Conway’s LIFE changed mine … Conway himself thought
it rather trivial, but for a nonmathematician like me, it was a shock
to the intuition, a shattering revelation – to watch glorious complex-
ity emerging from staid simplicity.”

Life Is Turing Complete
Although this fact wasn’t discovered for many years after its inven-
tion, the rules of Life have sufficient complexity that they are Turing
complete. That is, with clever programming, the rules of Life and
a starting configuration of sufficient complexity can implement the
central processing unit of a computer that can read, execute, and
modify its own program. This basic idea was created by Alan Tur-
ing, another English mathematician, in the 1930s.26 Turing’s great
discovery was that a mechanical calculating device can compute any
computable function in all of mathematics if it 1) can read instruc-
tions from a tape; 2) write new instructions back to the tape; 3)
move the tape forwards or backwards; and 4) has logic for executing
the instructions. This means that you could use a large grid running
Conway’s Life to compute the mathematical constant π (pi) to a mil-
lion places if you wanted to. You could even use a grid running Life
to simulate a top-of-the-line Intel microprocessor, which means that
you could use it to run the Windows or Macintosh operating system,
provided that you had a grid that was large enough.27 (We discuss
computing and what it means to be Turing complete in Section 3.4
(p. 91).)

Like all Turing Machines, the Life Turing Machine (LTM) has
control logic, memory cells, and the ability to read and write to a
massive “tape.” One of the repeated patterns used by the Life Turing
Machine is the glider gun, first developed by famed MIT hacker Bill
Gosper (b. 1943), which repeatedly “shoots” gliders across the grid.

25Roberts, “John Horton Conway, a ‘Magical Genius’ in Math, Dies at 82” (2020).
26Turing, “On Computable Numbers, with an Application to The Entschei-
dungsproblem” (1936).

27Rendell, “A Universal Turing Machine in Conway’s Game of Life” (2011).

143
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 144 — #162 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

The Life Turing Machine (LTM) uses the gliders to communicate
between its various parts.

The LTM requires 11 040 Life generations for one Turing Machine
cycle. Whether or not that is “slow” depends on how fast the under-
lying cellular automata runs: in a browser at 18 generations a second,
it’s slow from the point of view of a human watching the screen; on
some kind of theoretical stringy fabric that can crunch 600 trillion
generations per second (600 THz), it would be considerably faster
than any computer in existence today. Likewise, if a cell in the Life
array is the size of the array we show above, a LTM large enough to
run a web browser would probably be larger than our planet. But if
each cell in the Life array were on the order of 10−35 m – that is, a dis-
tance on the scale of the smallest quantum effects (see Appendix A)
– then the entire computer would likely fit into the space of a single
hydrogen atom.

Turning a massive, parallelized, conceptually clean cellular au-
tomata into an ornately complex contraption built from glider guns
and mathematical tape may seem itself more like a mathematical
diversion than a practical exercise in computing. The point of the ex-
ercise is to demonstrate that the underlying computational medium
of Life’s cellular automata is universal: it can therefore compute any-
thing that is computable. Building a computer with glider guns and
tapes is no more strange than building one with relays, tubes, or
semiconductor transistors.

Where could one go with these observations? Recall Toffoli’s in-
terest in recasting physics as computation. Conway’s Life is one of
an infinite number of possible cellular automata systems, each with
its own set of rules. A cellular automata could have rules that just
consider each cell’s north, south, east and west neighbors, for ex-
ample. Cells could have a third state, young, which would prevent
them from counting towards a birth. Cells could eventually die from
old age. The game could be played on a hexagonal grid, or a three-
dimensional grid, or even a five-dimensional grid. The key thing that
makes it a cellular automata is that every cell follows a set of rules –
typically the same rules – and that each runs more-or-less indepen-
dently. Beyond that, everything is up for grabs.

Conway’s Life demonstrates that even simple underlying rules
can produce complex and unforeseen outcomes. Could our own re-
ality be described by the rules of a cellular automata? What if the

144
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 145 — #163 i
i

i
i

i
i

4.4. DIGITAL PHYSICS

fundamental stuff of the universe, deep down, actually is a cellular
automata?

4.4 Digital Physics
The idea that reality itself might be nothing more than a program
running on some cosmic computer was not yet a common idea among
academics and science fiction authors in the 1970s. Nevertheless, it
was increasingly clear that there was something fundamental about
computation and information – not just at the societal level, but in
the underlying fabric of biology and physics.

For example, there was the matter of life itself. In 1953 Watson
and Crick published the structure of deoxyribonucleic acid (DNA),28

the molecular basis of heredity, and started to unravel the entire
process by which information encoded in DNA is synthesized into
proteins. By 1970, scientists were increasingly comfortable with the
idea that most (if not all) biological processes were based on the
movement of information carried by molecules.29

Likewise, by the 1970s the philosophical implications of quantum
mechanics – for example, whether Schrödinger’s cat could be both
alive and dead at the same time (see p. 523) – were increasingly be-
ing discussed and accepted outside the rarefied world of theoretical
physics. In 1974, Stephen Hawking showed that quantum uncertainty
causes black holes to radiate small amounts of energy – now called
Hawking radiation – setting off what American theoretical physicist
Leonard Susskind called “The Black Hole War”30 over the question
of whether or not information was destroyed by black holes or con-
served in Hawking radiation.31 So the idea that reality itself might
be fundamentally based on information – that reality might be in-

28Watson and Crick, “Molecular Structure of Nucleic Acids: a Structure for De-
oxyribose Nucleic Acid” (1953).

29The role of information in shaping the form of physical reality easily dates back
to ancient Greece, where Heraclitus posed the question of whether or not the
ship that Theseus had used to sail from Crete to Athens was the same ship
after centuries afloat in Athenian harbor, despite the fact that all of its oars and
timbers having been incrementally replaced over the years.

30Susskind, The Black Hole War: My Battle with Stephen Hawking to Make The
World Safe for Quantum Mechanics (2008).

31Meanwhile in the popular press, the bestselling books Capra, Tao of Physics:
an Exploration of The Parallels between Modern Physics and Eastern Mysticism
(1975) and Zukav, The Dancing Wu Li Masters (1979) both drew similarities
between quantum mechanics and eastern mysticism.

145
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 146 — #164 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

formation – wasn’t necessarily so far-fetched, at least to those who
thought about it.

Even if the underlying fabric of the universe is not actually a
cellular automata, being able to describe it as such might give sci-
entists a powerful alternative formulation for quantum physics. But
in order to do that, the cellular automata certainly wasn’t going to
be the kind described by the rules of Conway’s Life. That is because
the Game of Life is not reversible, but physics is.

4.4.1 Edward Fredkin and Project MAC
Project MAC was established at MIT in 1963 to develop interactive
computer systems and explore applications for their use.32 Roberto
Mario Fano (1917–2016) was the founding director of Project MAC,
followed by the legendary J. C. R. Licklider (1915–1990), an Ameri-
can psychologist and computer scientist, who ran Project MAC from
1968 until 1971. Edward Fredkin (b. 1934) was Project MAC’s third
director, from 1971 until 1974, when Fredkin moved to California to
spend a year learning quantum mechanics from Richard Feynman,
with Fredkin teaching Feynman about computers in return. Fredkin’s
tenure as director was unlike the others, in that it was the only time
that Project MAC (or its successors) had been run by a wealthy,
ex-military, college drop-out who had made his fortune when his AI
startup went public.33.

