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Abstract

We demonstrate the existence, in the 5-dimensional projective space over any field 9 in which 1 + 1 ^ 0
and - 1 is a square, of a non-degenerate double-twenty of planes (J*e, X) with the property that there is
a group of coUineations which acts transitively on 3tf U X while each element of the group either maps
jtf1 onto itself and X onto itself or else swaps 3^C with JV'. If there is an involutory automorphism of
9 which swaps the two square roots of — 1, then (3*?, Jf) is also self-polar (with respect to a unitary
polarity). We describe some of the geometry (in both 5-dimensional and 3-dimensional space) associated
with the double-twenty (M1, Jf) and its group.

1991 Mathematics subject classification (Amer. Math. Soc): primary 51A45.

1. Introduction

1.1. By a double-twenty ofplanes we mean apair {Jf°, Jf°), where each of J$?° and
W is a set of planes in the same 5-dimensional projective space, \Ji?°\ = \Jf°\ = 20
and there is a bijection no : Jt?° —> Jt° (called the pairing map) such that, for all
H in J f ° and K in JT°, H intersects K if and only if Hno ±K. The double-twenty
of planes, like the better known double-six of lines in 3-dimensional projective space,
arises naturally in the theory of determinantal varieties. For a detailed account of this
connection, see Room [5, pp. 72-81 and pp. 429-^433].

1.2. If (3tf\ X°) is a double-twenty of planes and J f ° n X ° ^ 0, then we call
(Jf?°, Jff°) a degenerate double-twenty. A degenerate double-twenty of planes can
be constructed in any 5-dimensional projective space as follows. Choose six points
which do not lie in the same hyperplane. These points determine twenty planes, each
plane passing through three of the six points. Label these twenty planes Hu • • • , H2o-
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Also label them K\,... , K20 in such a way that (for / = 1, . . . , 20) Kt does not
intersect //,-. Then ({Hi, . . . , H2o], {Ku ... , K2o}) is a degenerate double-twenty.

1.3. We shall say that a double-twenty of planes (Jf°, Jff°) is transitive if the group,
consisting of all those collineations (of the enveloping 5-dimensional projective space)
which either map Jf° onto itself and J(f° onto itself or else swap JV" and X°, acts
transitively on the set 3^° U J^°. The degenerate double-twenty of planes described
in the previous paragraph is an example of a transitive double-twenty. However, we
are naturally more interested in the non-degenerate case.

1.4. If (34?°, Jff°) is a double-twenty of planes with pairing map n0 then we say
that ( J f °, Jff°) is self-polar if there is a polarity ao (of the enveloping 5-dimensional
projective space) such that Hao = Hno for all H in 34f°. Note that, whereas the
polarities discussed in [3,4 and 6] are all orthogonal, the polarity referred to in Section
5 of this paper is unitary.

1.5. In Section 2 we demonstrate the existence of a transitive non-degenerate double-
twenty of planes (34?, Jff) in the 5-dimensional projective space PG(5, &) over any
field & in which 1 + 1^0 and —1 is a square.

We do this by exhibiting a matrix M which defines a certain determinantal quartic
hypersurface £>in PG (5, &) on which the required double-twenty of planes (34?, Jff)
is situated. Examining the equation det(M) = 0 of the hypersurface S>, we identify
certain projective collineations a, b, c, r and j of PG(5, J2") which map S> onto itself.
We then show how the action of these collineations on the set 34? U J^ may be
described in terms of the action of certain projective collineations of PG(3, &) on a
certain set S of points in PG(3, &). The simplicity and symmetry of the equation of
Si enable us to actually calculate (without undue difficulty) the vectors representing
the points in S, giving us explicit equations for each of the forty planes in Jf U Jf.
Using these equations and facts about the action of the group & = (a, b,c,r, j) on
Jif U X obtained by studying the action on S of suitable collineations in PG{3, <!?),
we conclude that (Jf, J(f) is a transitive non-degenerate double-twenty.

