
Plant Genetic Resources:
Characterization and
Utilization

cambridge.org/pgr

Research Article

Cite this article: Girija Rani M, Satyanarayana
PV, Chamundeswari N, Ramana Rao PV,
Prabhakar M, Ravikumar BNVSR, Nagakumari
P, Kalpana K (2022). Mapping of QTLs for flood
tolerance in rice using recombinant inbred
lines of Indra and a new plant genetic resource
AC 39416 A. Plant Genetic Resources:
Characterization and Utilization 20, 270–276.
https://doi.org/10.1017/S147926212300014X

Received: 12 December 2021
Revised: 24 February 2023
Accepted: 27 February 2023
First published online: 22 March 2023

Keywords:
Flood tolerance; loci; QTL mapping; rice; RILs

Author for correspondence:
M. Girija Rani,
E-mail: girijaaprri@gmail.com,
m.girijarani@angrau.ac.in

© The Author(s), 2023. Published by
Cambridge University Press on behalf of NIAB

Mapping of QTLs for flood tolerance in rice
using recombinant inbred lines of Indra and a
new plant genetic resource AC 39416 A

M. Girija Rani1 , P. V. Satyanarayana1, N. Chamundeswari1, P. V. Ramana Rao1,

M. Prabhakar2, B. N. V. S. R. Ravikumar1, P. Nagakumari1 and K. Kalpana1

1Acharya N G Ranga Agricultural University, Regional Agricultural Research Station, Maruteru-534122, West
Godavari District, AP, India and 2Central Institute of Dry land Agriculture, Hyderabad, Telangana, India

Abstract

Rice crop is affected by different types of floods at different stages of the crop cycle. Constant
efforts of researchers resulted in the development of rice varieties for anaerobic germination,
flash floods and stagnant flooding by both conventional and molecular breeding approaches.
Detection of QTLs for different types of floods in new genetic source (AC39416A) is needed
to combat adverse effects of climate change. Present investigation was carried out to identify
QTLs for flood tolerance using recombinant inbred lines derived from Indra and AC39416A.
QTL mapping resulted in identification of QTLs, qAG3.1 on chromosome 3 for anaerobic
germination and qSF10.1 on chromosome 10 for plant survival % under stagnant flooding.
These QTLs explain 59.08 and 13.21% of phenotypic variance respectively. Two candidate
genes were identified in qAG3.1 region, LOC_Os03g42130 gibberellin 20 oxidase2 and
LOC_Os03g44170 glutathione S-transferase. The underlying mechanism might be the
inhibition of gibberellic acid synthesis and thereby protecting seedlings from oxidative stress
under anoxia condition. Genomic region of qSF10.1 revealed LOC_Os10g35020 glycosyltrans-
ferase and LOC_Os10g35050 aquaporin protein loci, which might be responsible for adaptive
mechanism for plant survival % under stagnant flooding. This indicates that the new genetic
resource AC39416A has an ability to adopt to different types of flood tolerance in response to
environmental stress. Unveiling physiological and molecular mechanisms for flood tolerance
in AC39416A using advanced omics studies would help in precise genomic selections for
sustained production in flood-prone areas.

Introduction

Rice is an important staple food crop for more than half of the world’s population. Rice prod-
uctivity has to be improved enormously to meet the demands of growing population. Rice
farmers in flood-prone ecosystem are more vulnerable to changing climatic conditions and
constitute about 7% of global rice area (Yang et al., 2017). Enhancing rice productivity in mar-
ginal environments is essential to improve the livelihood of the farming community (Panda
and Barik, 2021). Rice crop suffers four major types of floods from seed germination to har-
vesting stage: (a) anaerobic germination, where submergence happens during germination, (b)
flash floods where plants are completely submerged for 2 weeks, (c) stagnant flooding (SF)
with up to 30–50 cm deep water due to prolonged floods and (d) deep water ecology with
water depth more than 50 cm for most of time (Mackill et al., 2010). Submergence up to
50% plant height at any growth stage leads to reduction of rice yield by at least 25% (Swain
et al., 2005) and yield loss up to 47% under SF (Kato et al., 2014). Two major adaptive
mechanisms for flood tolerance are quiescence and escape.

Anaerobic germination is prerequisite not only for rice cultivation under direct seeded con-
dition but also required for survival of crop at nursery stage in flood-prone lowland areas dur-
ing monsoon. Multiple QTLs for anaerobic germination qAG-1, qAG-2, qAG-7, qAG-5a and
qAG-5b (Ling et al., 2004), qAG-1, qAG-2-1, qAG-11 and qAG-12 from KHAIYAN (Angaji,
2008), qAG-1-2, qAG-3-1, qAG-7-2, qAG-9-1, qAG-9-2 using Khao Hlan (Angaji et al.,
2010), a large QTL on chromosome 7 from Mazhan Red (Septiningsih et al., 2013) and
qAG7 from Nanhi (Baltazar et al., 2014) were identified. One major QTL on AG1 was incor-
porated in Chierangsub1 (Toledo et al., 2015).

