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We consider the dynamics of a gravity-driven flow coating a vertical fibre rotating about
its axis. This flow exhibits rich dynamics including the formation of bead-like structures
and different types of steady or oscillatory travelling waves driven by a Rayleigh–Plateau
mechanism modified by the presence of gravity and rotation. Linear stability shows that
the axisymmetric mode dominates the instability when the rotation is slow, which allows
us to derive a two-dimensional model equation under the long-wave assumption. The
spatio-temporal dynamics and nonlinear wave solutions are then investigated by the model
equation. The spatio-temporal stability analysis showed that the absolute instability is
enhanced by the rotation. Steady travelling-wave states and relative periodic states are
observed in the numerical simulations of the model equation, which show that the rotation
tends to suppress the formation of relative periodic states. To examine this, a linear
stability analysis of steady travelling waves is performed, indicating that the rotation has a
stabilizing effect on the steady travelling waves. This result is adverse to the destabilizing
effect of rotation on the linear stability of initially uniform films. A bifurcation analysis
shows that the relative periodic state is born from the instability of steady travelling wave,
which represents the coalescence and breakup process between a large droplet and a serial
of much smaller droplets.

Key words: thin films, coating

1. Introduction

The coating of liquid film on a fibre has given rise to considerable scientific interest
because of its relevance to many industrial applications, for example, draining, coating of
insulation on a wire, and the protection of tube walls (Quéré 1999). The exterior coating
flow driven by gravity down a vertical fibre is a typical unstable open flow in which
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formation of droplets, or beads, due to the well-known Rayleigh–Plateau mechanism
(Rayleigh 1892) inevitably occurs.

Two different types of instabilities emerge in the exterior coating flows. One is the
classical spatio-temporal disorder induced by the Kapitza instability mode (Kapitza &
Kapitza 1949) of films falling down vertical planes, hereinafter referred to as ‘K’ mode.
The wavy dynamics on a liquid film flow down an inclined or vertical plate has given rise to
considerable interest up to date. For more related works to the dynamics of a falling film on
inclined plate, we refer the readers to the monograph by Kalliadasis et al. (2012). The other
type is the emergence of very regular drop-like wave patterns due to the Rayleigh–Plateau
instability, hereinafter referred to as ‘RP’ mode (Kliakhandler, Davis & Bankoff 2001;
Craster & Matar 2006).

Quéré (1990) was the first to perform experiments to investigate the drop formation in
the process of drawing wires from liquid baths. He found that for a thick film on a slender
fibre, small undulations grow into large droplets by swallowing the other ones, and quickly
fall, leaving behind them a thick film which breaks into droplets. However, for a thin film
on a thick fibre, the process of drop formation may be arrested by the mean flow.

The problems of the dynamics of exterior coating flows on fibres have been extensively
investigated using asymptotic models. Frenkel (1992) derived a thin film model using a
lubrication approximation for the coating flow wherein the fibre radius a is assumed to be
much larger than the film thickness h. Kalliadasis & Chang (1994) studied the mechanism
for drop formation of the problem using Frenkel’s equation, and found that when the
thickness of the coating film exceeds a critical thickness hc, the interface can evolve into
highly localized drops due to the Rayleigh–Plateau mechanism. Kliakhandler et al. (2001)
performed experiments to examine the drop formation process in the case where the film
thicknesses are of the order of the fibre radii. Instead of using Frenkel’s thin film model,
a thick film model was proposed by Kliakhandler et al. (2001). Note that the thick film
model is not asymptotically consistent, which was addressed by Craster & Matar (2006).
The modelling work mentioned above neglects inertia effects. Therefore, these models
are only valid for small Reynolds numbers of Re ∼ O(1) and cannot account for the ‘K’
hydrodynamic instability mechanism. Ruyer-Quil et al. (2008) took into account inertia
and streamwise viscous diffusion and formulated two coupled evolution equations for both
the film thickness and volumetric flow rate. This model is valid for moderate Reynolds
numbers, both small and O(1) aspect ratios of h/a.

Instability characteristics in films can be categorized by the location where instability
growth can be visually detected. Transitions between different wave regimes in coating
flows can be understood by the concept of the absolute (AI) and convective instabilities
(CI) which was first developed in the field of plasma physics (Briggs 1964; Bers 1975)
and later extended to the problems of fluid mechanics (Huerre & Monkewitz 1990). In
the laboratory frame of reference, the instability is said to be convective if the disturbance
is advected and eventually dies out if it is not sustained continuously at a fixed point.
On the contrary, absolutely unstable flows display an intrinsic self-sustaining feature:
the perturbation is so strongly amplified that it contaminates the entire flow region.
Duprat et al. (2007) have studied both experimentally and theoretically the absolute and
convective stabilities for a viscous film flowing down a vertical fibre. The result showed
that at large or small film thicknesses, the instability is convective. Whereas, the ‘RP’ mode
may trigger an absolute instability in an intermediate range of film thicknesses when the
fibre radius is sufficiently small.

Recently, the problems of coating flows arising in more complex situations, for
example in the presence of thermocapillarity (Liu & Liu 2014), subject to electric field
(Ding & Willis 2019), in contact with countercurrent gas flow (Dietze & Ruyer-Quil 2015),
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flowing over a slippery surface (Halpern & Wei 2017; Ji et al. 2019), have been extensively
investigated due to their relevance to technological applications. Except for the attempts in
the complex situations mentioned above, rotation is an effective way to control the stability
and dynamics of coating flows. The coating flow outside or inside a rotating cylinder arises
in many industrial applications owing to the need to control, protect and functionalize
surfaces (Ruschak & Scriven 1976; Moffatt 1977; Ashmore & Hosoi 2003). Dynamics of
a viscous film on the outer surface of a horizontal rotating cylinder was first studied by
Moffatt (1977). The flow of a liquid layer around the inside surface of a rotating horizontal
drum or cylinder, referred to as the rimming flow, has been extensively investigated
experimentally and numerically. Many interesting effects, including two-dimensional
steady states (Ruschak & Scriven 1976; Johnson 1988), three-dimensional instabilities
and time-periodic flows (Thoroddsen & Mahadevan 1997; Hosoi & Mahadevan 1999) and
the effect of surface tension (Pougatch & Frigaard 2011; Benilov & Lapin 2013; Groh &
Kelmanson 2014) have been represented in the literature.