1.6. In Sections 3 and 4, we describe the geometry of the sets S and Jf U Jtf,
and also the actions of the relevant collineation groups on these sets, in some detail;
while in Section 5 we observe that, if the coordinate field J5" possesses an involutory
automorphism which swaps the two square roots of —1, then the double-twenty
(Jf, J O is not only transitive but also self-polar (with respect to a unitary polarity
which commutes with every element of CS).

1.7. Definitions for some of the terms used, but not defined, in this paper can be
found in [1, Section 1.4] and [7, Chapter 10]. Note, however, that what we call a
projective space is in [1] called a projective geometry.
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2. A transitive non-degenerate double-twenty
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2.1. The matrix M. Suppose that & is any field in which 1 + 1 ^ 0 and —1 is
a square, and that / is one of the two square roots of —1 in &. Now consider
the (commutative) polynomial ring Si = &\x, u, y , v, z, u>], where x, u, y , v, z, w
are algebraically independent over &. The indeterminates x,u,y, v, z, w may be
regarded as homogeneous coordinate variables for the 5-dimensional projective space
PG(5, &) over &. We are interested in a certain matrix over 8%, namely the matrix

M =
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= x2u2 y2v2 z2w2 (x2 + u2)yv + (y2 + v2)zw + (z2 + w2)xu.

Then D(x,u, y,v, z,w) = 0 i s the equation of a determinantal quartic hypersurface
@ in PG(5, &), and it is easily seen that

D(x, u, y, v, z, w) = D(u, x, y, v, —w, —z) = D(u, x, iy, —iv, —w, z)

= D(y, v, z, w, x, u) = D(u, x, v, y, w, z).

It is less obvious, but can be checked, that D (x, u, y, v, z, w) = D(x', u', y', v', z', w'),
where (x1, u\ y', v', z', w') = (x, u, y, v, z, tu)a, and
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2 . 2 . T h e c o l l i n e a t i o n s a , b , c , r a n d j . I f p i s a n o n - s i n g u l a r 6 x 6 m a t r i x o v e r &
then by the protective collineation with matrix p we shall mean the collineation p of
PG(5, &) which, for all non-zero Xo = (JCO, uo, yo, vo, zo, w0) in ^6, maps the point
represented by the vector Xo to the point represented by the vector Xop. Note that p
maps the hyperplane with equation XXO' = 0, where X = (x, u, y, v, z, w), to the
hyperplane with equation (Xp"')Xo' = 0.

https://doi.org/10.1017/S1446788700000239 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000239


252 P. B. Kirkpatrick [4]

From the equations in Section 2.1 we deduce that the hypersurface Q) is mapped
onto itself by (each of) the projective collineations a,b,c,r and j with matrices
a, b, c, r and j (respectively), where a is as in Section 2.1 and
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r = J =

/0 1 0 0 0 0\
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1

\0 0 0 0 1 0/

2.3. The sets J? and X. If U is a non-zero element of ^"4 then UM is a linear
combination (over &) of the rows of M, and the subspace UM = O of PG(5, J?) lies
on <&. Similarly, if V is a non-zero element of ^ 4 then M V is a linear combination
of the columns of M, and the subspace MV = O lies on 3>. Since UM and MV
both have four entries, the subspaces UM = O and M V = O both have (projective)
dimension greater than or equal to one.

Let us denote by Jff the set of all planes on Si whose equations may be written in
the form UM = O, and by JV the set of all planes on S> whose equations may be
written in the form MV = O (where U and V belong to &A). (We are led to consider
these two sets of planes by the general theory expounded in [5, pp. 72-73].)

2.4. The matrices A, B, C and R. Suppose that H belongs to Jf, that K belongs
to Jff and that p is a projective collineation of PG(5, &), with matrix p, which maps
Q) onto itself. Then Hp and Kp are planes on 3> and their equations may be obtained
from the equations UM = O and MV = O of H and K by making the substitution
X i—> Xp"1, where X = (x, u, y, v, z, w).

