ON SOME PROPERTIES OF FUNCTIONS ANALYTIC IN A HALF-PLANE

P. G. ROONEY

1. Introduction. The spaces $\mathfrak{H}_p(\omega)$, ω real, $1 \leq p < \infty$, consist of those functions f(s), analytic for Re $s > \omega$, and such that $\mu_p(f; x)$ is bounded for $x > \omega$, where

(1.1)
$$\mu_p(f;x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} |f(x+iy)|^p \, dy.$$

Doetsch (1) has shown that if $e^{-\omega t}\phi(t) \in L_p(0, \infty)$, $1 , and f is the Laplace transform of <math>\phi$, that is,

$$f(s) = \int_0^\infty e^{-st} \phi(t) dt, \qquad Re \ s > \omega,$$

then $f \in \mathfrak{H}_q(\omega)$, where (1.2)

$$p^{-1} + q^{-1} = 1,$$

and that conversely if $f \in \mathfrak{H}_p(\omega)$, $1 , then there is a function <math>\phi$, with $e^{-\omega t}\phi(t) \in L_q$ $(0, \infty)$, such that f is the Laplace transform of ϕ .

The proofs of Doetsch's theorems are based on a generalization of Plancherel's theorem due to Titchmarsh (5). Titchmarsh's theorem states that if $F \in L_p(-\infty, \infty)$, $1 , then F has a Fourier transform <math>G \in L_q$ $(-\infty, \infty)$.

However, there are other extensions of Plancherel's theorem due to Hardy and Littlewood (3). They have shown that if $F \in L_p$ $(-\infty, \infty)$, 1 ,then <math>F has a Fourier transform G such that $|x|^{1-2/p}G(x) \in L_p$ $(-\infty, \infty)$, and that conversely if $|x|^{1-2/q}F(x) \in L_q$ $(-\infty, \infty)$, $q \ge 2$, then F has a Fourier transform $G \in L_q$ $(-\infty, \infty)$ —for this form of Hardy and Littlewood's theorems see (7, Theorems 79 and 80). One might expect that a theory similar to Doetsch's theory could be constructed from these theorems, and this we shall do here.

To this end we define spaces $\mathscr{H}_{p}(\omega)$, 1 , to consist of those functions <math>f(s) such that $(s - \omega)^{1-2/p}f(s) \in \mathfrak{H}_{p}(\omega)$ (where $(s - \omega)^{1-2/p}$ takes on its principal value). This is equivalent to saying that $\nu_{p}(f; x, \omega)$ should be bounded for $x > \omega$, where

(1.3)
$$\nu_{p}(f;x,\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} |x-\omega+iy|^{p-2} |f(x+iy)|^{p} dy.$$

In § 3 we shall obtain theorems corresponding to Doetsch's results for these new spaces. It will be noticed that $\mathfrak{H}_2(\omega) = \mathscr{H}_2(\omega)$, so that one would expect

Received July 28, 1958. This paper was written while the author was a fellow at the 1958 Summer Research Institute of the Canadian Mathematical Congress.

that our new theorems should reduce, for p = 2, to Doetsch's theorems. This is actually the case.

In an earlier paper (4) we generalized Doetsch's theory. In order to obtain theorems dealing with the Laplace transformation of functions, of the form $t^{\lambda}\phi(t)$, where $e^{-\omega t}\phi(t) \in L_p(0, \infty)$ and $\lambda \ge 0$, we "generalized" the spaces $\mathfrak{F}_p(\omega)$ to spaces $\mathfrak{F}_{\lambda,p}(\omega)$. We can carry out a similar programme here, and to this end we define spaces $\mathscr{H}_{\lambda,p}(\omega)$ as follows. $\mathscr{H}_{0,p}(\omega) = \mathscr{H}_p(\omega)$; if $\lambda > 0$, $\mathscr{H}_{\lambda,p}(\omega)$ consists of those functions f in $\mathscr{H}_p(\omega')$ for every $\omega' > \omega$ such that $\nu_p^{\lambda}(f; \omega)$ is finite, where

(1.4)
$$\nu_p^{\lambda}(f;\omega) = \int_{\omega}^{\infty} (x-\omega)^{p\lambda-1} \nu_p(f;x,\omega) \, dx.$$

The theorems corresponding to the results of (4) are obtained in § 4.