Flash flood tolerance conferring Sub1A, an ethylene-responsive factor gene, was identified
from FR 13 A (Xu et al., 2006). This Sub1A gene was widely exploited by incorporating it into
popular rice varieties globally (Neeraja et al., 2007; Septiningsih et al., 2009, 2014; Khanh et al.,
2013; Nawarathna et al., 2014; Ara et al., 2015; Girijarani et al., 2015; Iftekharuddaula et al.,
2015, 2016; Singh et al., 2016; Ahmed et al., 2016; Korinsak et al., 2016; Aditi et al., 2019).
Three non-Sub1 QTLs were identified from IR 72 (Septiningsih et al., 2012), three from FR
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13A on chromosomes 1, 8 and 10 (Gonzaga et al., 2016) and a
major QTL for submergence qSUB8.1 from Ciherang Sub1
(Gonzaga et al., 2017).

Most of the Sub1 incorporated lines are vulnerable to survive
under SF (Sarkar and Bhattacharjee, 2011; Sandhya Rani et al.,
2019). Survival per cent and yield under SF are dependent on mod-
erate elongation, high tillering, lesser carbohydrate depletion and
higher fertility (Vergara et al., 2014). QTLs for grain yield under
SF, along with days to flowering, flag leaf length and leaf sheath
length, were detected by Singh et al. (2017a, 2017b). Existence of
compensatory mechanisms between tiller growth and shoot elong-
ation under SF results in poor yields in addition to lodging risk
(Zhu et al., 2018). Land races tolerating flash floods and SF were
assessed for genetic diversity (Barik et al., 2020). Genetic resources
like AC37887 and AC39416A that can tolerate anaerobic germin-
ation and SF were identified by Sandhya et al. (2017).

Submergence-tolerant varieties with the Sub1 gene do not usu-
ally possess traits for anaerobic germination and SF indicating
that the genes governing these traits are independent to Sub1.
QTL mapping and candidate gene discovery from new genetic
resources that have excellent adaptation to different kinds of
flooding is very important for breeding climate-resilient flood-
tolerant rice varieties (Singh et al., 2017a, 2017b).

The present study is designed to identify QTLs for flood toler-
ance using 184 recombinant inbred lines (RILs) developed using
Indra (MTU 1061) as female parent and new genetic resource AC
39416A for anaerobic germination and SF.

Materials and methods

Development of RILs

Indra (MTU 1061), a high yielding popular rice variety, was
developed by crossing PLA 1100 and MTU 1010 and was released
in 2006 by Regional Agricultural Research Station (RARS),
Maruteru of Acharya NG Ranga Agricultural University
(ANGRAU). Indra variety that is tolerant to flash floods for 1
week and susceptible to anaerobic germination and SF
(Girijarani et al., 2013; Reddy et al., 2015) was used as female par-
ent. New genetic resource AC39416A collected from National
Rice Research Institute (NRRI), Cuttack was used as donor.
AC39416A can tolerate 3 weeks of anaerobic germination and
SF (Sandhya et al., 2017). Cross was initiated during wet season
of 2013 and 4000 plants were obtained in F2 generation. One hun-
dred eighty-four single plants from F2 population were randomly
selected and advanced up to F6 generation by single seed descent
method at RARS, Maruteru during 2014–2016.

Genotyping of RILs

Genomic DNA was isolated using the method of Zheng et al.
(1995). Quality and quantity were estimated using eight channel
vis spectrophotometer (Thermo scientific, USA). Polymerase
chain reaction mixture of 10 μl comprising of 10 × Taq buffer
A 1 μl, forward and reverse primer each 1 μl (Sigma aldirch),
2.5 mm dntp 0.5 μl (Genei), one unit of Taq DNA polymerase

Fig. 1. Phenotypic screening of RILs for anaerobic germination and SF.
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1 μl (Genei), 25 ng of genomic DNA 3 μl and sterile distilled water
2.5 μl was used for amplification. Thermo profile of initial
denaturation at 94°C for 5 min followed by 35 cycles of denatur-
ing at 94°C for 30 s, annealing at 55°C for 0.5 min, extension at

72°C for 1.0 min and ending up with 7min at 72°C for the final
extension was adopted using Pro S master cycler (Eppendorf).
Electrophoresis was carried out on 3% agarose gels and images
were visualized using Syngene gel documentation system.