Fredkin was born in southern California in 1934 into a family that
once owned a chain of radio stores but lost them at the start of the

32“MAC” was an unstable acronym, variously standing for “Multiple Access Com-
puter” (the project pioneered timesharing, allowing a computer to be accessed by
more than one person at once), “Machine-Aided Cognition” (one of the project’s
original goals), “Man And Computer” (and later “Men Against Computers,” be-
cause the project’s members were overwhelmingly male and the computers some-
what buggy), and even “Minsky Against Corby” (recognizing the long-running
feud between MIT professors Marvin Minsky and Fernando José Corbató – a
stress that ultimately led Minsky’s Artificial Intelligence Lab to break with
Project MAC and go its own way). Following Fredkin’s tenure, Project MAC
was renamed the Laboratory for Computer Science and run by Michael Der-
touzos from 1974 to 2001, and then by Victor W. Zue from 2001 to 2003, at
which point the Laboratory for Computer Science and the AI Lab merged back
together to form the MIT Computer Science and Artificial Intelligence Labora-
tory (CSAIL) MIT Institute Archives, “Laboratory for Computer Science (LCS)”
(2011).

33Garfinkel (aut.) and Hal Abelson (ed.), Architects of The Information Society
(1999).

146
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 147 — #165 i
i

i
i

i
i

4.4. DIGITAL PHYSICS

Quantum Physics and Free Will

We know that many experts and organizational systems can
embrace probabilities in a contingent world, but does that em-
brace have limits? Moving from the level of legal systems to the
individual, quantum technologies could erode our assumptions
about human morality.

Our assumptions about human morality are based in non-
determinism – one implication of which is that we have free will,
that our choices are ours, along with the moral responsibility
of them. Could more familiarity with quantum mechanics be-
gin to alter our assumptions about determinism and ultimately,
assumptions of free will?

Novelist Ted Chiang writes an exhilarating story that ex-
plores the moral responsibilities of a many-world universe in Ex-
halation.a In the story, Chiang imagines a version of the many
worlds theory, one where the universe splits and is duplicated
every time quantum decoherence occurs. In Chiang’s world, peo-
ple can consult an oracle that reveals how they acted in other
worlds split from one’s own by quantum decoherence. One char-
acter regrets an act, consults the oracle, and finds that other
versions did not engage in the bad act. He thus concludes that
his bad act in this world was an anomaly, one that does not
stain his character too deeply, because in other worlds, he took
a different set of actions. The philosophy of personal responsi-
bility is woven together amongst these series of different worlds
according to this character. Others however are crushed by the
events in alternate worlds and regret the actions taken in their
own world. If people begin to see their lives as deterministic, as
one version of themselves in a reality of many versions, might
they start to believe that they are not really responsible for their
acts in this world?

aAnxiety is the Dizziness of Freedom in Chiang, Exhalation (2019).

147
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 148 — #166 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

Great Depression.34 That is, they had known money, but now they
were poor, and even though Fredkin hadn’t experienced wealth him-
self, the family’s loss nevertheless affected him deeply. Fredkin grew
up experimenting with electricity and chemicals, got poor grades in
high school, but got accepted to the California Institute of Technol-
ogy on the strength of his entrance examinations. CalTech did not
give Fredkin any financial aid, so Fredkin worked multiple jobs. It
still was not enough money, and his grades were still terrible, so in
his second year he dropped out of CalTech and volunteered to be an
Air Force officer – it was better than the alternative of being drafted
to serve in the Korean War.35

The Air Force first trained Fredkin to fly jets, then to be an in-
tercept controller. “It’s like air traffic control, except we’re trying to
get them to the same place at the same time,” he later explained.36

After that, the Air Force sent Fredkin to MIT’s Lincoln Laboratory
to learn about computers so he could oversee the testing of the new-
fangled computerized air defense systems that were then under con-
struction. It turned out that Fredkin was quite good with computers:
when the Air Force had trouble with a computer at MIT’s Haystack
Observatory that was tracking rocket launches, Fredkin was sent to
figure out what was going wrong. (He found an overflow error in the
computer’s programming.) Fredkin also created one of the first com-
puter assembler languages, and then taught a course at Lincoln on
how to use it.37

Fredkin got along well with computers, but not with the Air
Force. He left military service and took a civilian job at Lincoln Lab
working with the same computers. But Fredkin had bigger plans. On
his own, he placed an order for one of the world’s first commercial
computers, a Royal McBee Librascope General Purpose 30, which
was a tube-based machine first manufactured in 1956 that had a
retail price of $47 000 (equivalent to $465 000 in 2021). Fredkin re-
calls that he only had $500 to spare, but the computer had a long
delivery time, so he figured that he would find the money before he
needed to pay up. His plan was to offer programming courses at area
companies so that they could then provide contract programmers to

34Wright, “Did The Universe Just Happen?” (1988).
35Fredkin, interviewed by Garfinkel in September 2020.
36E. F. Fredkin, “Oral History of Ed Fredkin” (2006).
37Walden, “Early Years of Basic Computer and Software Engineering” (2011), p. 52.

148
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 149 — #167 i
i

i
i

i
i

4.4. DIGITAL PHYSICS

the government, use the tuition money to pay for the computer, and
make a profit in the process.

Fredkin made a list of his prospects; at the top of the alphabet-
ized list was Bolt Beranek & Newman (BBN), a 10-year old MIT
spin-off specializing in contract research. At BBN Fredkin met Lick-
lider, who soon convinced Fredkin to drop his plan to be an itinerant
teacher-with-a-computer and instead join BBN’s research staff. Lick-
lider then convinced BBN to assume Fredkin’s purchase commitment
for the LGP-30, at the reduced price of $30 000. BBN had no obvious
need for the machine; Licklider pushed. “If BBN is going to be an
important company in the future, it must be in computers,” Licklider
told Leo Beranek, one of the company’s founders. Beranek agreed to
the purchase, even though BBN had “never spent anything like that
on a single research apparatus.”38,39

BBN soon acquired a second computer, the PDP-1, which it
leased from another MIT spin-off called Digital Equipment Corpo-
ration (alternatively shorted to Digital or DEC over the company’s
41-year life).40 Not a full-size computer like the ones sold by IBM,
DEC called the PDP-1 a mini-computer. This was right around the
time that Project MAC was getting started at MIT, and Fredkin
was convinced that the PDP-1 could be logically partitioned into
four even smaller pieces so that the single machine could serve mul-
tiple people at the same time, an approach called time sharing. At
Fredkin’s suggestion BBN brought in two MIT faculty as consul-
tants: Marvin Minsky (1927–2016) and John McCarthy (1927–2011)
– two of the computer scientists who had coined the phrase “artifi-
cial intelligence” just a few years earlier.41 Working together, Fredkin

38Beranek, “Founding a Culture of Engineering Creativity” (2011).
39BBN did become an important company in the future. The company designed
and produced the Interface Message Processors (IMPs) that routed packets on
the ARPANET and early Internet. It also created and spun off Telenet, Inc., the
company that built and sold service on the world’s first public packet-switched
network. BBN was variously publicly traded and private, and was ultimately
acquired by Raytheon in 2009 for $350 million. A major player in quantum tech-
nologies, with scores of academic publications along with applied research into
photonics, superconducting qubits, graphene, control systems, and cryogenic sys-
tems, BBN now holds over 20 patents in quantum technologies.

40DEC eventually created 53 PDP-1 computers; BBN got the first. Another was
given to the MIT for students to use; in 1962 Steve Russell and others used it to
create the video game SpaceWar!

41McCarthy et al., “A Proposal for The Dartmouth Summer Research Project on
Artificial Intelligence” (1955).