In § 2 we prove certain preliminary lemmas concerning the properties of functions in $\mathscr{H}_{p}(\omega)$.

2. Preliminary lemmas.

LEMMA 1. If $f \in \mathscr{H}_p(\omega)$, 1 , then

$$f(\omega + iy) \equiv \lim_{x \to \omega +} f(x + iy)$$

exists for almost all y, and $|y|^{1-2/p}f(\omega + iy) \in L_p$ $(-\infty, \infty)$. Further, $(x - \omega + iy)^{1-2/p}f(x + iy)$ converges in mean of order p to $(iy)^{1-2/p}f(\omega + iy)$ as $x \to \omega +$. Also, ν_p $(f; x, \omega)$ tends steadily from below, as $x \to \omega +$, to

$$\int_{-\infty}^{\infty} |y|^{p-2} |f(\omega + iy)|^p \, dy.$$

Proof. The statement follows on applying (1, Lemma 7) to $F(z) = (z - \omega)^{1-2/p} f(z)$.

LEMMA 2. Let f(s) be analytic for Re $s > \omega$, and suppose

$$\int_{-\infty}^{\infty} |x - \omega + iy|^{p-2} |f(x + iy)|^p \, dy$$

is bounded for $x_1 \leq x \leq x_2$, where p > 1, $x_1 > \omega$. Then as $y \to \pm \infty$, $f(x + iy) = o(|y|^{1-2/q})$, uniformly in x for $x_1 + \delta \leq x \leq x_2 - \delta$, where $0 < \delta < \frac{1}{2}(x_2 - x_1)$.

Proof. Let $\Phi(\zeta) = (-i\zeta)^{1-2/p} f(\omega - i\zeta)$, where $\zeta = \xi + i\eta$, and $(-i\zeta)^{1-2/p}$ has its principal value. Then if $\eta > 0$,

$$\int_{-\infty}^{\infty} |\Phi(\xi + i\eta)|^p d\xi = \int_{-\infty}^{\infty} |\eta - i\xi|^{p-2} |f(\omega + \eta - i\xi)|^p d\xi$$
$$= \int_{-\infty}^{\infty} |\eta + i\xi|^{p-2} |f(\omega + \eta + i\xi)|^p d\xi$$

which is bounded for $x_1 - \omega \leq \eta \leq x_2 - \omega$. Hence by (7, Lemma, p. 125),

 $\lim_{\xi \to \pm \infty} \Phi(\xi + i\eta) = 0 \text{ uniformly in } \eta \text{ for } x_1 - \omega + \delta \leqslant \eta \leqslant x_2 - \omega - \delta. \text{ Thus, setting } x = \omega + \eta, \ y = -\xi,$

$$\lim_{y \to \pm \infty} \left(x - \omega + iy \right)^{1 - 2/p} f(x + iy) = 0$$

uniformly in x for $x_1 + \delta \leq x \leq x_2 - \delta$. But clearly

$$(x - \omega + iy)^{1-2/p} = O(|y|^{1-2/p})$$
 as $y \to \pm \infty$

uniformly in x for x in the same interval. Hence

$$\lim_{y \to \pm \infty} |y|^{1-2/p} f(x+iy) = 0$$

uniformly in x for x in this interval; that is,

$$f(x + iy) = o(|y|^{-(1-2/p)}) = o(|y|^{1-2/q})$$

uniformly in x for $x_1 + \delta \leq x \leq x_2 - \delta$.