Out of 624 markers screened for parental polymorphism
between Indra and AC 39416 A at RARS, Maruteru, 104 poly-
morphic simple sequence repeats markers were used to genotype
184 RILs. Saturated fine mapping was performed using more
markers within the identified QTL regions. Five polymorphic
markers were identified between RM15848 and RM15561 for
qAG3.1 and six for qSF10.1 between RM 304 and RM 6100 for
fine mapping. Gel images were scored as A for Indra allele, B
for AC 39416A allele and H for heterozygote. QTL mapping
was performed using QCIM software with 1000 permutations as
per Wang et al. (2016).

Phenotyping of RILs

Anaerobic germination (AG)
For each RIL, 30 pre germinated seeds were sowed on third day
in pro trays. These trays were submerged in a concrete tank by
maintaining 10 cm deep for 3 weeks during 2016 and 2017
(Fig. 1(a)–(c)). Survived plants after 21 days were counted for
anaerobic germination.

Stagnant flooding (SF)
Thirty-day-old seedlings of RILs were transplanted in submergence
pond with a spacing of 20 cm between rows and 15 cm between

Fig. 2. Frequency distribution of 184 RILs for plant survival % under anaerobic germination and SF.

Table 1. Summary of anaerobic germination and plant survival % under
stagnant flooding among RILs

Particulars

Plant survival %

Anaerobic
germination

Stagnant
flooding

Mean 43.32 26.93

Standard error 1.63 1.86

Standard deviation 22.13 25.19

Sample variance 489.57 634.68

Kurtosis −0.85 0.02

Skewness 0.01 0.83

Minimum 0.00 0.00

Maximum 90.00 100.00

Indra (female parent) 10.00 16.67

AC39416 A (male
parent)

88.70 78.69

Swarnasub1 (check) 34.30 20.20

272 M. Girija Rani et al.

https://doi.org/10.1017/S147926212300014X Published online by Cambridge University Press

https://doi.org/10.1017/S147926212300014X


plants with 25 hills per row. Water depth of 30–50 cm was main-
tained from 1 week after transplanting to reproductive phase dur-
ing 2017 and 2018 (Fig. 1(d)). Survived plants were counted at 30
days after transplanting. Plant survival % was calculated as number
of (plants survived/total number of plants) × 100.

Results

Plant survival % for anaerobic germination shows a wide variation
(0–90%) even under SF (0–100%) (Table 1). Majority of RILs have
an anaerobic germination per cent ranging between 40 and 60%
with a mean of 43.32. Similarly, plant survival under SF is on
the lower end of distribution with a mean of 26.93% (Fig. 2).
Only four RILs for anaerobic germination and six RILs under
SF show maximum plant survival %, with a range between 81
and 100%. Only one RIL has a maximum performance with
about 70% plant survival rate under AG and 100% under SF.
Parent AC 39416 A has a higher plant survival rate of 88.80%
under anaerobic condition and 78.69% under SF than the check
Swarnasub1 (34.30% AG, 20.20% SF) and female parent Indra
(10% AG, 16.67% SF).

Results of QTL mapping revealed that QTLs for anaerobic ger-
mination qAG3.1 were found on chromosome 3 between RM
15848 (24.68 Mbp) and RM 15561 (24.82 Mbp) with a LOD
score of 2.89. The phenotypic variation explained is about
7.16% with an additive effect of 4.48 (Table 2). Fine mapping
of qAG 3.1 resulted in identification of a major QTL with LOD
score of 5.36 that explains a phenotypic variance of 59.08%.
This QTL is between RM 15554 (24.72 Mbp) and RM 15561
(24.82 Mbp) (Fig. 3). The identified QTL qAG3.1 was also vali-
dated in another population consisting of BC1F1 lines of
Swarnasub1 and AC 39416 A that was developed under NICRA
project during 2018.

QTL for plant survival % under SF qSF10.1 was detected on
chromosome 10 with a LOD score of 5.66, a phenotypic variance
of 13.21% and an additive effect of 10.79. The identified QTL for
SF qSF10.1 was validated in the year 2018 by screening RILs under
SF with a LOD score of 3.10, phenotypic variance of 7.56 and an
additive effect of 7.71 between RM 304 (18.65 Mbp) and RM 6737
(18.71 Mbp) represented in Fig. 4 and Table 2.

Rice gene annotation (http://rice.plantbiology.msu.edu/) revealed
LOC_Os03g42130 gibberellin 20 oxidase2 and LOC_Os03g44170
glutathione S-transferase as putative candidate gene loci that
might be responsible for anaerobic germination in our identified
QTL qAG 3.1 genomic region on chromosome 3. The genomic
region of QTL for plant survival %, qSF10.1 revealed
LOC_Os10g35020 glycosyltransferase and LOC_Os10g35050 aqua-
porin proteins as putative candidate genes that play a role for plant
survival % under SF.