The works related to the coating flow or rimming flow over a rotating cylindrical
substrate mentioned above focus on the case of horizontally placed cylinders. However,
a careful look at the present literature indicates that the works on the coating flows on
a vertical rotating cylinder are very limited. Dávalos-Orozco & Ruiz-Chavarría (1993)
studied the linear stability of a fluid layer flowing down the inside and outside of a rotating
vertical cylinder. Two additional approximations, i.e. the small wavenumber and the small
Reynolds number, are made in their analysis. The result showed that for flow outside
the cylinder, the centrifugal force may trigger the non-axisymmetric with the azimuthal
wavenumber m = 1 as the dominant mode of instability. The work by Dávalos-Orozco &
Ruiz-Chavarría (1993) work does not apply to the nonlinear regime of the problem. Chen,
Chen & Yang (2004) investigated the stability of a condensate film on the outer surface
of a rotating cylinder in the framework of the lubrication approximation and showed that
the effect of increasing rotational speed is destabilizing. Rietz et al. (2017) experimentally
investigated the evolution of a thin film on the outside of a vertical rotating cylinder of large
radius. The experimental results indicated that the Rayleigh–Taylor instability induced by
destabilizing body force result in the emergence of rivulets. Directly after destabilization
of two-dimensional waves into rivulets, detachment of droplets from the cylinder has been
observed.

For the coating flows on a cylinder, three different nonlinear flow regimes were
observed in experimental studies, depending on the flow rates, when the fibre is stationary
(Kliakhandler et al. 2001), which were labelled flow regime ‘a’, ‘b’ and ‘c’. Flow
regime ‘a’ consists of long-spaced big droplets, which can be represented by a steady
travelling-wave solution (Craster & Matar 2006). Flow regime ‘b’ is a necklace-like
structure – close and regularly spaced droplets, which cannot be described by the
long-wave model. Flow regime ‘c’ is a time-dependent flow, in which a big droplet coexists
with several small droplets. Very recently, Ding & Willis (2019) used a relative periodic
solution to describe the flow regime ‘c’, which showed a very similar dynamics to the
experimental observation. However, it remains unknown that how the rotation influences
the nonlinear dynamics, i.e. steady travelling-wave solutions (Craster & Matar 2006) and
relative periodic solutions (Ding & Willis 2019), which will be explored in the present
study.

In the present work, we consider the problem of a gravity-driven coating flow
outside a vertical rotating fibre. Firstly, we will perform a linear stability analysis
of the Navier–Stokes equations and examine the stabilities of axisymmetric and
non-axisymmetric disturbances. The linear stability analysis demonstrates that the Coriolis
effect is negligible for the physical parameters considered in the present system.
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We investigated the effect of rotation on the stability of the most unstable mode. At
low frequency of rotation, the most unstable mode is in the form of axisymmetric
disturbance. For axisymmetric cases, neglecting the Coriolis effect allows us to derive
a long-wave model, which is valid for both thin and thick films. To validate the long
wave model, we compare the linear stability analysis of the long-wave model with the
linear stability analysis of the Navier–Stokes equations. Further, the nonlinear evolution
of the long-wave model for the axisymmetric case is compared with the results of direct
numerical simulation (DNS). At high frequency of rotation, the most unstable mode
is achieved by streamwise uniform and non-axisymmetric disturbance. In this case, no
asymptotic model can be obtained for thick films. We studied the nonlinear evolution for
non-axisymmetric disturbance by DNS in the appendices.

The rest of the present paper is organized as follows. In § 2 the mathematical formulation
of the physical model is presented. The linear stability analysis of the three-dimensional
(3-D) problem of the Navier–Stokes equations is performed to evaluate the contribution
of Coriolis forces and to examine the most unstable mode for various rotation frequencies.
Further, the evolution equation is derived in the framework of long-wave approximation for
the axisymmetric problem. In § 3 we study the linear stability of the long-wave problem.
The effect of rotation on the time growth rate and frequency of the disturbance is studied
by a temporal stability analysis. A spatio-temporal stability analysis is performed to
examine the characteristics of absolute and convective instabilities. In § 4, we investigate
the travelling-wave solutions and their instabilities. The simulation of travelling waves
perturbed by the small disturbance shows that the travelling wave loses stability to a
‘relative’ periodic solution. Using a bifurcation analysis with branch continuation, the
relative periodic solutions are tracked as parameter changes. In § 6, conclusions are
provided.

2. Mathematical formulation

As shown in figure 1, a Newtonian fluid, of dynamic viscosity μ and density ρ, flows
down a vertical fibre of radius r = a under gravity g. The cylinder rotates about its axis
(z-axis) at an angular speed Ω . The initial radius of the fluid ring measured from the centre
of the fibre is r = R. Let (r, θ, z) be the rotating cylindrical coordinates moving with the
fibre.

The dynamics of the flow are governed by the Navier–Stokes equations,

∂ru + u
r

+ ∂θv

r
+ ∂zw = 0, (2.1)

∂tu + u∂ru + v

r
∂θu + w∂zu − v2

r

= −∂rp
ρ

+ Ω2r − 2Ωv + μ

ρ

[
∂rru + ∂ru

r
+ ∂θθu

r2
+ ∂zzu − u

r2
− 2

r2
∂θv

]
, (2.2)

∂tv + u∂rv + v

r
∂θv + w∂zv + uv

r

= − 1
ρ

∂θp
r

+ 2Ωu + μ

ρ

[
∂rrv + ∂rv

r
+ ∂θθv

r2
+ ∂zzv − v

r2
+ 2

r2
∂θu

]
, (2.3)
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a
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FIGURE 1. Sketch of the geometry of a film flow coating a fibre.

∂tw + u∂rw + v

r
∂θw + w∂zw = g − ∂zp

ρ
+ μ

ρ

[
∂rrw + ∂rw

r
+ ∂θθw

r2
+ ∂zzw

]
, (2.4)

in which p is the pressure and u is the velocity vector with u, v, w denoting the components
in r, θ , z directions. In the rotating coordinates, two additional forces, i.e. the centrifugal
ρΩ2rer and Coriolis force 2ρΩez × u, have been added as external forces in the governing
equations.

At the fibre wall, r = a, the velocity satisfies no-penetration and no-slip conditions

u = v = w = 0. (2.5)

At the free surface, r = S(θ, z, t), the balance of the normal stress is

n · T · n = 2σH, (2.6)

where the surface tension, σ , is constant. The balances of the shear stress are

t1 · T · n = 0, (2.7)

t2 · T · n = 0, (2.8)

where T is the stress tensor
T = μ

[∇u + (∇u)T] , (2.9)
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899 A14-6 R. Liu and Z. Ding

t1, t2 and n are the unit vectors tangential and normal to the interface

t1 =
(
r−1∂θS, 1, 0

)
√

1 + r−2(∂θS)2
, (2.10)

t2 = (∂zS, 0, 1)√
1 + (∂zS)2

, (2.11)

n = (1,−r−1∂θS,−∂zS)√
1 + r−2(∂θS)2 + (∂zS)2

, (2.12)

and 2H is the principal curvature of the surface

2H = − 1
N

{
1
S

+ (∂θS)2

S3
− ∂θθS

S2
− ∂zzS

}
− 1

N2

(
∂θN∂θS

S2
+ ∂zS∂zN

)
, (2.13)

in which
N =

√
1 + r−2(∂θS)2 + (∂zS)2. (2.14)

The kinematic boundary condition on the free surface is

St + v

r
∂θS + w∂zS = u, (2.15)

or in conservative form

St + 1
S
∂θ

∫ S

a
v dr + 1

S
∂z

∫ S

a
wr dr = 0. (2.16)

2.1. Scalings
The non-dimensionalization is based on the viscous-gravity velocity, V ≡ ρgR2/μ, and
the capillary length, L = σ/ρgR. We assume that the radius of the fluid ring, R, is much
smaller than the characteristic length L. The scalings are as follows:

r = Rr∗, z = Lz∗, t = LV−1t∗, w = Vw∗, u = εVu∗, v = εVv∗,

p = ρgLp∗, S = RS∗, a = Ra∗,

}
(2.17)

where the aspect ratio parameter ε = R/L is a small number, and ‘∗’ denotes
non-dimensional variables. Here, we assumed that the azimuthal velocity is also small,
i.e. v ∼ O(ε).