LEMMA 3. If $f \in \mathscr{H}_q(\omega)$, $q \ge 2$, and $\omega \leqslant \xi < \operatorname{Re} s$, then

$$f(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{f(\xi + i\eta)}{s - (\xi + i\eta)} d\eta.$$

Proof. Suppose first $\omega < \xi < \text{Re } s$. Let s = x + iy, and choose R and ρ so that $\rho > x$, and R > |y|. Then

$$f(s) = \frac{1}{2\pi i} \int \frac{f(\zeta)}{\zeta - s} d\zeta,$$

the integral being taken around the rectangle with vertices $\xi \pm iR$ and $\rho \pm iR$. The integral along the upper side of the rectangle is given by

$$\frac{1}{2\pi i}\int_{\xi}^{\rho}\frac{f(\alpha+iR)}{s-(\alpha+iR)}\,d\alpha.$$

But by Lemma 2, $f(\alpha + iR) = o(R^{1-2/p})$ as $R \to \infty$, uniformly in α for $\xi \leq \alpha \leq \rho$. Hence the integral along the upper side is $o(R^{-2/p})$ and consequently tends to zero as $R \to \infty$. Similarly, the integral along the lower side of the rectangle tends to zero as $R \to \infty$. Hence letting $R \to \infty$,

$$f(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{f(\xi + i\eta)}{s - (\xi + i\eta)} d\eta - \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{f(\rho + i\eta)}{s - (\rho + i\eta)} d\eta.$$

Now the second of these integrals tends to zero as $\rho \to \infty$. For from Hölder's inequality it is smaller in modulus than

$$\left(\nu_q(f;\rho,\omega)\right)^{1/q}\left\{\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{|\rho-\omega+i\eta|^{p-2}}{|s-(\rho+i\eta)|^p}\,d\eta\right\}^{1/p}.$$

The first term of this expression is bounded by hypothesis; since 1 , the second term is smaller than

434

$$\begin{cases} \frac{(\rho-\omega)^{p-2}}{2\pi} \int_{-\infty}^{\infty} \frac{d\eta}{((\rho-x)^2 + (\eta-y)^2)^{1/2p}} \end{cases}^{1/p} \\ = \begin{cases} \frac{(\rho-\omega)^{p-2}}{(\rho-x)^p} \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{d\eta}{(1+\eta^2)^{1/2p}} \end{cases}^{1/p} = O(\rho^{-2/p}) \end{cases}$$

as $\rho \to \infty$. Hence letting $\rho \to \infty$

$$f(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{f(\xi + i\eta)}{s - (\xi + i\eta)} d\eta, \qquad \omega < \xi < Re \, s.$$

It remains to show that this equation remains true when $\xi = \omega$. For this we write the equation in the form

$$f(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \{ (\xi - \omega + i\eta)^{1 - 2/q} f(\xi + i\eta) \} \left\{ \frac{(\xi - \omega + i\eta)^{1 - 2/p}}{s - (\xi + i\eta)} \right\} d\eta.$$

The first term of the integrand of this last integral converges in mean of order q to $(i\eta)^{1-2/q}f(\omega + i\eta)$ as $\xi \to \omega +$. We shall show that the second term of the integrand converges in mean of order p to $(i\eta)^{1-2/p}/(s - (\omega + i\eta))$ as $\xi \to \omega +$. Clearly it tends to this limit pointwise. Further, since $1 , we have if <math>\xi < \gamma < x$,

$$\left| \frac{(\xi - \omega + i\eta)^{1-2/p}}{s - (\xi + i\eta)} - \frac{(i\eta)^{1-2/p}}{s - (\omega + i\eta)} \right|^p \leq 2^p \left\{ \frac{((\xi - \omega)^2 + \eta^2)^{\frac{1}{2}(p-2)}}{((x - \xi)^2 + (\eta - y)^2)^{\frac{1}{2}p}} + \frac{|\eta|^{p-2}}{((x - \omega)^2 + (\eta - y)^2)^{1/2p}} \right\} \leq 2^{p+1} \cdot \frac{|\eta|^{p-2}}{((x - \gamma)^2 + (\eta - y)^2)^{1/2p}}$$

which is in $L_1(-\infty, \infty)$ as a function of η . Hence by Lebesgue's theorem of dominated convergence,

$$\lim_{\xi\to\omega+}\int_{-\infty}^{\infty}\left|\frac{(\xi-\omega+i\eta)^{1-2/p}}{s-(\xi+i\eta)}-\frac{(i\eta)^{1-2/p}}{s-(\omega+i\eta)}\right|^pd\eta=0.$$