149
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 150 — #168 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

and McCarthy successfully implemented time sharing on the PDP-1.
Fredkin also experimented with cellular automata on the PDP-1’s
graphics screen.42

Still focused on getting rich, Fredkin left BBN in 1962 and founded
Information International Incorporated, an early AI startup. Minsky
and McCarthy joined the board as founders. Triple-I, as it was known,
did early work with the LISP programming language and in robotics,
but the company’s ultimate success came after Fredkin designed and
the company started selling the first high-resolution film scanner for
motion picture film. Fredkin took the company public six years later,
becoming rich in the process. (Triple-I was eventually acquired by
Agfa-Gevaert in 2001.43) With his newfound wealth, Fredkin would
ultimately purchase a mansion, an island in the British Virgin Is-
lands, and a television station.

Licklider left BBN in 1962 to head the Information Processing
Techniques Office (IPTO) at the US Department of Defense Ad-
vanced Research Projects Agency (ARPA, later renamed DARPA),
where he put in place research projects that directly led to the cre-
ation of the Internet. He worked at IBM from 1964 to 1967, and
rejoined the MIT faculty in 1968 as Director of Project MAC.

Fredkin rejoined MIT the same year as Licklider and also went to
work for Project MAC, although the two events were not connected.
Fredkin was recruited by Minsky, with whom he had formed an en-
during friendship, to be the AI Lab’s co-director. The idea was for
Fredkin to help steady the lab, using his combination of technical
skills and business acumen. In 1972 Fredkin became Project MAC’s
director, and was promoted to full professor (perhaps in an attempt
to erase the embarrassment of having the lab run by a college drop-
out who didn’t have a PhD).

Running Project MAC did not suit Fredkin. He soon hired his
own replacement, then moved out to California for a year-long sab-
batical, spending the 1974–1975 school year back at Caltech, this
time as a Fairchild Distinguished Scholar at the invitation of Richard
Feynman.44 Upon returning to Boston, Fredkin resumed his profes-

42Wolfram, A New Kind of Science (2002), p. 876.
43Wright, “Did The Universe Just Happen?” (1988).
44Minsky introduced Fredkin to Feynman back in 1962 – three years before Feyn-
man won the Nobel Prize, when Feynman was considerably less famous. “Feyn-
man showed us a mathematical problem he had been working on. He had a note-
book and the notebook had all these pages of mathematics,” Fredkin recalled in

150
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 151 — #169 i
i

i
i

i
i

4.5. REVERSIBLE COMPUTING AND SUPERCOMPUTING

sorship at the Project MAC, which had been renamed the Laboratory
for Computer Science, and continued working on the project he had
started in California with Feynman: reversible computing.

4.5 Reversible Computing and Supercomputing
The basic idea of a reversible computer is that it is a computing ma-
chine that can go forwards or backwards in time for any sequence of
computations. We discussed the idea of reversible computers earlier
in this chapter while exploring Bennett’s idea of a reversible Turing
machine (p. 135), but it’s not clear if Fredkin or Feynman were aware
of Bennett’s work at IBM.

4.5.1 A Most Successful Term Paper
Instead of building his reversible computer using the theoretical
mathematical constructs of a Turing machine, Fredkin’s reversible
computer reflected his own practical orientation. His first approach
was a model of a computing machine based entirely on billiard balls
careening around a friction-less obstacle course and having perfectly
elastic collisions. He called this the billiard ball computer and ulti-
mately published the idea in 1982.45 You can’t actually build such a
computer, of course, because we don’t have frictionless billiard balls
that undergo perfectly elastic collisions. That’s why the computer

our interview. “He said, ‘Look – this mathematical problem is something we need
to solve. I tried to solve it, a graduate student also did it.’ He showed us – he had
a notebook with about 50 pages of dense mathematics in it, handwritten, and he
kept circling great big expressions and giving them names. And he said, ‘Look,
I’ve done all the math here, and I get a final expression. Murray Gell-Mann has
also done it, and a graduate student has done it, and all we know is that the
three of us got three different results that are not compatible. So our conclusion
is that no one can do this much mathematics without doing errors. Can you
guys do something about it?’ ” (Murray Gell-Mann (1929–2019), was awarded
the 1969 Nobel Prize in Physics “for his contributions and discoveries concerning
the classification of elementary particles and their interactions.”) When Minsky
said that symbolic algebra was a problem that the lab was working on, Feynman
added that he refused to type on a computer, so the symbolic algebra system also
needed to be able to read his handwriting and convert it to computer notation.
On the flight back from Los Angeles, Minsky said that he would have a graduate
student work on the algebra, and Fredkin would work on the handwriting recog-
nizer. In retrospect, the Minsky–Feynman–Fredkin meeting didn’t result in any
breakthroughs in handwriting recognition or symbolic math computation, but
it did set the groundwork for the invention of quantum computing two decades
later.

45E. F. Fredkin and Tommaso Toffoli, “Conservative Logic” (1982).

151
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 152 — #170 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

is just a theoretical model: it’s a way for thinking about building a
reversible computer without actually having to build one.

The actual reversible computer that Fredkin proposed building
would be built out of semiconductors. To do that, Fredkin needed
a new set of basic circuits that themselves were reversible, and that
could be used to build a reversible computer. Today we call Fredkin’s
basic circuit the Fredkin gate.

The Fredkin gate has three inputs (C, I1, and I2), and three
outputs (C, O1, and O2). The fact that the number of inputs matches
the number of outputs is not an accident: it is required by the basic
rules of reversibility. That is, every input to the gate must have a
unique output: this makes it possible to run the gate backwards for
any output and learn its original input. Eight possible inputs with
eight corresponding outputs is the smallest number of combinations
that produces a device that is both reversible and universal.

In addition to being reversible, The Fredkin gate is universal, in
that any digital circuit can be built from a combination of Fredkin
gates. (In today’s computers, the NAND gate is sometimes used
as a universal building-block, because any electronic circuit can be
built using a combination of NAND gates. See Section 3.3.2 (p. 90).)
Because it is a binary logic gate, each of the inputs and outputs can
be either a 0 or a 1 . If C is 0 , the output bits are each the same
as the corresponding input bits. If C is 1 , then the output bits are
swapped. The Fredkin gate is thus also called a controlled swap, or
CSWAP. It is shown in Figure 4.6.

Tommaso Toffoli completed his dissertation in 1976 and submit-
ted a journal article proving that reversible automata could be con-
structed; the article was published the following year.46 Toffoli recalls
interviewing with Charles Bennett at IBM and with Fredkin at MIT
and decided to become a Research Scientist in Fredkin’s group, which
he joined in 1977.

The following spring Fredkin taught an eclectic graduate course
at MIT called Digital Physics (Figure 4.4). The course consisted of
Fredkin sharing his intuition about the nature of reality with grad-
uate students, and then trying to get students to develop formal
mathematical proofs of these conjectures as their final projects. One
of those projects was Bill Silver’s term paper, “Conservative Logic,”

46Tommaso Toffoli (1977).

152
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 153 — #171 i
i

i
i

i
i

4.5. REVERSIBLE COMPUTING AND SUPERCOMPUTING

C • C
I1 × O1

I2 × O2

C I1 I2 CO1 O2

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Figure 4.6. The Fredkin gate (CSWAP)

A • D

B • E

C F

ABC DEF
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Figure 4.7. The Toffoli gate (CCNOT)

in which Silver worked out detailed proofs regarding the properties
of Fredkin’s gate.47

In 1980, Toffoli came up with an improvement to the Fredkin
gate that is somewhat better suited for designing complex circuits.
Today it’s called the Toffoli gate. Whereas the Fredkin gate is called
a controlled swap (CSWAP), the Toffoli gate is called a controlled
controlled NOT (CCNOT).48 This gate is shown in Figure 4.7.