For convenience, we drop the ∗ decoration and the dimensionless Navier–Stokes
equations are expressed as

∂ru + u
r

+ 1
r
∂θv + ∂zw = 0, (2.18)

ε4Re
(

∂tu + u∂ru + v

r
∂θu + w∂zu − v2

r

)

= −∂rp + ΩNr − 2εαΩNv + ε2

[
∂rru + ∂ru

r
+ 1

r2
∂θθu − u

r2
+ ε2∂zzu

]
, (2.19)
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ε4Re
(
∂tv + u∂rv + v

r
∂θv + w∂zv + uv

r

)

= −1
r
∂θp + 2εαΩNu + ε2

[
∂rrv + ∂rv

r
+ 1

r2
∂θθv − v

r2
+ ε2∂zzv

]
, (2.20)

ε2Re
(
∂tw + u∂rw + v

r
∂θw + w∂zw

)
= 1 − ∂z p + ∂rrw + ∂rw

r
+ 1

r2
∂θθw + ε2∂zzw,

(2.21)

where the Reynolds number is defined as Re = ρVL/μ, and the parameters related
to rotation are ΩN = Ω2R2/gL and α = V/ΩR. This non-dimensionalization naturally
results in ε = ρgR2/σ , which is also referred to as the Bond number. The choice of
small ε implies a small Bond number and surface-tension-dominated case. The full set
of dimensionless parameters are ε, a, ΩN , α and Re.

We choose the set of parameters used in the experiments by Kliakhandler et al. (2001),
in which castor oil with density ρ = 0.961 × 103 kg m−3, kinematic viscosity ν ≡ μ/ρ =
4.44 × 10−4 m2 s−1, surface tension σ = 3.1 × 10−2 kg s−2, is used for coating. The radius
of the fluid ring in initial state, R, is approximately 1 mm. For this set of physical
parameters, the dimensionless parameter ε is less than 0.3 and the Reynolds number
Re ∼ 10−2. We fixed the radius of the initial surface to be approximately 1 mm and change
the angular frequency of rotation Ω = 2πf , in which f is the frequency measured in cycles
per second or Hertz. As f changes in the range from 10 to 30 which is easily realized in
experiments, ΩN = 0.1223, 0.4890, 1.1003, α = 0.3545, 0.1772, 0.1182 for f = 10, 20 and
30. When deriving the long-wave evolution equation, we assume the parameter ΩN has
order O(1).

2.2. Linear stability
In the framework of normal mode analysis, the variables in the full Navier–Stokes
equations are decomposed in the form of

[u, v, w, p, S] = [ū, v̄, w̄, p̄, S̄] + [û, v̂, ŵ, p̂, Ŝ] exp[i(mθ + kz − ωt)], (2.22)

in which ‘ ¯ ’, denotes the base state, ‘ ˆ ’, denotes the Fourier amplitudes of the
disturbances, the integer m and the real number k denote the azimuthal and streamwise
wavenumbers and ω denotes the frequency. The basic states of u, w and p are

ū = 0, (2.23)

w̄ = 1
4
(a2 − r2) + 1

2
ln

r
a
, (2.24)

p̄ = 1 + 1
2
ΩN(r2 − 1). (2.25)

The governing equations for the disturbances are as follows:

Dû + û
r

+ im
r

v̂ + ikŵ = 0, (2.26)

ε4Re(−iωû + ikw̄û)

= −Dp̂ − 2εαΩN v̂ + ε2

[
D2û + Dû

r
−

(
ε2k2 + m2 + 1

r2

)
û − 2imv̂

r2

]
, (2.27)
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ε4Re(−iωv̂ + ikw̄v̂)

= − im
r

p̂ + 2εαΩNû + ε2

[
D2v̂ + Dv̂

r
−

(
ε2k2 + m2 + 1

r2

)
v̂ + 2imû

r2

]
, (2.28)

ε2Re(−iωŵ + Dw̄û + ikw̄ŵ) = −ikp̂ +
[
D2ŵ + Dŵ

r
−

(
ε2k2 + m2

r2

)
ŵ

]
, (2.29)

where D = d/dr.
At the fibre wall (r = a), the boundary conditions are

û = v̂ = ŵ = 0. (2.30)

At the perturbed surface, boundary conditions are projected to r = 1 and after linearising,
we have

p̂ − 2ε2(Dû − ikDw̄Ŝ) = −(1 + ΩNS̄)Ŝ + (m2 + ε2k2)Ŝ, (2.31)

Dŵ + D2w̄Ŝ + iε2kû = 0, (2.32)

rD
(

v̂

r

)
+ im

r
û = 0, (2.33)

−iωŜ + ikw̄Ŝ − û = 0. (2.34)

The fully linearized Navier–Stokes equations are solved by a Chebyshev collocation
method.

Figure 2 shows the dispersion relations of the axisymmetric mode (m = 0) and the
non-axisymmetric mode (m = 1). At f = 0, as shown in figure 2(a,d) for a = 0.3 and
0.8, the axisymmetric mode is the most unstable. As f = 10 in figure 2(b,e), the
non-axisymmetric mode with m = 1 becomes unstable in the long-wave range, but
the maximum growth rate of m = 1 is less than that of m = 0. This indicates that
the axisymmetric mode dominates the instability when the rotating speed is low. As f
increases to 20, as shown in figure 2(c, f ) the asymmetric mode m = 1 becomes the most
unstable mode.

In figure 3, we compare the dispersion relation of axisymmetric disturbances predicted
by the fully linearized Navier–Stokes equations with that of neglecting the Coriolis forces,
i.e. setting α to be zero in (2.27) and (2.28). Figure 3 shows that the influence of the
Coriolis forces on the stability is negligible when the rotating speed is low such that ΩN ∼
O(1). Therefore, in the following discussions, the Coriolis effect has been neglected.