Thus, letting $\xi \rightarrow \omega +$ we obtain from (6, § 12.5, example (iv)))

$$\begin{split} f(s) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \{ (i\eta)^{1-2/q} f(\omega + i\eta) \} \left\{ \frac{(i\eta)^{1-2/p}}{s - (\omega + i\eta)} \right\} d\eta \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{f(\omega + i\eta)}{s - (\omega + i\eta)} d\eta. \end{split}$$

LEMMA 4. If $f \in \mathscr{H}_{q}(\omega)$, $q \ge 2$, and if $\xi \ge \omega$ and Res $< \xi$, then

$$\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{f(\xi+i\eta)}{s-(\xi+i\eta)}\,d\eta=0.$$

Proof. The statement follows much as in the previous lemma.

3. The spaces $\mathscr{H}_{p}(\omega)$. Theorems 1 and 2 correspond to Theorems 2 and 3 respectively of Doetsch (1).

Theorem 1. If $e^{-\omega t}\phi(t) \in L_p$ (0, ∞), 1 , and

$$f(s) = \int_0^\infty e^{-st} \phi(t) dt, \qquad \qquad Re s > \omega,$$

then $f \in \mathscr{H}_{p}(\omega)$ and if $x > \omega$,

$$\nu_p(f; x, \omega) \leqslant K \int_0^\infty e^{-px t} \left| \phi(t) \right|^p dt,$$

where K depends on p alone.

Proof. If $x > \omega$,

$$f(x - iy) = \int_0^\infty e^{iyt} (e^{-xt}\phi(t)) dt;$$

that is, for each fixed $x > \omega$, f(x - iy) is the Fourier transform of a function in L_p (0, ∞). Hence by (7, Theorem 80), since 1 .

$$\begin{split} \nu_{p}(f;x,\omega) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |x-\omega+iy|^{p-2} |f(x+iy)|^{p} \, dy \\ &\leq \frac{1}{2\pi} \int_{-\infty}^{\infty} |y|^{p-2} |f(x-iy)|^{p} \, dy \\ &\leq \frac{K(p)}{2\pi} \int_{0}^{\infty} e^{-pxt} |\phi(t)|^{p} \, dt \leq \frac{K(p)}{2\pi} \int_{0}^{\infty} e^{-p\omega t} |\phi(t)|^{p} \, dt, \end{split}$$

so that $f \in \mathscr{H}_p(\omega)$ and the stated inequality holds with $K = K(p)/2\pi$.

THEOREM 2. If $f \in \mathscr{H}_q(\omega)$, $q \ge 2$, then there is a function ϕ , with $e^{-\omega t}\phi(t) \in L_q(0, \infty)$, such that

$$f(s) = \int_0^\infty e^{-st} \phi(t) dt, \qquad \qquad Re s > \omega.$$

Further, if $x > \omega$,

$$\int_0^\infty e^{-qxt} |\phi(t)|^a dt \leqslant K \nu_q(f; x, \omega),$$

where K depends on q alone.

Also for $x \ge \omega$ and for almost all t,

$$e^{xt} \underset{a\to\infty}{\Re_q} \frac{1}{2\pi} \int_{-a}^{a} e^{it\eta} f(x+i\eta) \, d\eta = \begin{cases} \phi(t), t > 0\\ 0, t < 0 \end{cases}$$

(where \mathfrak{L}_q denotes the limit in mean of order q).