Like the Fredkin gate, the Toffoli gate is also universal, meaning
that it can be used to create any kind of digital electronics currently
in use (or imaginable, for that matter). Both gates can also be gen-
eralized to more than three inputs. In practice Toffoli gates are used
more often than Fredkin gates when discussing quantum circuits,
perhaps because they offer more flexibility.

4.5.2 Reversible Computing Today
Heat was not a major concern for most computers in the 1980s, but
it is today. Nevertheless, mainstream computer companies are not
building their conventional systems with reversible logic. Here are
some reasons why they aren’t:

47Silver left MIT in 1981 to join his classmate Marilyn Matz and MIT Lecturer Dr.
Robert J. Shillman in a startup venture called Cognex Corporation, which sought
to develop and commercialize computer vision systems. Cognex went public in
1989 and is currently listed on the NASDAQ as CGNX with a market cap of
$14B.

48In a controlled NOT gate, a control bit determines whether a data bit is inverted
or not. In a controlled controlled not (CCNOT), both control bits need to be 1
in order for the data bit to be inverted.

153
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 154 — #172 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

DIGITAL PHYSICS
Edward Fredkin
January 17, 1978

6.895 Digital Physics
(New)

Preq.: Permission of Instructor
Year: G(2)
3-0-9

An inquiry into the relationships between physics
and computation. 6.895 is appropriate for both com-
puter science and physics students. Models of com-
putation based on systems that obey simple physical
laws and digital models of basic physical phenomena.
Tutorial on conventional digital logic. Information,
communication, memory and computation. A formal
model of computer circuitry, conservative logic, will
be used to model computers at various levels of com-
plexity from simple logic gates to processors, mem-
ory, conventional computers and Turing machines.
Questions about reversibility and about the conser-
vation of information during computation. Minimum
energy requirements for a unit of computation. Gen-
erally reversible iterative processes. Tutorial on some
areas of the quantum mechanics. Digital time and
space. Universal cellular automata. Digital model of
the zero-dimensional Schrodinger equation. Proof of
the conservation of probability in the digital model.
Three dimensional digital Schrodinger equations. Dig-
ital Newtonian mechanics. Digital determinism. The
laws, physical constants and experimental tests of dig-
ital physics. Atomism. Questions of the ultimate na-
ture of reality. Metaphysics and cosmogony.
E. Fredkin

Figure 4.8. Announcement for Fredkin’s Digital Physics course.

154
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 155 — #173 i
i

i
i

i
i

4.5. REVERSIBLE COMPUTING AND SUPERCOMPUTING

• The computer industry has nearly a hundred years’ experience
working with computer designs that are not reversible, while
there has been comparatively little work done with reversible
computing. The switching cost of moving from our current
technology stack to a new one would be substantial, even if
this other stack offers theoretical advantages. Similar switch-
ing costs are observed in other industries, such as the nuclear
industry’s failure to shift to a thorium-based fuel cycle, or the
failure of the US to shift to the metric system.

• Although computers do convert electrical energy into heat when
those 1 s are sent to ground, a significantly larger source of
wasted energy is from semiconductor effects such as resistance
(the fact that semiconductors do not perfectly pass electricity)
and leakage (the movement of charge from one electronic de-
vice to another in a manner not aligned with the electronic
circuit). What’s more, leakage gets worse as transistors get
smaller, placing a limit of just how small silicon electronics
can get. Another limiting factor is the wires that carry signals
between semiconductor devices: they have both resistance and
capacitance, which again limits how energy-efficient, and how
fast, signals can be carried between devices.

• Reversible computing requires more than reversible gates: it
requires replacing large chunks of the technology stack. For ex-
ample, there is a need to develop efficient reversible algorithms,
presumably written in new computer languages that support
reversible computing.

• Reversible computers require more transistors than traditional
computers because they need to retain all of the information
necessary to reverse the computation.

• Given that the computing industry hasn’t hit the limits of non-
reversible technology, there has been no reason to pursue re-
versible computing. Instead, the industry has exploited other
approaches – most notably parallel computing – to achieve the
significant speedups we have experienced over the past four
decades. Whereas in the 1990s it was common for desktops
and laptops to have a single CPU, today systems typically have
between four, eight or even more.

155
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 156 — #174 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

• An even bigger speedup has taken place on the other side of the
Internet, in the “cloud” that delivers web pages to a desktop
computer or information to applications running on a smart
phone. Cloud computing has made it possible for each query to
use hundreds or thousands of computers for an instant, getting
a tremendous speedup.49

While reversible computing doesn’t currently make sense for elec-
tronic computers, it is an area of active research. Meanwhile, re-
versibility is a basic requirement of computing on a quantum com-
puter. The reason has to do with entanglement and superposition:
the quantum part of a quantum computation stops when the wave
function collapses, which happens the moment a non-reversible ac-
tion takes place and a measurement is performed. So a quantum
computer that implements any sort of logic has to use reversible
logic by necessity.

Today it is common for quantum computer engineers to express
the complexity of their algorithms in terms of the number of Toffoli
gates that their algorithm and problem require, just as electronic
computer engineers describe the complexity of their systems in terms
of the number of electronic NAND gates or transistors. For example,
in 2019 Google released a paper describing an approach for factoring
the large integers used in cryptography in hours, stating that such a
machine would require twenty million state-of-the-art (e.g. “noisy”)
qubits, and “0.3n3 + 0.0005n3lgn Toffolis.”50 With a standard encryp-
tion key size, n = 2048, this comes to roughly 2.6 billion Toffoli gates.

While that may seem like a lot of gates, in November 2020 the Ap-
ple M1 system-on-chip contained 16 billion transistors.51 Although
the two kinds of gates are fundamentally different, the comparison
shows that it is within the realm of today’s technology to build a de-
vice with billions of active components. We will return to Google’s
paper in the next chapter.

49For example, in 2010 a single search at Google used more than a hundred com-
puters, but each for just two-tenths of a second. See Dean, “Building Software
Systems At Google and Lessons Learned” (2010).

50Gidney and Ekerå, “How to Factor 2048 Bit RSA Integers in 8 Hours Using 20
Million Noisy Qubits” (2019).

51Apple Computer, “Apple Unleashes M1” (2020).

156
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 157 — #175 i
i

i
i

i
i

4.5. REVERSIBLE COMPUTING AND SUPERCOMPUTING

4.5.3 Defense Money
What made all of this research possible was a spigot of money from
the US Department of Defense flowing into MIT’s various computing
projects during the 1960s and 1970s. This is not a new story, of course.
The first computers built in Germany, England, and the US were all
built to help with the war effort. It was the awarding of the SAGE
missile defense system to IBM that cemented the company’s position
as the dominant computer manufacturer in the world. In 1961 IBM
built its first transistorized supercomputer, the IBM 7030 “Stretch,”
for the US National Security Agency, apparently to assist in some
way in the business of code-cracking. By the 1970s investments in
supercomputing were helping to make sophisticated stealth aircraft a
reality and to make the mathematical modeling of nuclear explosions
so accurate that the US was able to stop physically testing nuclear
weapons.52

Even before the simulations and models became crazy accurate,
conducting physics experiments inside a computer had many ad-
vantages that made them a strong complement to experiments con-
ducted in the lab or in the deserts of Area 51. Three such advantages
are speed, scalability, and repeatability:

• Speed is the most obvious advantage: in the world of a com-
puter, setting up a new experiment typically means editing
a few files and reserving time on the computer system. This
makes it easy for scientists to try a wide range of different
ideas.