We will examine the nonlinear evolution of the most unstable mode for both low
and high frequencies of rotation. At low frequency of rotation, the most unstable is
axisymmetric, i.e. m = 0. In this case, we derive an asymptotic model equation to describe
the dynamics of the flow. In the fast rotation case, the results of the linear stability
analysis have shown that the m = 0 is not the most unstable. We should note that there
exists different transitional routes in the present system, which depends on the initial
conditions. When the rotation is slow, if the initial condition takes the non-axisymmetric
form and has no streamwise component (the m = 0 component), it can develop into a
non-axisymmetric state because it is unstable. However, when the initial condition has
a streamwise component, we observe fthat the final saturated state is axisymmetric, i.e.
the non-axisymmetric mode is suppressed by the axisymmetric mode at small rotation
number (see appendix B). When the rotation is fast, if we increase the rotation gradually
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FIGURE 2. The curves of the dispersion relations predicted by the linearized Navier–Stokes
equations (2.23)–(2.31) for (a) a = 0.3, f = 0; (b) a = 0.3, f = 10; (c) a = 0.3, f = 20; (d) a =
0.8, f = 0; (e) a = 0.8, f = 10; ( f ) a = 0.8, f = 20. Here, f = 0 corresponds the non-rotating
case of ΩN = 0. At f = 10 and 20, the parameters related to rotation, (ΩN, α), are (0.1223,
0.3545) and (0.4890, 0.1772), respectively. The parameter ε ≈ 0.3.
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ΩN = 0.489

FIGURE 3. Comparison of the curves of the dispersion relations of axisymmetric modes with
m = 0 predicted by the linearized Navier–Stokes equations (2.26)–(2.34) (solid lines) and the
cases without Coriolis force (marked by solid circles). Other parameters are a = 0.3, ε ≈ 0.3.
The parameter ΩN = 0.122, 0.489, 1.10 corresponds to f = 10, 20, 30, respectively.

and allow the axisymmetry mode to appear first, the non-axisymmetric mode (m = 1)

will be bypassed, which has also been demonstrated by the simulation of a 3-D thin film
model in appendix B. However, for a uniform film, if one suddenly rotates the cylinder at
a high speed, the non-axisymmetric mode may appear first, which is confirmed by direct
numerical simulation in appendices A and B. The axisymmetric state, however, might
also be unstable to azimuthal disturbances, when the film is very thin. For example, Rietz
et al. (2017) observed that axisymmetric ring waves lose instability to a rivulet structure.
A similar transitional scenario has also been found in a liquid film flowing underneath
an inclined plane (Charogiannis et al. 2018). It should be noted that the Rayleigh–Plateau
mechanism is very weak and negligible in Rietz et al. (2017) due to the small thickness of
film. In the present work, both the Rayleigh–Plateau mechanism and the Rayleigh–Taylor
instability are important because the film is thick. It will be very challenging to investigate
the rivulet instability in the present case because deriving a simple model equation is
not possible. However, the present axisymmetric model can be applied to understand the
nonlinear wave dynamics on the crests of rivulets formed on the fibre, e.g. the interaction
between different waves leading to an oscillating state.

2.3. A long-wave model
The linear stability analysis shows that the Coriolis effect is negligible at small
rotation frequency, ΩN = O(1). The axisymmetric unstable mode dominates the primary
instability when the rotating frequency is low f ≤ 10 and surface tension effect is dominant
(small ε). Assuming ε2 � 1, Re ∼ O(1) and slow rotation, we can neglect the inertial
terms and the Coriolis force.

Under the assumption of axisymmetry, the leading-order Navier–Stokes equation is
given by

0 = −∂rp + ΩNr, (2.35)

∂rrw + ∂rw
r

= ∂zp − 1. (2.36)

At the fibre wall r = a,
w = 0. (2.37)
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The leading-order tangential and normal stress balances at the surface (r = S) are

∂rw = 0, (2.38)

p = 1
S

− ε2∂zzS. (2.39)

It is notable that the term, ε2Szz, which involves the highest derivative of S is included
in (2.39). In a linear analysis, the inclusion of this term is vital to give the correct cutoff
wavenumber. Conventionally, this term is kept in long-wave theories of the problem with
a cylindrical free surface, such as jets, threads and liquid bridges (Eggers & Dupont 1994;
Craster & Matar 2006). An understandable explanation for the inclusion of this term is
that the streamwise curvature is sufficiently large in some regions at the interface such as
the steep front edge of a solitary hump. So, the term which contains the highest derivative
of S is sufficiently large and cannot be neglected even though it is multiplied by ε2. For
more justification of the inclusion of this term, we refer the reader to Craster & Matar
(2006). An alternative choice is to keep the full curvature in the equation of the balance
of the normal stresses in other related topics, for example, free-surface flows with large
slopes (Snoeijer 2006) and rim or coating flows (Lopes, Thiele & Hazel 2018).

From (2.35) and (2.36), we obtain the pressure

p = 1
S

− ε2∂zzS + 1
2
ΩN(r2 − S2), (2.40)

and the velocity w(r, z, t)

w = (1 − ∂zp)

[
1
4
(a2 − r2) + 1

2
S2 ln

r
a

]
. (2.41)

Substituting w into the kinematic boundary condition yields an evolution equation for
S(z, t) given by

∂tS = − 1
16S

∂z

{(
1 + ∂zS

S2
+ ΩNS∂zS + ε2∂zzzS

)[
4S4 log

S
a

+ (3S2 − a2)(a2 − S2)

]}
.

(2.42)

Equation (2.42) is identical to Craster & Matar (2006) when the rotation is turned off.

2.4. Thin film limit
For the case in which the film is thin relative to the fibre, i.e. S(z, t) = a + h(z, t), where
the film thickness h � a, expanding equation (2.42) for small h results in the evolution
equation for the thin film(

1 + h
a

)
∂th + 1

3
∂

∂z

×
{

h3

(
1 + h

a

)[
1 + ∂zh

a2(1 + h/a)2
+ ΩNa(1 + h/a)∂zh + ε2∂zzzh

]}
= 0. (2.43)

For very thin fluid films, a → 1 and 1 + h/a → 1, the evolution equation can be further
simplified as

∂th + ∂

∂z

{
h3

3

[
1 + (1 + ΩN)∂zh + ε2∂zzzh

]} = 0. (2.44)
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899 A14-12 R. Liu and Z. Ding

At ΩN = 0, (2.44) is reduced to the evolution equation of thin film by some authors
(Frenkel 1992; Kalliadasis & Chang 1994). The roles of capillary forces and rotation
on the stability of the film are manifested in (2.44). The terms ∂zh, ΩN∂zh, ε2∂zzzh
denote the contributions of azimuthal curvature, the rotation and the streamwise curvature,
respectively. It is well known that the azimuthal curvature and the streamwise curvature
are destabilizing and stabilizing, respectively (Kliakhandler et al. 2001; Craster & Matar
2006). From (2.44) for the thin film limit, it can be seen that the rotation is destabilizing
the interface through the azimuthal curvature.