It turns out that when the substitutions X i—> Xa"1, X i—> Xb~\ X i—• Xc~\
X i—> Xr"1 and X i—> Xj"1 are applied to M, the resulting matrices are (respect-
ively) -AMA', -BMB', - C - ' M C , RMR' and - M ' , where

B =

(0 0 0 1\
0 0 1 0
0 1 0 0

o o oy
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c =

We deduce that the planes Ha, Hb, He, Hr and Hj are given by the equations
(f/A)M = O, (UB)M = O, (UC~l)M = O, (UR)M = O and MU' = O
(respectively); and that the planes Ka, Kb, Kc, Kr and Kj are given by the equations
M(VA)' = 0, M(VB)' = O, M(VC)' = O, M(VR)' = O and VM = O
(respectively).

It follows that Ha, Hb, He and Hr belong to Jff, that Ka, Kb, Kc and Kr belong
to Jf, that Hj belongs to X and that Kj belongs to Jf.

2.5. The set S. Let us denote by S the set of all points P, in the 3-dimensional
projective space PG(3, &) over &, such that if U is a vector in ^4 representing P
then the subspace UM = O of PG(5, &) is a plane. (This method of representing
the planes of Jf by points is a special case of the representation described in [5, pp.
79-81]).

Since j swaps the subspaces UM = O and MU' = O, S may also be described as
the set of all points Q in PG(3, &) such that if V is a vector in Ĵ "4 representing Q
then the subspace MV = 0 of PG(5, &) is a plane.

Thus each point in S may be thought of as simultaneously representing both a plane
in Jf and a plane in Jf.

2.6. The collineations A, B, C and R. Now consider the projective collineations
A, B,C and R of PG(3, &) with matrices A, B, C and R (respectively). The cal-
culations reported in Section 2.4 show that the action of the collineations a,b,c and
r on the set rff may be determined by examining the actions of A, B, C"1 and R
(respectively) on the set S; and that the actions of a, b, c and r on the set J(f may be
determined by examining the actions of A, B, C and R (respectively) on S.

2.7. The twenty points in S. Observing the zeros on the diagonal of M, we im-
mediately identify four points belonging to S, namely the points Pn, Pn, Pl3, F14

represented by the vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1). The cor-
responding planes in Jf? are obtained by setting the rows (one at a time) of M equal
to zero, whereas the corresponding planes in J ^ are obtained by setting the columns
of M equal to zero.

Now let/7 = R~{C R A and Pmn = P\nF
m~{ (form = 1, . . . , 5 andn = 1, . . . , 4).

https://doi.org/10.1017/S1446788700000239 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000239


254 P. B. Kirkpatrick [6]

It can be checked that the points Pmn are given by the vectors:

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),

( - 1 , 1, - 1 , 1), ( - 1 , - 1 , 1, 1), (1, 1, 1, 1), (1, - 1 , - 1 , 1),

( - / , -i, - 1 , 1), (/, i, - 1 , 1), ( - / , i, 1, 1), (i, - / , 1, 1),

( - i , - 1 , - i , 1), (i, 1, - / , 1), ( - i , 1, /, 1), (i, - 1 , i, 1),

(1, i, - i , 1), (1, - i , i, 1), ( - 1 , i, i, 1), ( - 1 , - / , - i , 1).

Here the vector in row m, column n represents the point Pmn.
We have found 20 points in S. It can be checked that there are no further points in

S as follows. Suppose U = (X, Y, Z, T) is a vector representing a point P in S. Then
the four entries of UM are linearly dependent over &. It follows (cf. [5, pp. 79-80])
that all the 4 x 4 minors of the matrix

( o
0
y

T
- Z

0
0

z
0
0

_Y

0
T

-X
0

0
X
0

-z

- y
0

r
0

vanish. Solving the corresponding system of equations, we find that P is one of the
points Pmn. We could of course have found the points Pmn in the first place by simply
solving the system of equations just referred to.