• Scalability means that scientists can run more experiments in
a period of time simply by buying more computers. Scalability
is not so easy in the lab, where running multiple experiments at
the same time means having more lab space, as well as having
more flesh-and-blood researchers to conduct the experiments.

• Repeatability is an often-overlooked advantage of conduct-
ing experiments in simulation. With complex experiments in a
physical lab it is often difficult to repeat the experiment and
get nearly the same result. This is because the outside world is
always intruding. A truck may drive by, causing the ground to

52The US signed the Comprehensive Nuclear Test Ban Treaty on September 27,
1996, in part because the computer modeling had become so powerful as to make
testing itself obsolete.

157
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 158 — #176 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

vibrate; a solar flare may eject a shower of high-energy atoms,
ions, and electrons into space, causing a light show in the north-
ern sky and interfering with sensitive electronic instruments
down here on Earth. All of this must be taken into account
when conducting physical experiments. With computerized ex-
periments, the only real risk is bugs in the software.

Realizing these goals requires machines that are easy to program,
reliable, secure, and accessible – hence the government’s interest in
funding basic research into software design, operating systems, secu-
rity, and networking. The world we live in today – the hardware and
software that was used to write the book you are reading – are direct
beneficiaries from these government funding decisions.

A key to enabling the creativity and productivity of this basic
research was the way that the funding agencies gave the researchers
flexibility to set their own agenda. At MIT, the Laboratory for Com-
puter Science and the Artificial Intelligence Laboratory were funded
in no small part by a series of master agreements with DARPA,
such as Office of Naval Research contract N00014-75-C-0661, which
moved millions of research dollars from Washington to Cambridge.
The money was delivered as a block grant, with individual faculty
members needing to simply write project proposals describing what
each planned to do with their share of the pie. As long as the faculty
projects advanced the overall goal of building computers that were
faster, better at solving problems, or easier to program, funding was
all but guaranteed.

In November 1978, Fredkin and Toffoli included in MIT’s pro-
posal to DARPA a 20-page project description titled “Design prin-
ciples for achieving high-performance submicron digital technolo-
gies.”53 The proposal expanded the ideas of conservative logic, show-
ing how it would be possible to use reversible gates to cheat the
power loss associated with conventional digital electronics. It then
proposed approaches for using even less power, such as using su-
perconducting switches with Josephson Tunneling Logic (also called
Josephson junctions). The only mention of cellular automata was
a reference to Toffoli’s 1977 journal article, and while the proposal
mentions Landauer’s work, it doesn’t mention Bennett’s. But it does

53Twenty-four years later, the proposal was finally published (E. F. Fredkin and
Tommaso Toffoli, “Design Principles for Achieving High-Performance Submicron
Digital Technologies” (2001)).

158
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 159 — #177 i
i

i
i

i
i

4.6. THE CONFERENCE ON THE PHYSICS OF
COMPUTATION (1981)

cite Fredkin’s unpublished lecture notes from 1975–1978, and Bill Sil-
ver’s MIT term paper. If nothing else, the proposal shows scientific
progress is not linear, and the mere fact that scientific work has been
published is no guarantee that others working in the exact same field
will see it (or at least take notice of it) in a timely manner.

Fredkin and Toffoli’s proposal was funded (likely a foregone con-
clusion), marking the beginning of the group’s support by DARPA.

4.6 The Conference on The Physics of Computation (1981)
In the 1930s H. Wendell Endicott (1880–1954), a successful industri-
alist and philanthropist,54 built a French-style manor house on a hill
crest of his 25-acre suburban estate overlooking the Charles River in
Dedham, Massachusetts. Endicott’s will stated that the house should
be donated “to an educational, scientific or religious organization.”
The property was offered to MIT when Endicott died, and the Insti-
tute turned it into a luxurious conference center.

When academics start developing a new field, it’s common to
hold some kind of meeting for early innovators to meet and exchange
ideas. Always thinking big, in 1980 Fredkin decided to hold a confer-
ence at Endicott House and invite the biggest names he could get in
physics and computing to discuss his up-and-coming ideas. Fredkin
knew that he would need to have a big name to get the other big
names to come, so he called up Richard Feynman, who agreed to give
a keynote speech. Fredkin invited IBM Research to co-sponsor the
conference. Rolf Landauer readily agreed, and both he and Charles
Bennett agreed to attend.

Fredkin, Landauer, and Toffoli were the official organizers. Then
came the invitations! Fredkin had earlier met Konrad Zuse, the Ger-
man inventor who had built one of the world’s first digital comput-
ers during World War II (see Chapter 3), so Zuse got an invite. The
prominent physicists Freeman Dyson and John Wheeler were invited.
Also invited were a number of up-and-coming researchers, including
Paul Benioff (b. 1930), who went on to create the first mathemat-
ical model of a quantum computer; Hans Moravec (b. 1948), best
known now for his work in robotics and artificial intelligence, and
his writings as a futurist; and Danny Hillis (b. 1956), who went
on to create the supercomputing company Thinking Machines, af-
ter which he became a Fellow at Walt Disney Imagineering. In total

54MIT Endicott House, “Our History” (2020).

159
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 160 — #178 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

01 Freeman Dyson 13 Frederick Kantor 25 Robert Suaya 37 George Michaels
02 Gregory Chaitin 14 David Leinweber 26 Stand Kugell 38 Richard Feynman
03 James Crutchfield 15 Konrad Zuse 27 Bill Gosper 39 Laurie Lingham
04 Norman Packard 16 Bernard Zeigler 28 Lutz Priese 40 P. S. Thiagarajan
05 Panos Ligomenides 17 Carl Adam Petri 29 Madhu Gupta 41 Marin Hassner
06 Jerome Rothstein 18 Anatol Holt 30 Paul Benioff 42 Gerald Vichnaic
07 Carl Hewitt 19 Roland Vollmar 31 Hans Moravec 43 Leonid Levin
08 Norman Hardy 20 Hans Bremerman 32 Ian Richards 44 Lev Levitin
09 Edward Fredkin 21 Donald Greenspan 33 Marian Pour-El 45 Peter Gacs
10 Tom Toffoli 22 Markus Buettiker 34 Danny Hillis 46 Dan Greenberger
11 Rolf Landauer 23 Otto Floberth 35 Arthur Burks
12 John Wheeler 24 Robert Lewis 36 John Cocke

. Photo courtesy Charles Bennett.

Figure 4.9. The Physics of Computation Conference, MIT Endicott House, May 6–8,
1981

roughly 60 researchers attended. Financial support for the confer-
ence was provided by the MIT Laboratory for Computer Science,
the Army Research Office, IBM, the National Science Foundation,
and the XEROX Corporation.55 Norman Margolus, a PhD student
in Fredkin’s group, recorded and took notes of every lecture. These
notes were then turned into articles and eventually published.

Before the conference, Feynman told Fredkin that he refused to
focus his keynote on computers and physics, because computers and
physics had nothing to do with each other. Physics is all about prob-
ability and randomness, Feynman said, whereas the whole goal of
computing for the previous 50 years had been building machines
that were reliable and predictable – the very opposite. Fredkin told
Feynman that he could talk about anything he wanted, just come.

55E. Fredkin, Rolf Landauer, and Tom Toffoli, “Physics of Computation” (1982).

160
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 161 — #179 i
i

i
i

i
i

4.6. THE CONFERENCE ON THE PHYSICS OF
COMPUTATION (1981)

Fredkin recalls that when Feynman got up, the physicist started
telling the story of how Fredkin had invited him to talk about com-
putation and physics, and that he had refused to do so. “And I’ve
changed my mind, and I’m going to talk about what he originally
wanted,” Feynman reportedly said in his matter-of-fact way.