3. Linear stability analysis of the long-wave model

3.1. Dispersion relations
Let us now consider the linear stability of the problem. A small periodic disturbance
in the streamwise direction is imposed on the film such that the film thickness can be
decomposed into a base state component S̄, and a small disturbance of normal mode with
amplitude Ŝ,

S = S̄ + Ŝei(kz−ωt), (3.1)

in which ω is the complex frequency and k is the wavenumber, and S̄ = 1.
Substituting (3.1) into (2.42) yields the dispersion relation

−iω +
{

1
16

k2(k2ε2 − (1 + ΩN))

(
4 ln

1
a

− a4 + 4a2 − 3
)

+ ik
2

(a2 − 1 − 2 ln a)

}
= 0.

(3.2)

At ΩN = 0, this dispersion relation is identical to that of Craster & Matar (2006) for
a coating flow down a fibre. In the thin film limit as a → 1, the dispersion relation
corresponding to (2.44) tends to

− iω ∼ 1
3

k2[(1 + ΩN) − k2ε2](1 − a)3 − ik(1 − a)2. (3.3)

We use ωr and ωi to denote the real part and imaginary part of ω. Here, ωi and ωr
correspond to its growth or decay rate and the frequency of the disturbance. The phase
speed of the disturbance is defined as c = k−1ωr. From (3.2), the phase speed

c = 1
2
(a2 − 1 − 2 ln a), (3.4)

is positive and independent of the wavenumber k and the rotation parameter ΩN . This
means all disturbances with different wavenumbers propagate downstream at a same
speed.

Craster & Matar (2006) have tested the validity of their model by comparing the
results of the dispersion relation predicted by the long-wave model and the linear stability
characteristics of the Stokes flow equations. The result showed that the model equation
provides a reasonably good approximation of the full Navier–Stokes equations. In the
present paper, we will test the validity of the model (2.42) with the presence of rotation.
The details of the stability analysis of the full Navier–Stokes equations are presented in
§ 2.2. In order to know quantitatively the effect of rotation, in figure 4 we plot the curves
of the dispersion relations (3.2) of the long-wave model and those via fully linear stability
analysis.
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FIGURE 4. Comparisons of the real growth rate of the axisymmetric mode m = 0 versus the
wavenumber in the range of 0 < k < kc for various ΩN between the stability analysis of the
Navier–Stokes equations (solid lines) and the long-wave model (dashed lines). Other parameters
are ε = 0.2, (a) a = 0.5, (b) a = 0.9.

We compared the dispersion relations for both models for two typical cases, thick film
with a = 0.5 and thin film with a = 0.9. Inspection of the dispersion curves indicates that
the prediction of the long-wave model is in reasonable agreement with that predicted by
the Navier–Stokes equations for various ΩN . For a fixed k, both models predict that the
growth rate ωi increases with the increase of ΩN . In figure 4(a), we observed that for thick
film the time growth rate predicted by the long-wave model is obviously higher than that
predicted by the linear stability analysis. However, in figure 4(b), the agreement between
both models is excellent for the case of thin film.

3.2. Absolute and convective instabilities
For a general hydrodynamics stability problem, the wavenumber and frequency satisfy a
dispersion relation in the form of

D(k, ω) = 0. (3.5)

In this subsection, we carry out a spatio-temporal stability analysis and both the
wavenumber k and the frequency ω are complex numbers.

The stability properties of the perturbations are determined by the long-time behaviour
of an impulsive response to a localized excitation. The solution of the impulsive response
can be expressed in the form of

G(z, t) = 1
2π

∫
A

∫
F

ei(kz−ωt)

D(k, ω)
dω dk, (3.6)

where the Bromwich contour F in the ω-plane is a horizontal line lying above all the
singularities to satisfy causality, and the integration path A lies inside the analyticity band
around the k-axis.

The nature of CI and AI can be identified by examining the long-time behaviour of
the wavenumber k0 along the ray z/t at a fixed spatial location. This complex k0 has, by
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899 A14-14 R. Liu and Z. Ding

definition, a zero group velocity
∂ω

∂k
(k0) = 0, (3.7)

and ω0 = ω(k0) is called the absolute frequency. If Im(ω0) > 0/Im(ω0) < 0, the flow
is said to be absolutely/convectively unstable. It should be noted that the saddle point
k0 must be identified by the Briggs–Bers collision criterion (Briggs 1964; Bers 1975),
i.e. the saddle point must be a pinch point produced by the collision of two distinct
spatial branches of solutions coming from the upper and lower half-k-planes. In the
pinching process, when ω moves from above along the vertical line down to ω0, the two
spatial branches k1(ω) and k2(ω) originate in this movement on opposite sides of the real
k-axis and collide at k = k0 and ω = ω0. For more details on the topics related to AI–CI
problems, we refer the reader to a good review article by Huerre & Monkewitz (1990).
The most relevant work to the present problem is the study on the AI–CI characteristics
of an exterior coating film down a vertical fibre (Duprat et al. 2007). Very recently,
an experimental study by Sadeghpour et al. (2019) also showed that the water–vapour
transfer rate in the coating flow is dependent on the AI–CI characteristics. For example,
when the flow is absolutely unstable, the water–vapour transfer rate is generally promoted
by increasing the liquid flow rate. However, in the convectively unstable situation, the
water–vapour transfer rate does not increase with the liquid flow rate due to the occurrence
of irregular beads.

From the dispersion relation, (3.2), the complex frequency ω can be expressed as a
polynomial of k:

ω = i
16

k2[(1 + ΩN) − ε2k2] f1 + kf2, (3.8)

in which

f1 = 4 ln
1
a

− a4 + 4a2 − 3, (3.9)

f2 = 1
2
(a2 − 1 − 2 ln a). (3.10)

Through the transformation k = αk̃, β = (1 + ΩN)(αε)−2, ω̃ = ω(αf2)
−1, where α =

[(16f2)/(3f1ε
2)]1/3, the dispersion relation reduces to a standard form as

ω̃ = k̃ + ik̃2

3
(β − k̃2). (3.11)

A straightforward analysis based on (3.11) then shows that the instability becomes absolute
when β > βc = [(9/4)(−17 + 7

√
7)]1/3 ≈ 1.5 (Duprat et al. 2007). Therefore, applying

β = (1 + ΩN)(αε)−2 to the condition β > βc yields the following implicit condition for
absolute instability:

(1 + ΩN)

(
3f1

16εf2

)2/3

> βc. (3.12)

In figure 5(a,b), we present the AI–CI boundaries for various ΩN in the ε–a plane and for
various a in the ε–ΩN plane, respectively. The range of parameter a is (0, 1). The model is
valid for small ε, however, when presenting the results we extend the range of ε to 0.5. As
shown in figure 5(a), for each curve with the decrease of a or ε the flow regime can switch
from convective instability to absolute instability. With the increase of ΩN , the absolutely
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FIGURE 5. The boundaries between CI and AI, (a) in the ε–a plane for various ΩN , (b) in the
ε–ΩN plane for various a.

unstable regime extends in the ε–a plane. In figure 5(a), as ΩN = 0 the convective regime
occupies a large portion of area in the ε–a plane. With the increase of ΩN , some CI regimes
become absolutely unstable and the boundary extends counterclockwise in the ε–a plane.
In figure 5(b), it is shown that for each value of a with the increase of ΩN the flow switches
from the CI to the AI regime. The results of figure 5 indicate that the increase of rotation
promotes the absolute instability.