2.8. The group Sf. It can easily be checked that the group (A, B, C, R) acts trans-
itively on S, from which it follows (in view of the remarks in Section 2.6) that the
group (a,b,c,r) acts transitively on each of 34? and 3V. Moreover, j swaps 34? and
JXf. (See section 2.4.) So the group & = {a, b, c, r, j) acts transitively on the set
Jif U J^ , and each element of Sf either maps Jff onto itself and Jf onto itself or else
swaps Jj? and Jt.

2.9. Let us denote by Hmn the plane in 34?, and by Kmn the plane in J(f, corresponding
to the point Pmn (for m — 1 , . . . , 5 and n = 1 , . . . , 4).

Now it is clear that Hl4 does not intersect Ki4. It follows, by the argument
expounded in [5, pp. 72-73], that H14 intersects every other plane Kmn. In fact it is
not difficult to check (using explicit equations for the planes Hmn and Kmn) that Hl4

intersects each of Kn, Kn and Kl3 in a line; that it intersects each of the planes Kmn

with m ^ 1 in a point; and that it intersects each of the planes Hu, Hn and //13 in a
point, but does not intersect any of the planes Hmn with m ^ 1.

2.10. The facts listed in Sections 2.8 and 2.9 suffice to show that (3V,X) is a
transitive non-degenerate double-twenty of planes. The pairing map n : 34? i—> Jf
is given by the rule n(H) = the unique plane in J^ which does not intersect H.
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3. The geometry of the set S

3.1. Let Tm = {Pml, Pm2, Pmi, Pm$} (for m = 1 , . . . , 5). Then simple calculations
show that each of the collineations A, B, C and/? permutes the five sets T,, . . . , T5, in-
ducing on {T , , . . . ,T5J the permutations (T,, T2)(T3, T5)(T4), (T,)(T2)(T3)(T4)(T5),
(T,)(T2, T4)(T3, T5) and ( T ^ C T z ) ^ , T4, T5) respectively. The permutation group
induced by the collineation group (A, B, C, R) on the set {T i , . . . , T5} is the altern-
ating group on that set. The collineation F = R~lCRA used to label the points Pmn

induces the 5-cycle (T,, T2, T3, T4, T5) on {T , , . . . , T5}.

Each of B, C and R maps Ti onto itself. It is easily checked that the permutation
group induced by {B, C, R) on T[ is the alternating group on Ti.

3.2. Now the points Pn, Pn, P\i, Pu are clearly non-coplanar, since they are rep-
resented by the vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1). So T, is the
vertex-set of a tetrahedron in PG(3, &). It follows that each of T2, T3, T4 and T5 is
also the vertex set of a tetrahedron.

It turns out that the five tetrahedra T i , . . . , T5 are very specially related in that any
two of them form a desmic pair (that is, are such that each edge of either intersects
two opposite edges of the other). This is easily verified for the pair T], T2. Since
(A, B, C, R) acts doubly transitively on { T , , . . . , T5}, it then follows for the other
pairs.

The five tetrahedra T ] , . . . , T5 may be used to construct ten further tetrahedra,
since (cf. Hudson [2, pp. 1-3]) any desmic pair is part of a triple of mutually desmic
tetrahedra. It can be shown that the vertices, edges and faces of the resulting system of
15 tetrahedra are the points, lines and planes of a Klein 60)5 configuration consisting
of 60 points, 30 lines and 60 planes with 15 points in each plane, 15 planes through
each point, 6 points on each line and 6 planes through each line (cf. [2, pp. 42-A3
and pp. 49-50]).

4. The group & and the set of planes Jtf' U X

4 .1 . Let M?m = [Hm\, Hm2, Hmi, Hm4\, J(fm = {Km\, Km2, Kmi, Km4] and Gm =

3^m U J^, (for m = 1 , . . . , 5). Then from the remarks in Sections 2.6 and 3.1, and
the fact that C and C"1 induce the same permutation on {Ti, . . . , T5}, we deduce
that the collineation group (a,b,c,r) acts as a permutation group on each of the sets
[J$?\,... , J$?5], {J€\, ... , J ^ } a n d { ^ i , . . . , @5), inducing in each case the alternating
group on the set.