Feynman’s talk at the Endicott conference marks the birth of
quantum computing, an idea that was unknowingly conceived by
Feynman and Fredkin during Fredkin’s year-long sabbatical at Cal-
Tech. It was a crazy idea. At roughly the same time that computer
engineers were worrying that quantum mechanical effects in the
form of quantum tunneling and uncertainty might pose real limits
to computation by making machines act nondeterministically, Feyn-
man proposed embracing the nondeterminism of quantum mechanics
to build computers that could solve a problem that was simply too
complicated to solve any other way – and that problem was quantum
physics itself.

Feynman started his talk with a straightforward question: “What
kind of computer are we going to use to simulate physics?”56 After
briefly suggesting that such a computer should have elements that
are locally connected (like a cellular automata or a Thinking Ma-
chines’ Connection Machine), he showed that the probabilistic na-
ture of quantum physics means that quantum physics simulations
necessarily have exponential complexity. The only way around this,
Feynman said, was by using computing elements based on quantum
mechanics itself, because the quantum wave equations would then
match the systems that they were simulating. (Feynman says a lot
of other things in his talk as well, but that’s the gist of it.)

The rest of the conference was a fun mix of physics and com-
puter science. Toffoli delivered a talk suggesting that physics might
receive fresh insights from computing if computing is modeled with
reversible computation.57 Paul Benioff discussed and further devel-
oped his model of quantum mechanical Turing machines.58 Fredkin
and Toffoli significantly extended Bill Silver’s MIT term paper and
presented their ideas on Conservative Logic.59 Danny Hillis presented
his ideas on how to build massive computers using mesh networks

56Feynman, “Simulating Physics with Computers” (1982).
57Tommaso Toffoli, “Physics and Computation” (1982).
58Benioff, “Quantum Mechanical Hamiltonian Models of Discrete Processes That
Erase Their Own Histories: Application to Turing Machines” (1982a).

59E. F. Fredkin and Tommaso Toffoli, “Conservative Logic” (1982).

161
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 162 — #180 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

with only local connectivity and routing – the basis of the Connec-
tion Machine that he was building.60 Landauer discussed the impact
of Heisenberg’s Uncertainty Principle on the minimal energy require-
ments of a computer.61 Marvin Minsky speculated that if the vac-
uum of the Universe is composed of discrete “cells, each knowing only
what its nearest neighbors do,” then “classical mechanics will break
down … and strange phenomena will emerge” such as the phenom-
ena described by both relativity and quantum mechanics,62 possibly
pointing the way towards a theory of quantum gravity. Other contri-
butions included those by Donald Greenspan,63 and John Wheeler,64

all of which appeared in two successive issues of the International
Journal of Theoretical Physics. It was not a top journal, but it was
the best peer-reviewed journal that would take the collection.

4.7 Russia and Quantum Computing
Invention is rarely a straight line, and insight rarely comes in a single
flash. It is common for good ideas to be invented and re-invented.

As we have seen, Toffoli and Fredkin were developing reversible
logic at roughly the same time that Paul Benioff developed the idea
of a quantum Turing machine.65 These academics soon found each
other, thanks to the milieu of papers, conferences, phone calls and
email that American academics enjoyed in the 1970s and 1980s.

What about on the other side of the Iron Curtain?
Historians of quantum computing frequently point out that in

Russia, R. P. Poplavskii wrote a 1975 Russian-language article, “Ther-
modynamical Models of Information Processing”66 in which it was
observed that classical computers would be insufficient for simulating
quantum systems that do not have a simple solution: “The quantum-
mechanical computation of one molecule of methane requires 1042

grid points. Assuming that at each point we have to perform only
60W. D. Hillis, “New Computer Architectures and Their Relationship to Physics
or Why Computer Science Is No Good” (1982).

61Rolf Landauer, “Physics and Computation” (1982).
62Minsky, “Cellular Vacuum” (1982).
63Greenspan, “Deterministic Computer Physics” (1982).
64Wheeler, “The Computer and The Universe” (1982).
65Benioff, “The Computer As a Physical System: A Microscopic Quantum Me-
chanical Hamiltonian Model of Computers As Represented by Turing Machines”
(1980); Benioff, “Quantum Mechanical Models of Turing Machines That Dissi-
pate No Energy” (1982b).

66Poplavskii, “Thermodynamical Models of Information Processing” (1975).

162
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 163 — #181 i
i

i
i

i
i

4.7. RUSSIA AND QUANTUM COMPUTING

10 elementary operations, and that the computation is performed at
the extremely low temperature T = 3 × 10−3 K, we would still have
to use all the energy produced on Earth during the last century.”67

In 1980, Yuri Manin wrote Vychislimoe i nevychislimoe (Computable
and Uncomputable), which further explored such ideas. The language
barrier, combined with the very real travel barrier imposed by the
Soviet Union, prevented these works from being influential in the
West.

Today we can read excerpts of Manin’s 1980 article in English,
thanks to his leaving Russia and publishing an English-language 2007
edition of his essays. “We need a mathematical theory of quantum au-
tomata,” Manin wrote. “Such a theory would provide us with math-
ematical models of deterministic processes with quite unusual prop-
erties. One reason for this is that the quantum state space has far
greater capacity then the classical one: for a classical system with
N states, its quantum version allowing superposition (entanglement)
accommodates eN states.”68

Some journalists and historians of science cite these articles by
Poplavskii and Manin as evidence for the idea that quantum comput-
ing arose on both sides of the Iron Curtain. However, these articles
do not appear to have spawned conferences or investment in Rus-
sia, as their counterparts did in the United States (see discussion
of nation-state investment in quantum information science in Sec-
tion 9.2, “Industrial Policy” (p. 380)).

We believe that these publications are similar to Feynman’s 1959
talk, in which Feynman posits that at the atomic scale computa-
tion can be performed not with circuits, “but some system involving
the quantized energy levels, or the interactions of quantized spins.”69

Such a statement is a long way from Feynman’s detailed proposals for
quantum computing that would come two decades later, and there is
no intellectual approach for drawing a line from Feynman’s 1959 talk
to modern-day quantum computing (or to modern-day nanotechnol-
ogy, for that matter), because that line points back to Fredkin and
Toffoli, and then to Burks and von Neumann. While Poplavskii and
Manin were certainly walking down intellectually intriguing paths,

67As quoted in Manin, “Classical Computing, Quantum Computing, and Shor’s
Factoring Algorithm” (1999).

68Manin, Mathematics As Metaphor: Selected Essays of Yuri I. Manin (2007).
69Feynman, “There’s Plenty of Room at The Bottom: An Invitation to Enter a
New Field of Physics” (1959).

163
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 164 — #182 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

the historical record implies that their paths were never explored
beyond the first few steps.