Proof. By Lemma 1, $|y|^{1-2/q}f(\omega + iy) \in L_q(-\infty, \infty)$. Hence by (7, Theorem 79), $f(\omega + iy)$ has a Fourier transform $F \in L_q(-\infty, \infty)$, given by the formula

436

$$F(t) = \underset{a \to \infty}{\Re_q} \frac{1}{(2\pi)^{\frac{1}{2}}} \int_{-a}^{a} e^{it\eta} f(\omega + i\eta) \, d\eta.$$

Let $\phi(t) = (2\pi)^{-\frac{1}{2}} e^{\omega t} F(t)$. Clearly $e^{-\omega t} \phi(t) \in L_q$ $(-\infty, \infty)$.

Now for each s with Re $s \neq \omega$, $(s - (\omega + i\eta))^{-1} \in L_p$ $(-\infty, \infty)$ as a function of η . Also a straightforward calculation shows that if Re $s > \omega$,

$$\frac{1}{(2\pi)^{\frac{1}{2}}}(P)\int_{-\infty}^{\infty}\frac{e^{it\eta}}{s-(\omega+i\eta)}\,d\eta = \begin{cases} -(2\pi)^{\frac{1}{2}}e^{i(s-\omega)},\,t>0,\,Re\,s<\omega\\(2\pi)^{\frac{1}{2}}e^{i(s-\omega)},\,t<0,\,Re\,s>\omega,\\0,\quad(Re\,s-\omega)\,t>0, \end{cases}$$

so that the Fourier transform of $((s - (\omega + i\eta))^{-1}$ is given by this expression. Hence from Lemma 3 and (7, Theorem 81), if Re $s > \omega$,

$$f(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{f(\omega + i\eta)}{s - (\omega + i\eta)} d\eta = \frac{1}{(2\pi)^{\frac{1}{2}}} \int_{-\infty}^{0} e^{t(s-\omega)} F(-t) dt$$
$$= \frac{1}{(2\pi)^{\frac{1}{2}}} \int_{0}^{\infty} e^{-st} e^{\omega t} F(t) dt = \int_{0}^{\infty} e^{-st} \phi(t) dt,$$

so that f is the Laplace transform of a function ϕ with $e^{-\omega t}\phi(t) \in L_q(0, \infty)$. Also from Lemma 4 and (7, Theorem 81), if Re $s < \omega$,

$$0 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{f(\omega + i\eta)}{s - (\omega + i\eta)} d\eta = -\frac{1}{(2\pi)^4} \int_0^{\infty} e^{t(s-\omega)} F(-t) dt$$
$$= -\frac{1}{(2\pi)^4} \int_0^{\infty} e^{st} \phi(-t) dt,$$

that is, the Laplace transform of $\phi(-t)$, with variable -s, vanishes. Hence by (2, chapter 2, § 9, Theorem 4) $\phi(-t) = 0$ a.e. for t > 0, or equivalently $\phi(t) = 0$ a.e. for t < 0,

Further, from (7, Theorem 79),

(3.1)
$$\int_{0}^{\infty} e^{-q\omega t} |\phi(t)|^{q} dt = \frac{1}{(2\pi)^{\frac{1}{2}q}} \int_{-\infty}^{\infty} |F(t)|^{q} dt \\ \leq \frac{K(q)}{2\pi} \int_{-\infty}^{\infty} |y|^{q-2} |f(\omega + iy)|^{p} dy.$$

Now since $q \ge 2$, if $\omega < \omega' < x$ and $g \in \mathscr{H}_q(\omega)$, then $\nu_q(g; x, \omega') \le \nu_q(g; x, \omega)$, so that $g \in \mathscr{H}_q(\omega')$. Hence if $x > \omega$, $f \in \mathscr{H}_q(x)$ so that by what we have just proved there is a function ϕ_x with $e^{-xt}\phi_x(t) \in L_q$ $(0, \infty)$, satisfying (3.1) with ω replaced by x, such that for Re s > x,

$$f(s) = \int_0^\infty e^{-st} \phi_x(t) dt, \qquad Re \ s > x_s$$

and so that for almost all t

$$e^{xt} \, \underset{a \to \infty}{\mathfrak{Q}_q} \frac{1}{2\pi} \int_{-a}^{a} e^{it\eta} f(x+i\eta) \, d\eta = \begin{cases} \phi_x(t), \, t > 0 \\ 0, \quad t < 0 \end{cases}$$