4. Nonlinear evolutions

In this section, we will study the nonlinear evolution from the initial state seeded with
small disturbances. Equation (2.42) subject to periodic boundary conditions was solved
numerically using a Fourier spectral method. The solution of S(z, t) is expanded by the
Fourier series

S(z, t) =
N/2∑

−N/2

ŝn(t) exp
[

i
2πnz

l

]
, (4.1)

in which N is the number of Fourier modes, ŝn(t) is the time-dependent coefficient and l
is the computational length. A Fourier collocation is used to provide the discretization in
space for periodic problem. We employed an implicit Gear’s method for stiff problems for
the time stepping and the relative error is 10−6 at each time step (Ding & Willis 2019).

4.1. AI–CI instability
In this subsection, we performed numerical simulations on the nonlinear evolution of
(2.42) to examine the effect of rotation on the transition from CI to AI regimes. We
choose the set of parameters of a = 0.3 and ε = 0.4 which lies in the CI regime for
ΩN = 0 and in the AI regime for ΩN = 0.5. The initial condition is seeded with S(z, 0) =
0.1 exp[−(z − 20)2/2] and the length of computational domain l = 100.

In figure 6, we present the spatio-temporal diagram for various ΩN , which may be
helpful for us to understand the effect of rotation on the AI–CI characteristics. For ΩN = 0,
the flow is linearly convectively unstable. In figure 6(a) it is obvious that the disturbance
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FIGURE 6. Spatial-temporal diagram for a = 0.3, ε = 0.4. The values of S(z, t) are marked by
different colours. (a) ΩN = 0; (b) ΩN = 0.5.

propagates downstream and decays at z = 20. As ΩN increases to 0.5, as shown in figure 5,
the flow is absolutely unstable as the point of (0.4, 0.3) in the ε–a plane is below the AI–CI
boundary of ΩN = 0.5. In figure 6(b), as ΩN = 0.5, the flow becomes absolutely unstable
as the disturbance is amplified both downstream and upstream.

4.2. Transient simulations in long domains
In order to know the properties of the solutions which are naturally selected, we performed
numerical simulations in long domains subject to a pseudo-random initial condition. Two
typical sets of parameters of a and ε are chosen. Kliakhandler et al. (2001) and Craster &
Matar (2006) have performed simulations on the nonlinear evolution for three regimes in
Kliakhandler et al. (2001) and all of them are in the absolute instability regime. The first set
of parameters, a = 0.255 and ε = 0.292 chosen in this paper, which falls in the absolute
instability regime, is identical to that used by Kliakhandler et al. (2001) and Craster &
Matar (2006). The second set of parameters, a = 0.55 and ε = 0.3, however, is picked
from the convectively unstable regime when ΩN = 0, which becomes absolutely unstable
when ΩN > 0.2.

The system becomes saturated after long-time evolution. In figure 7, we present the
results of the first set of parameters, which is in the absolutely unstable regime. In
figure 7(a–d), similar-sized large droplets are moving as a bound state. The heights of
these droplets are very close but the gaps between them can vary. The increase of ΩN
leads to the formation of more pronounced and closely spaced beads with smaller sizes.
Moreover, the gaps between different beads become flatter and thinner.

Figure 8 shows the film profiles for different values of ΩN , which demonstrates that
the rotation has a significant influence on the flow pattern. In these figures, the height of
the beads increases with the increase of ΩN . Comparing with figure 8(a,c), in which ΩN
increases from ΩN = 0 to ΩN = 0.5, the height of the beads in figure 8(c) is obviously
larger than that in figure 8(a). However, the large droplet numbers are reduced from six
to two. Hence, the gap between the large drops in figure 8(c) is much longer than that in
figure 8(a). This long film between the two large droplets in figure 8(c) is unstable and
breaks into several tiny beads. The large droplet, however, will catch up with and consume
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FIGURE 7. The profiles of the interface via transient numerical simulations for various ΩN .
Other parameters are a = 0.2551, ε = 0.2915. The instant time is t = 100. The coordinate ζ =
z/ε. Here, ΩN = 0, 0.2, 0.5 for (a), (b) and (c), respectively.
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FIGURE 8. The profiles of the interface via transient numerical simulations for various ΩN .
Other parameters a = 0.55, ε = 0.3. The instant time is t = 500. The coordinate ζ = z/ε. Here,
ΩN = 0, 0.2, 0.5 for (a), (b), (c), respectively.

these small beads ahead and leave behind a flat film where small beads will regenerate
again.

5. Travelling-wave solutions and their stabilities

5.1. Travelling-wave solutions
Experiments have shown different types of steadily propagating solutions in the form of
highly organized droplets or bead-like solutions separated by long space (Kliakhandler
et al. 2001). In this subsection, we will examine how rotation influences the characteristics
of these steady travelling-wave solutions.
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We solve the governing equations by moving to a travelling-wave coordinate. In the
moving system, it is convenient to define

τ = t, (5.1)

ξ = z − ct, (5.2)

where c is the wave speed of the moving coordinate. The derivatives with respective to t
and z can be expressed as

∂t = ∂τ − c∂ξ , (5.3)

∂z = ∂ξ . (5.4)

For a travelling-wave solution, the time derivation of S with respect to τ is zero, and the
profile of the interface has the form of S = S(ξ). The nonlinear equation (2.42) becomes

− c∂ξ S2 + 2∂ξ Q(S) = 0, (5.5)

where

Q(S) = 1
16

(
1 + ∂ξ S

S2
+ ΩNS∂ξ S + ε2∂ξξξ S

)[
4S4 log

S
a

+ (3S2 − a2)(a2 − S2)

]
. (5.6)

Integrating equation (5.5) once, we have

− cS2 + 2Q(S) = q, (5.7)

where q is an integral constant. Equation (5.7) subject to periodic boundary conditions
will be solved in the region of −l/2 < ξ ≤ l/2, where the length of the computational
domain, l, is the wavelength of the travelling-wave solution. To fix c, we impose the mass
conservative condition

∫ l/2

−l/2
(S2(ξ) − a2) dξ = l(1 − a2). (5.8)

To break the translational symmetry, one can enforce the real (or imaginary) part of the
first Fourier mode to zero such that q can be determined. A code for Newton iteration
based on Ding & Willis (2019) was developed to solve the present problem. The solution
can be tracked from the Hopf bifurcation point (ωi = 0) with branch continuation.