4.8 Aftermath: The Quantum Computing Baby
Feynman returned to California, where he delivered several more lec-
tures on the promise of quantum computing. He published an article
about the idea in a special publication marking the 40th anniversary
of the Los Alamos laboratory;70 a revised version appeared in Op-
tics News.71 Another version of the article appeared in Foundation
of Physics the following year.72,73

4.8.1 Growing Academic Interest
Three years after the MIT conference, the British physicist David
Deutsch wrote an article discussing the relationship between com-
puting, physics, and the possibility of quantum computing for the
Proceedings of the Royal Society of London, one of the world’s oldest
and most prestigious scientific journals. “Computing machines resem-
bling the universal quantum computer could, in principle, be built
and would have many remarkably properties not reproducible by any
Turing machine,”74 Deutsch hypothesized. The statement is literally
true, because quantum computers as he proposed them would have
access to both a source of perfect randomness and the ability to cre-
ate entangled states. Such a machine would be able to model quan-
tum physics and quantum chemistry to any arbitrary precision (dis-
cussed in Chapter 5), and create unbreakable cryptographic codes
(discussed in Chapter 7). This article helped to legitimize the idea of
quantum computing and present it to a broader scientific and techni-
cal community that had not previously encountered it. “To view the
Church–Turing hypothesis as a physical principle does not merely

70Feynman, “Tiny Computers Obeying Quantum Mechanical Laws” (1985b).
71Feynman, “Quantum Mechanical Computers” (1985a).
72Feynman (1986).
73Feynman’s son, Carl Feynman, was an MIT classmate of Danny Hillis. Feynman
learned of Thinking Machines when the company was being formed and offered
to spend the summer helping out. He was hired as a consultant shortly after the
company was founded, becoming its first employee. Feynman soon found that the
Connection Machine’s mesh architecture was surprisingly well-suited to perform-
ing the complex computations required for simulating quantum mechanics and
other kinds of physical systems, paving the way for the company’s early sales.
See W. D. Hillis, “Richard Feynman and The Connection Machine” (1989).

74Deutsch, “Quantum Theory, The Church–Turing Principle and The Universal
Quantum Computer” (1985).

164
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 165 — #183 i
i

i
i

i
i

4.8. AFTERMATH: THE QUANTUM COMPUTING BABY

make computer science into a branch of physics. It also makes part
of experimental physics into a branch of computer science.”

Reading Deutsch’s article 35 years after its publication, a confus-
ing aspect is the fact that he differentiates a “quantum computer”
from something he calls a “Turing-type machine.” The article con-
veys that a Turing-type machine is limited in that it can only exe-
cute steps sequentially, while Deutsch suggests that a quantum com-
puter will be able to solve some problems faster because it will be
able to consider many states at once, in part because it is based on
quantum computing, and “quantum theory is a theory of parallel
interfering universes.” What is confusing about this today is that
the Church–Turing hypothesis is not concerned with the speed with
which a computation can be performed – it is only concerned with
whether a computation can be performed at all.75 In 1984 it was
not immediately clear whether quantum computers would face the
same limitations of Turing machines, or if they might implement a
stronger, more powerful form of computation. Today computer sci-
entists have shown that quantum computers may be more efficient
at solving certain kinds of problems, but they cannot solve problems
that are fundamentally different than Turing machines – or if they
can, we haven’t figured out how to express such power.76 Surpris-
ingly, even this perceived efficiency of quantum computers is a belief
– it has not been mathematically proven, for reasons described in the
following chapter.

In 1985 Asher Peres at Technion, the Israel Institute of Technol-
ogy, published an article further exploring how a quantum computer
might do something extremely simple: adding together 1-bit num-
bers. In working through his example, Peres showed that a quantum
mechanical computer would necessarily require some kind of error

75For example, a sequential Turing machine with a clock speed of a billion cycles
per second is likely faster at computing problems than a parallel Turing machine
with a thousand processors all running with a clock speed of a 10 cycles per
second, but both machines are universal. By universal, we mean that either of
these machines, given enough memory and enough time, could compute what any
other Turing machine can compute.

76Quantum cryptography is fundamentally different from quantum computing, in
that today we know mathematically that systems that use quantum cryptography
can do something that it is simply impossible to do with conventional cryptog-
raphy, and that is exchange messages in a way that they cannot be intercepted
without detection by an attacker. However, Quantum cryptography is not strictly
solving a problem, and it doesn’t use quantum computing, so it doesn’t disprove
the sentence referenced in the paragraph above.

165
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 166 — #184 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

correction. Ideally, Peres wrote, with such a system “it should be
impossible to keep a record of the error,”77 because errors would
ideally cancel out each other. He ended the article by noting that
quantum computers need not be digital computers: “Ultimately, a
quantum computer making full use of a continuous logic may turn
out to be more akin to an old-fashioned analog computer, rather than
to a modern digital computer. This would be an ironic twist of fate.”
(The D-Wave quantum computer resembles an analog computer; we
discuss traditional analog computers in Chapter 3.)

In October 1992, the Dallas IEEE Computer Society and Texas
Instruments sponsored the Workshop on Physics and Computation.
“This workshop was long overdue since the first major conference
on the Physics of Computation was held at MIT over a decade ago,”
wrote Doug Matzke, the workshop’s chair. Landauer was the keynote
sponsor; Fredkin “gave a stimulating and entertaining talk” at the
banquet.78 A follow-up conference was scheduled for two years later,
in 1994.

In June 1994, Peter Shor, then a researcher at AT&T Bell Labs,
published a technical report at the Center for Discrete Mathemat-
ics & Theoretical Computer Science (DIMACS), at the time a joint
research project between Bell Labs and Rutgers University. An “ex-
tended abstract” based on the technical report was presented at the
Foundations of Computer Science (FOCS) 1994 conference, which
took place between November 20–22 in Santa Fe, New Mexico. Shor’s
paper showed that if a certain kind of quantum circuit could be built
on an as-yet non-existent quantum computer, then laws of quantum
mechanics could be combined with number theory in such a way
as to solve a particular math problem very efficiently. Solving that
particular math problem would make it possible to efficiently factor
large numbers.79 And factoring large numbers would have a huge
impact on the world, because the world’s most sophisticated encryp-
tion systems at the time (and still today) depended upon the fact

77Peres, “Reversible Logic and Quantum Computers” (1985).
78Matzke, “Message From The Chairman” (1993).
79Shor uploaded “an expanded version” of his FOCS paper to arXiv on August
30, 1995, and updated that version in January 1996. The papers can be found at
arxiv.org/abs/quant-ph/9508027. This version of the paper was published as Shor,
“Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum Computer” (1997).

166
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://arxiv.org/abs/quant-ph/9508027
https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 167 — #185 i
i

i
i

i
i

4.8. AFTERMATH: THE QUANTUM COMPUTING BABY

that we are unable as a species, on Earth, today, to rapidly factor
large numbers.

It is hard to overstate the significance of Shor’s algorithm for
the development of quantum computing. Before Shor’s announce-
ment and subsequent publication, quantum computers were non-
existent theoretical constructions that were largely a curiosity of the
physics and theoretical computer science communities. Shor’s algo-
rithm showed that there would be serious, real-world implications for
quantum computers that would directly impact national security. It
was the starting gun of the quantum computing race. Charles Clark
at the US National Institute of Standards and Technology organized
the NIST Workshop on Quantum Computing and Communication,
held in August 1994 at the agency’s campus in Gaithersburg, Mary-
land.80 Based on a discussion at the workshop, NIST had a working
quantum circuit with two qubits based on trapped ions operational in
July 1995.81 (David J. Wineland, one of the paper’s authors, would
later share the 2012 Nobel Prize with Serge Haroche “for ground-
breaking experimental methods that enable measuring and manipu-
lation of individual quantum systems.”)

Also in the summer of 1995, the MITRE Corporation’s “JASON”
summer study, funded by DARPA, focused on quantum computing.
The report identified factoring and simulating quantum physics, but
presented diagrams for how to create a quantum adder and multi-
plier, and discussed the importance of quantum error correction. The
report had three main recommendations.

• “Establish a research program to investigate possibilities for
quantum computing beyond Shor’s algorithms.”

• “Seed research in various communities for quantitative mini-
mization of algorithmic complexity and optimum circuit.”

• “Supplement ongoing experimental research related to the iso-
lation and control of discrete quantum systems suitable for
quantum logic.”