But by (2, chapter 2, § 9, Theorem 4), $\phi_x(t) = \phi(t)$ a.e. for t > 0. Hence for any $x \ge \omega$ and almost all t

$$e^{xt} \underset{a\to\infty}{\mathfrak{Q}_q} \frac{1}{2\pi} \int_{-a}^{a} e^{it\eta} f(x+i\eta) \, d\eta = \begin{cases} \phi(t), t > 0, \\ 0, t < 0. \end{cases}$$

Finally from (3.1), with ω replaced by x, we obtain, since $q \ge 2$, $\int_0^\infty e^{-qxt} |\phi(t)|^q dt = \int_0^\infty e^{-qxt} |\phi_x(t)|^q dt \le \frac{K(q)}{2\pi} \int_{-\infty}^\infty |y|^{q-2} |f(x+iy)|^q dy$ $\le K \nu_q(f; x, \omega),$

where $K = K(q)/2\pi$.

4. The spaces $\mathscr{H}_{\lambda,p}(\omega)$. Theorems 3 and 4 correspond to Theorems 1 and 2 of **(4)**.

THEOREM 3. If
$$e^{-\omega t}\phi(t) \in L_p(0, \infty)$$
, $1 , and
$$f(s) = \int_0^\infty e^{-st} t^\lambda \phi(t) dt, \qquad \text{Re } s > \omega,$$$

then $f \in \mathscr{H}_{\lambda,p}(\omega)$.

Proof. If $\lambda = 0$ the statement reduces to that of Theorem 1. Hence we may assume $\lambda > 0$. If $\omega' > \omega$, then since $t^{\lambda}e^{-(\omega'-\omega)t}$ is bounded for $t \ge 0$, $e^{-\omega't}t^{\lambda}\phi(t) \in L_p(0, \infty)$, and hence by Theorem $1 f \in \mathscr{H}_p(\omega')$, and if $x > \omega'$

$$\nu_p(f; x, \omega') \leqslant K \int_0^\infty e^{-pxt} t^{p\lambda} |\phi(t)|^p dt$$

Let $x > \omega$, and choose ω' so that $\omega < \omega' < x$. Then since 1 ,

$$\nu_p(f; x, \omega) \leqslant \nu_p(f; x, \omega') \leqslant K \int_0^\infty e^{-pxt} t^{p\lambda} |\phi(t)|^p dt.$$

Hence

$$\begin{split} \nu_p^{\lambda}(f;\omega) &= \int_{\omega}^{\infty} (x-\omega)^{p\lambda-1} \nu_p(f;x,\omega) dx \\ &\leqslant K \int_{\omega}^{\infty} (x-\omega)^{p\lambda-1} dx \int_{0}^{\infty} e^{-pxt} t^{p\lambda} |\phi(t)|^p dt \\ &= K \int_{0}^{\infty} t^{p\lambda} |\phi(t)|^p dt \int_{\omega}^{\infty} (x-\omega)^{p\lambda-1} e^{-pxt} dt = \frac{K \Gamma(p\lambda)}{p^{p\lambda}} \int_{0}^{\infty} e^{-p\omega t} |\phi(t)|^p dt, \end{split}$$

and $f \in \mathscr{H}_{\lambda,p}(\omega)$.