Discussion

Variation in RILs for anaerobic germination and plant survival %
under SF indicated that expression of alleles for different types of
floods is different and it depends on plant adaptive mechanism in
response to stress signalling. Rice plant coleoptile has to grow fas-
ter under anoxia for germination and show moderate elongation
under SF. In the present study too, only one RIL was detected
as tolerant for both situations and AC39416A has significantly
higher plant survival % than Swarnasub1 and Indra. Rumanti
et al. (2022) and Agbeleye et al. (2019) also found significant vari-
ation in plant survival % for both AG and SF and identified dif-
ferent tolerant accessions for each.

QTLs for anaerobic germination qAG 3.1 on chromosome 3
and qSF10.1 for plant survival % under SF on chromosome 10
were detected using RILs of Indra and AC 39416A. This indicated
that alleles contributing to different types of floods are present in
AC39416A.

Angaji et al. (2010) also reported QTL for anaerobic germin-
ation qAG 3 between RM 7094 (26.87 Mbp) and RM 520
(30.91 Mbp) on chromosome 3 using Khao Hlan On as donor,
RILs of Nampyeong/PBR cross (Jeong et al., 2020), F2:3 popula-
tion of Nanhi/IR64 (Baltazar et al., 2014) and IR64/Kharsu 80A
(Baltazar et al., 2019). The above results support the idea that
QTL qAG3.1 possesses genes that trigger signals for anaerobic
germination from AC39416A.

Identified QTL for plant survival % under SF is in the vicinity
of a reported QTL for plant survival on chromosome 10 between
RM 222 (20.70 Mbp) and qSUB10.1 at RM25835 (21.31 Mb;
Gonzaga et al., 2016). QTLs for plant survial % (Toojinda et al.,

Fig. 3. QTL for Anaerobic germination qAG 3.1on Chromosome 3.
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2003) in F2 derived population of Jao Him Nin/KDML 105, grain
weight and days to 50% flowering under SF were also identified on
chromosome 10 in RILs of Ciherang-Sub1/IR10F365 (Singh et al.,
2017a, 2017b) and Swarna/Rashpanjor (Chattopadhyay et al., 2021).

LOC_Os03g42130 gibberellin 20 oxidase2, a putative gene
locus, inhibits gibberellic acid biosynthesis under anoxia condi-
tions. Production of α-amylase does not require gibberellic acid
for germination under anaerobic conditions (Loreti et al., 2003)
and the amylase activity remained unchanged under anaerobic
germination in AC39416A and FR 13A (Sweetaleena et al.,
2019). LOC_Os03g44170 glutathione S-transferase, a putative
candidate gene locus, might also play a role in crosstalk between
submergence tolerance during germination (Thapa et al., 2022)
and hormone response pathways (Jain et al., 2010), and also pro-
tects the plants from oxidative stress under anoxia conditions
(Kumar and Trivedi, 2018).

Results of gene prediction between RM 304 (18.650 Mbp) and
RM 6737 (18.71 Mbp) revealed putative candidate gene
LOC_Os10g35020 glycosyltransferase and LOC_Os10g35050
aquaporin protein that might be responsible for plant survival
% under SF. Glycosyltransferase plays a role in antioxidant
defence mechanism under flooding (Sanhezz-Bermudez et al.,
2022) and submergence tolerance on chromosome 10 (Qi et al.,
2005) by expression of genes with response to ethylene and gib-
berellin. LOC_Os10g35050 aquaporin protein putative candidate
genes also play a role in adaptive mechanism for plant survival

% under SF. Partial to prolonged SF might have triggered protein
accumulation of aquaporins (Tyerman et al., 2002). Plant aqua-
porin not only play a role to facilitate osmotic water transport
across membranes but also transports nutrients like urea
(Gaspar et al., 2003), ammonia (Loque et al., 2005) and CO2

(Hanba et al., 2004). The presence of glycosyltransferase loci
might trigger hormone response pathways for plant survival %
and aquaporin proteins loci might manifest the plant for nutrient
uptake and gas diffusion for adaptation under SF.

Conclusion

In this study, identified QTLs qAG 3.1 for anaerobic germination
for 21 days and qSF10.1 for plant survival % under SF from RILs
generated by Indra/AC39416A can be further exploited for
marker-assisted gene pyramiding using AC 39416A as donor
for both anaerobic germination and SF. Studies on gene predic-
tion revealed that AC39416 A adapts to anaerobic germination
and SF by constitutive protein production in response to particu-
lar environmental signalling which has to be further traced out by
advanced physiological and molecular studies.
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Table 2. Identified QTLs for flood tolerance using RILs of AC39416A
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Fig. 4. QTL qSF10.1 for plant survival % under stagnant flooding.
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