80Gaithersburg, MD: National Institute of Standards and Technology, “NIST Jump-
Starts Quantum Information” (2018).

81C. Monroe et al., “Demonstration of a Fundamental Quantum Logic Gate”
(1995).

167
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 168 — #186 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

Also in 1995, Benjamin Schumacher coined the word qubit in his
article “Quantum Coding.”82 In the article, Schumacher compares
the information-theoretic differences between traditional bits of infor-
mation and “Shannon entropy” and quantum bits, which had previ-
ously been called two-state quantum systems, and which Schumacher
termed qubit. But whereas Shannon’s seminal 1948 article83 contem-
plated the information capacity of a noisy channel, Schumacher con-
sidered the information capacity of a noiseless quantum communica-
tions channel. He then considers the impact of entanglement between
quantum states. In the article’s acknowledgments, Schumacher notes:
“The term ‘qubit’ was coined in jest during one of the author’s many
intriguing and valuable conversations with W. K. Wootters, and be-
came the initial impetus for this work. The author is also grateful to
C. H. Bennett and R. Jozsa for their helpful suggestions and numer-
ous words of encouragement.”

4.8.2 The First Quantum Computers
Three years after NIST created the first quantum circuit, two sepa-
rate teams of researchers proposed, developed and published similar
approaches for using nuclear magnetic resonance (NMR) in liquids
as the medium for quantum computation.84 “Although NMR com-
puters will be limited by current technology to exhaustive searches
over only 15 to 20 bits, searches over as much as 50 bits are in prin-
ciple possible, and more advanced algorithms could greatly extend
the range of applicability of such machines,” observed Cory et al.

The challenge with NMR-based quantum computers is that the
NMR spectrum increases in both complexity and density with each
additional qubit. At some point the spectrum becomes too complex,
and too noisy, to make sense of the computation’s result. But these
computing systems demonstrated that the theoretical ideas first pro-
posed by Feynman and later refined by Shor actually worked: in 1998
the first algorithm was run on an NMR-based quantum computing
system (see Section 5.3 (p. 210)), and in 2001 Shor’s algorithm was
run for the first time on an actual quantum computer, an NMR
system with 7 qubits, successfully factoring the number 15 to get

82Schumacher, “Quantum Coding” (1995).
83Shannon, “A Mathematical Theory of Communication” (1948).
84Gershenfeld and Chuang, “Bulk Spin-Resonance Quantum Computation” (1997);
Cory, Fahmy, and Havel, “Ensemble Quantum Computing by NMR Spectroscopy”
(1997).

168
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 169 — #187 i
i

i
i

i
i

4.8. AFTERMATH: THE QUANTUM COMPUTING BABY

its prime factors, 3 and 5.85 We will further discuss Shor’s break-
through and the race for quantum factoring in the next chapter (see
Section 5.2, p. 188).

4.8.3 Coda
In the past 25 years, the world has seen quantum computers go from
theoretical constructs to working machines that can solve real prob-
lems. But progress on quantum computers has been much slower
than progress during the first 25 years of classical electronic comput-
ers.

The London Mathematical Society published Alan Turing’s model
for computation in 1936. By March 1940 Turing had built the first
code-breaking Bombe at Bletchley Park. Together with the Colossus
machines, Bletchley Park was able to decrypt thousands of messages
a day, and had a significant impact on the war effort. In fact, the
impact was so significant that the existence of these machines was
kept secret for decades. Meanwhile, by the end of World War II there
were stored program computers in various states of design, operation,
and construction in Germany (where the effort was largely ignored
by the Nazi military), the United Kingdom, and the United States.
Early electronic computers used a variety of different technologies for
computing and storage, including relays, tubes, and spinning mag-
netic drums, but the industry was profitable from the very start. By
1965 the industry had firmly settled upon transistorized logic. IBM
manufactured the first hard drive in 1956, and in 1970 Intel publicly
released the first commercial DRAM (dynamic random access mem-
ory) chip. Governments and corporations bought these computers to
solve problems that required organizing information and performing
computations.

Quantum computing, in contrast, was first proposed in the 1970s.
It wasn’t until 1994 that there was a clearly articulated reason for
creating such a machine: not to simulate physics, but to crack codes.
Unlike the first electromechanical and electronic computers, the first
quantum computers could not crack any messages of any significance
whatsoever: the most impressive mathematical feat that one of the
machines accomplished was to factor the number 15 into the prime
numbers 3 and 5. Unlike the work at Bletchley Park, the work on
quantum computing has taken place in public, with multinational

85Vandersypen et al., “Experimental Realization of Shor’s Quantum Factoring Al-
gorithm Using Nuclear Magnetic Resonance” (2001).

169
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 170 — #188 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

Quantum Computers: Not Just Fancy Analog Devices

At the dawn of the computer age there was considerable interest
in so-called analog computers for solving a variety of scientific
problems. Some of these machines were mechanical, with rods,
gears and curves milled into metal,a while others were electronic.
Indeed, much of the recent success in artificial intelligence is
based on a computing model that is essentially analog (and was
first created with analog computers), and analog computers are
making a comeback in some areas.b

But quantum computers are not simply a new take on ana-
log computers:

• The physical things that represent information inside an
analog computer are one-dimensional vectors, such as posi-
tion (in mechanical analog computers) or voltage (in elec-
tronic analog computers). Quantum computers use two-
dimensional vectors (the complex numbers used to com-
pute quantum wave functions).

• Analog computers don’t rely on superposition or entangle-
ment, with the result that all of the information stored
within an analog computer is not potentially interacting
with all of the other information stored inside an analog
computer. Put another way, the individual parts of a large
analog computer appear to experience local causality and
statistical independence; the lack of these makes quantum
computing possible.

• As such, information can be copied out of an analog com-
puter without destroying the information it contains. It is
thus possible to covertly eavesdrop on an analog computer.
Quantum computers and networks, in contrast, can detect
eavesdropping because it destroys their computations.

• Analog computers can’t efficiently run quantum algo-
rithms such as Shor’s algorithm or Grover’s algorithm.

aClymer, “The Mechanical Analog Computers of Hannibal Ford and William
Newell” (1993).

bTsividis, “Not Your Father’s Analog Computer” (2017).

170
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 171 — #189 i
i

i
i

i
i

4.8. AFTERMATH: THE QUANTUM COMPUTING BABY

teams engaging in a friendly competition within the pages of scien-
tific journals. Today, 23 years after the first successful quantum com-
putation, there is still no agreement on what media should be used
for quantum computation, and whether it is better to run machines
in vats of liquid helium cooled close to absolute zero, or if they can
be run at room temperature. Whereas technologies for storing digi-
tal information preceded Turing’s paper by more than a century,86

approaches for storing quantum information are still on the drawing
board.

Unquestionably, computing with superposition and wave equa-
tions that we describe in Appendix B – what we call quantum com-
puting – is much harder than computing with relays, tubes, and tran-
sistors – classical computing – that we describe in Chapter 3. Hav-
ing recounted the history of quantum computing from 1961 through
1998, we explain in the next chapter why governments and corpora-
tions continue to pursue quantum computing. We discuss the kinds of
devices being made, their intended uses, the competitive landscape,
and the outlook for the technology.

86Joseph Marie Jacquard (1752–1834) patented his punch-card operated loom in
1804.

171
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

i
i

“book” — 2021/8/17 — 7:09 — page 172 — #190 i
i

i
i

i
i

CHAPTER 4. THE BIRTH OF QUANTUM COMPUTING

172
https://doi.org/10.1017/9781108883719.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108883719.008