THEOREM 4. If $f \in \mathscr{H}_{\lambda,q}(\omega)$, $q \ge 2$, $\lambda \ge 0$, then there is a function ϕ , with $e^{-\omega t}\phi(t) \in L_q(0, \infty)$, such that

$$f(s) = \int_0^\infty e^{-st} t^\lambda \phi(t) dt.$$

Proof. Since $f \in \mathscr{H}_q(\omega')$ for every $\omega' > \omega$, by Theorem 2 if $\omega' > \omega$ there is a function $\phi_{\omega'}$, with

$$e^{-\omega' t} \phi_{\omega'}(t) \in L_q(0, \infty),$$

438

such that

$$f(s) = \int_0^\infty e^{-st} \phi_{\omega'}(t) dt, \qquad \qquad Re \ s > \omega'.$$

But by (2, chapter 2, § 9, Theorem 4), if ω' and ω'' are larger than ω , $\phi_{\omega'}(t) = \phi_{\omega''}(t)$ a.e. for $t \ge 0$. Hence if ϕ_0 is any one of these functions and Re $s > \omega$, then choosing ω' so that $\omega < \omega' < \text{Re } s$ we obtain

$$f(s) = \int_0^\infty e^{-st} \phi_{\omega'}(t) dt = \int_0^\infty e^{-st} \phi_0(t) dt.$$

Also from Theorem 2, since $q \ge 2$, if $x > \omega$ and ω' is chosen so that $\omega < \omega' < x$

$$\int_0^\infty e^{-qxt} |\phi_0(t)|^p dt = \int_0^\infty e^{-qxt} |\phi_{\omega'}(t)|^p dt \leqslant K \nu_q(f;x,\omega') \leqslant K \nu_q(f;x,\omega).$$

Hence, if we multiply this inequality by $(x - \omega)^{q\lambda-1}$ and integrate from ω to ∞ , we obtain

$$\int_{\omega}^{\infty} (x-\omega)^{q\lambda-1} dx \int_{0}^{\infty} e^{-qxt} |\phi_{0}(t)|^{q} dt \leqslant K \int_{\omega}^{\infty} (x-\omega)^{q\lambda-1} \nu_{q}(f;x,\omega) dx$$
$$= K \nu_{q}^{\lambda}(f;\omega).$$

But the integral on the left-hand side of this inequality is equal to

$$\int_{\omega}^{\infty} (x-\omega)^{q\lambda-1} dx \int_{0}^{\infty} e^{-qxt} |\phi_{0}(t)|^{q} dt = \int_{0}^{\infty} |\phi_{0}(t)|^{q} dt \int_{\omega}^{\infty} (x-\omega)^{q\lambda-1} e^{-qxt} dx$$
$$= \frac{\Gamma(q\lambda)}{q^{q\lambda}} \int_{0}^{\infty} e^{-q\omega t} t^{-q\lambda} |\phi_{0}(t)|^{q} dt,$$

so that

$$\int_0^\infty e^{-q\omega t} t^{-q\lambda} |\phi_0(t)|^q dt \leqslant \frac{q^{q\lambda} K \nu_q(f, \omega)}{\Gamma(q\lambda)} < \infty.$$

Hence if we let $\phi(t) = t^{-\lambda}\phi_0(t)$, then $e^{-\omega t}\phi(t) \in L_q$ (0, ∞), and if Re $s > \omega$

$$f(s) = \int_0^\infty e^{-st} t^\lambda \phi(t) dt.$$

References

- 1. G. Doetsch, Bedingungen für die Darstellbarkeit einer Funktion als Laplace-Integral und eine Umkehrformel für die Laplace-Transformation, Math. Zeit., 42 (1937), 263-86.
- **2.** ——, Handbuch der Laplace-Transformation. I (Basel, 1950).
- 3. G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, Math. Annal., 97 (1926), 159-209.
- 4. P. G. Rooney, On some theorems of Doetsch, Can. J. Math., 10 (1958), 421-30.
- E. C. Titchmarsh, A contribution to the theory of Fourier transforms, Proc. Lond. Math. Soc. (2), 23 (1923), 279–89.
- 6. ——, The theory of functions (2nd ed.; Oxford, 1939).
- 7. ____, Introduction to the theory of Fourier integrals (2nd ed.; Oxford, 1948).

University of Toronto