Typical profiles of the travelling-wave solutions are shown in figure 9. As shown in
figure 9, the droplet height is increased by the axial rotation. In Craster & Matar (2006) and
Ding & Willis (2019), an observation is that higher droplets are moving faster than lower
droplets. However, in the present study, it is found that this conclusion holds only if the
axial rotation is slow (see figure 10a, in which the wave speed c increases with ΩN). When
the rotation becomes fast (ΩN > 0.5), we observe that large droplets can move slower than
small droplets (see figure 10b), which is contrary to the conclusions of Craster & Matar
(2006) and Ding & Willis (2019).

To account for the physical mechanism of the abnormal phenomenon, we plot the flow
field in figure 11 in the moving frame. It indicates that the reversal flow in the wave hump
becomes stronger as ΩN increases. This reversal flow can significantly increase the viscous
dissipation effect. In their work, Ruyer-Quil et al. (2008) derived a weighted residual
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FIGURE 9. Interface profile for the travelling-wave solution for various ΩN . Other parameters
are ε = 0.2 and a = 0.25. (a) l = 2; (b) l = 6.

c

l

0 1 2 3 4 5 6

5

10

15

20(a) (b)

c
0 1 2 3 4 5

5

10

15

ΩN = 0

ΩN = 0.5
ΩN = 0.8
ΩN = 1.0

ΩN = 0.1
ΩN = 0.2
ΩN = 0.3
ΩN = 0.5

FIGURE 10. Travelling-wave solution for one-hump solutions: spacings l and propagating
speeds c for various ΩN at ε = 0.2 and a = 0.25.

model, which considered the streamwise dissipation effect, and they found that the wave
speed of the travelling-wave solution in flow regime ‘c’ is lower than Craster & Matar
(2006). As also discussed by Ding & Willis (2019) that viscous dissipation effect can slow
the droplet motion, it is suggestive that the motion of large droplets is retarded by this
strong reversal flow in the hump.
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FIGURE 11. The flow field in the moving frame at ΩN = 0.5, 0.8, 1 for (a), (b) and (c),
respectively.

5.2. Stability of the travelling-wave solution
Numerical simulations of the present problem showed that not all the travelling waves can
be obtained through the evolution of an initial condition. It is natural to examine whether
the travelling-wave solutions with different wavelengths are stable.

We performed a linear stability analysis on the travelling-wave solutions in the moving
frame at the wave speed c. The profile of the interface is the travelling-wave solutions
perturbed by an infinitesimal disturbance

S(ξ, τ ) = S̄(ξ) + S′(ξ, τ ), (5.9)

in which S′(ξ, τ ) = Ŝ(ξ)e−iωτ .
The linearized evolution equation is written as

S̄∂τ S′ − c∂ξ (S̄S′) + ∂ξ {(1 − ∂ξ p̄)FSS′ − F∂ξ p′} = 0, (5.10)

in which

∂ξ p̄ = − S̄ξ

S̄2
− ε2∂ξξξ S̄ − ΩNS̄∂ξ S̄, (5.11)

∂ξ p′ = −∂ξ S′

S̄2
+ 2∂ξ S̄

S′

S̄3
− ε2∂ξξξ S′ − ΩN(S̄∂ξ S′ + ∂ξ S̄S′), (5.12)

FS = S̄3 ln
S̄
a

+ S̄(a2 − S̄2)

2
, (5.13)

F = S̄4

4
ln

S̄
a

+ (3S̄2 − a2)(a2 − S̄2)

16
. (5.14)

The curves of the leading eigenvalue of the travelling-wave solutions versus the
wavelength are shown in figure 12. For ΩN = 0, there exists a critical wavelength
lc ≈ 3.5 beyond which the travelling-wave solutions are unstable. As l > lc, a conjugate
complex pair of eigenvalues are found. In figure 12(a), the curves of the growth rate
consists of several segments, indicating that mode switching occurs as l increases. This
is also reflected by the non-continuous curves of temporal frequency ωr as shown in
figure 12(b). As shown in figure 12(a), with the increase of ΩN the critical wavelength
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FIGURE 12. The curves of the leading eigenvalue for the travelling-wave solutions versus the
wave length l. (a) The time growth rate ωi, (b) the frequency ωr. Other parameters are ε = 0.2
and a = 0.25.

lc increases. As ΩN increases from 0 to 0.2, the growth rate decreases as l < 12 and
increases as l > 12. As ΩN increases from 0.2 to 0.6, the effect of rotation is stabilizing.
In figure 12(a), for ΩN = 0.6 the unstable region is confined in a limited band of l.
When ΩN increases further, the travelling-wave solutions become completely stable. In
figure 12(b), the frequency of the most unstable mode increases with the increase of ΩN .
The results in figure 12 showed that the effect of rotation on the travelling-wave solution
is adverse to the linear stability of the trivial base state S̄ = 1 in which the rotation is
destabilizing.

It is interesting to examine the structures of the most unstable mode of different
segments in figure 12(a). In figure 13, the profiles of the most unstable mode are plotted for
two typical sets of parameters. The structures of the disturbances are similar in these two
figures. The disturbance consists of a series of ripples occupying the whole spatial domain.
The disturbed surface is in the form of a large bead accompanied by a series of smaller
beads. We also examine the structures of the most unstable mode for various parameters of
l and ΩN . The results of the linear stability analysis indicate that the structures of different
segments are similar. The slight difference is that the numbers of small ripples may
increase with l. It is obvious that the profiles in figure 13 provide initial states involving
the interaction between a large bead and several smaller ones.

In the experiments by Kliakhandler et al. (2001), the flow regime ‘c’ presents dynamic
behaviours different from the steady travelling waves, in which a complicated interaction
between a large droplet and several small droplets causes an oscillatory flow. It is
interesting to investigate how the rotation influences the dynamics of the oscillatory
flow, i.e. flow regime ‘c’. To answer this question, we perform numerical simulations
on the evolution initiated by a travelling-wave solution superposed of the most unstable
mode. Before we study the nonlinear evolution by numerical simulations, it is helpful to
discuss the nature of the stability of travelling-wave solutions. We classify the stability
of travelling-wave solutions as being either convectively unstable or absolutely unstable.
If the travelling-wave solutions are convectively unstable, they can tolerate localized
disturbances and the flow ultimately evolves into a state in which the travelling waves
interact with small ripples. If the travelling-wave solutions are absolutely unstable, these
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FIGURE 13. The profile of the leading unstable mode with L = 5. (a) ΩN = 0; (b) ΩN = 0.4.
The dashed line denotes the basic state. Other parameters are ε = 0.2 and a = 0.25.

solutions can be destroyed by localized disturbances and evolve into a new state after a
long time of evolution. As discussed in figure 13, the eigenvalues corresponding to the
most unstable modes are in the form of a pair of conjugated complex numbers. This
means the most unstable mode is convectively unstable and can escape the travelling wave
downstream or upstream. For related discussion on the stability of a two-dimensional pulse
on electrified falling films, see Blyth et al. (2018).