Now j swaps Hmn and Kmn for all m and n (cf. Section 2.4). It follows that
(0m)j — Gm for all m. So ^ = {a, b, c, r, j) acts on the set {&u... , &5}, and the

induced permutation group is the alternating group on [&x,... , 05}.
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4.2. The equations of Hu,... , Hi4, Kn,... , K\$ can be obtained immediately
by looking at the rows and columns of M. From these it is easy to check that the
configuration, consisting of the 8 planes of Cx together with the 12 lines and 6 points
obtained from them by forming intersections, is isomorphic (as an incidence structure)
to the configuration consisting of the faces, edges and vertices of a regular octahedron
in 3-dimensional Euclidean space. It is also easy to check that each of the three
'diagonal lines' of G\ passes through two of the six points Y\,... ,Y6 represented
by the vectors (1, 1, 0, 0, 0, 0), ( - 1 , 1, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0), (0, 0 , - 1 , 1,0,0),
(0, 0, 0, 0, 1, 1), (0, 0, 0, 0, - 1 , 1); and that each of the collineations a, b, c, r and j
permutes Y],... , Y6.

It follows, since <£ acts transitively on [@\,... , ̂ 5} and each element of <£ maps
{Y\,... ,Y6] onto itself, that each of the sets 6m gives rise to a configuration iso-
morphic to a regular octahedron in 3-dimensional Euclidean space, and that each of
the three 'diagonal lines' of Gm passes through two of the six points Y\,... , Y6.

Now consider the pairing map n : Jff i—• Jf of the double-twenty (Jff, X).
Recall that (//1 4)JT = KM (cf. Sections 2.9 and 2.10), that each of a, b, c and r
maps each of the sets 3^, X and {(?\,... , G^\ onto itself, and that (a, b, c, r) acts
transitively on JIP. It follows that if H belongs to Jfm then

Hn = the unique plane in &m which does not intersect H,

In other words, H and Hn correspond to a pair of opposite faces of the octahedron
referred to in the previous paragraph.

4.3. The representation of & as a permutation group on \G\,... , <?5}, described in
Section 4.1, is not faithful. Indeed it is a straight-forward exercise (in view of the
very simple form of the equations for the planes in G\) to verify that the kernel of this
representation is the (normal) subgroup J/ = (b, rbr~l, c2, rc2r~l, j) of <£. Since
<£IJ¥ = A5 and J/ is an elementary abelian 2-group of order 32, it follows that
\<S\ = 32 x 60 = 1920.

We are interested primarily, of course, in the action of if on 3^ U X. This
representation is faithful (and transitive). Examining the action of {A, B, C, R) on
S, we see that the orbits (in Jf U X) of the stabilizer of //14 in <g are {Hu}, {Ku},
{Hu, Hn, Hn), {Kn, Kl2, Kl3), \Hmn :m±\\ and {Kmn : m ± 1}.

5. The self-polar case

5.1. Let us now suppose that our coordinate field & satisfies (in addition to the
two conditions imposed in Section 2.1) the condition that it possesses an involutory
automorphism 0 which swaps / and —/. Then we may consider the unitary polarity
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a in PG(5, &) which, for all non-zero vectors Xo = (xo, uo, yo, v0, zo, wo) in J5'6,
swaps the point represented by the vector Xo with the hyperplane whose equation is

xo
ex + uo

eu + yo
ey + vo

ev + zo
ez + wo

6w = 0.

A few simple calculations show that a commutes with each of the collineations
a, b, c, r and j , from which it follows that a commutes with every element of &.

Now each element of (a, b, c, r) maps Jtf onto Jif and J(f onto J(f, and therefore
commutes with the pairing map it : Jf i—> Jff. Also (a, b, c, r) acts transitively on
34?, each element of (a, b, c, r) commutes with a and (//u)o; = Ki4 = (//14)7r. It
follows that Ha = H n for all H in Jtf'. In other words, the (transitive non-degenerate)
double-twenty {Jtf, Jtf) is self-polar with respect to the unitary polarity a.
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