In figure 14, the space–time diagrams of a long-time evolution are plotted for several
typical cases. In figure 14(a) for l = 4 and ΩN = 0 in which the travelling-wave solution
is unstable as shown in figure 12, the oscillatory behaviour of the height of the large
droplets is obvious. In this space–time diagram, it is observed that the oscillation is
both temporally and spatially periodic. In figure 14(b) for l = 4 and ΩN = 0.4, there is
no oscillation in the space–time diagram, indicating the system is a steady travelling
wave. In figure 14(c,d), the space–time diagrams are plotted for two typical cases with
l = 7 in which the travelling-wave solutions are unstable. The characteristics of the
structures in figure 14(a,c,d) are qualitatively similar. In these figures, smaller ripples
arrange periodically in the z–t plane, and the loci of the large droplets oscillate periodically.
The flow can be considered as an oscillatory travelling wave, which conforms to the fact
that the travelling-wave solutions are convectively unstable. The numerical simulations
suggest that the time-periodic state is a relative periodic orbit (RPO), which has been
reported by Ding & Willis (2019) in a non-rotating system. However, it is unclear how the
rotation affects the mean speed and the period of the RPO. We will proceed to § 5.3 to
answer this question.

5.3. Exact RPOs
To find the exact RPOs of the present problem, we search for the recurrent solutions in the
system

S(z, t) = S(z + s, t + T), (5.15)

where s is the spatial shift along the axis of the fibre and T is the time period. Each RPO
has its own particular period T , while a travelling wave has arbitrary period T . Given an
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FIGURE 14. The space–time diagrams for the travelling waves perturbed by the most
unstable mode. The contours of S(z, t) are marked by different colours. (a) L = 4, ΩN = 0;
(b) L = 4, ΩN = 0.4; (c) L = 7, ΩN = 0.2; (d) L = 7, ΩN = 0.4. Other parameters are ε = 0.2
and a = 0.25.

initial guess of X 0 = [S0, s0, T0]T, we can obtain a better guess X 0 + δX 0 by solving

∂F
∂S0

δS0 + ∂F
∂s

δs + ∂F
∂T

δT = −F , (5.16)

where F = S(z + s, t + T) − S0. The solution S0 is approximated by a Fourier expansion
of 2N modes. Plus two other unknown parameters T and s, there are 2N + 2 unknowns.
To close the system, we require the update δX 0 has no component in the z direction and
the t direction (Ding & Willis 2019):

∂ST
0

∂z
δS0 = 0, (5.17)

∂ST
0

∂t
δS0 = 0. (5.18)

Equation (5.16) and the two constraints constitute the following linear algebra problem:

AδX = b, (5.19)
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where b = [F , 0, 0]T. It is impossible to write down the explicit Jacobian A but an
alternative way to solve this problem is to work in the Krylov subspace spanned by
Kn = {b, Ab, Ab2, . . . , Abn−1}. To evaluate the result of multiplication by the Jacobian,
we use the approximation

∂S
∂S0

δS0 ≈ S(z, T; S0 + εδS0) − S(z, T; S0)

ε
, (5.20)

in which ε is an empirical small parameter and typically ε = 10−4‖S0‖/‖δS0‖. The
generalized minimal residual method (GMRES) iterations are continued until

‖ AδX n − b ‖
‖ b ‖ ≤ tol, (5.21)

where tol is the tolerance chosen in the range of 10−3–10−4. Typically, it takes 10 to 20
GMRES iterations to get a converged solution to δX 0. The Newton iteration is terminated
when

‖S − S0‖
‖S0‖ ≤ 10−6. (5.22)

Failure of the Newton iteration is commonplace when the initial guess is poor. To
improve the convergence domain, a hookstep method is applied to move δX 0 into the trust
region. We adapted the Newton–Krylov-hookstep algorithm by Ding & Willis (2019) and
implemented the pseudo-arclength continuation technique to it for the present problem.
The RPO is tracked from the Hopf bifurcation of the steady travelling-wave solutions,
which is continued to other parameters via the pseudo-arclength continuation technique.

In figure 15(a), for ΩN = 0 the first RPO branch bifurcates from the travelling-wave
branch at l ≈ 3.5, which corresponds to the first unstable mode as shown in figure 12. The
bifurcation point of the second RPO branch locates at l ≈ 4.5. As the parameter ΩN = 0.3,
as shown in figure 15(a), the first RPO branch bifurcates from the travelling-wave branch at
l ≈ 4.0 with c ≈ 1.5. As shown in figure 15(a), at a given wavelength l, the RPO solution
propagates slower than the travelling-wave solution. In this figure, it is found that both the
first and the second branches of RPO propagate faster when ΩN = 0.3. This indicates that
rotation can not only promote the mean wave speed of travelling-wave solutions but also
the RPO. In figure 15(b), at a given domain size l, the time period of the second RPO
solution is obviously smaller than that of the first RPO solution. In figure 15(b), it is found
that the value of T of ΩN = 0.3 is much smaller than the case of ΩN = 0. The decreasing
of the period means that the coalescence and breakup between a large droplet and a small
droplet becomes faster. This suggests that the droplet coalescence and breakup process in
flow regime ‘c’ can be promoted by the axial rotation.

For higher rotation speed, the travelling waves become more stable due to the rotation
as discussed in § 5.2. Thus as ΩN exceeds a critical value, the RPO branch will disappear
because the travelling waves are stable. As shown in figure 16, the first PRO branch is
plotted for ΩN = 0.5. The relation between the RPO branch and the travelling-wave branch
is similar to that in figure 15(a). In this figure, the wave speed c of the RPO is closer to that
of travelling-wave solution than the cases of lower rotations in figure 15(a). We have not
tracked the RPOs at higher rotating speeds because, with the increase of ΩN , the oscillation
becomes weak and the RPOs are very close to the travelling waves.
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FIGURE 15. (a) The bifurcation diagrams for RPOs in the c–l plane. The propagating speed is
defined by c = s/T for RPOs. (b) The curves of the period T versus the domain size l for RPOs.
Other parameters are ε = 0.2 and a = 0.25. The bifurcation points are marked by circles. TW,
travelling wave.
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FIGURE 16. The bifurcation diagrams for RPOs in the c–l plane at high rotation with
ΩN = 0.5. Other parameters are ε = 0.2 and a = 0.25. TW, travelling wave.

6. Summary and conclusions

In the present paper, we have investigated the dynamics of a coating flow driven by
gravity over a fibre rotating about its axis. The evolution equation for the surface is derived
in the framework of the long-wave theory with an assumption that the characteristic radius
of fluid ring is much smaller than the capillary length scale. The parameters a, ε and ΩN
are involved in the evolution equation.

A linear stability analysis is performed to examine the influence of rotation on the
stability of axisymmetric disturbances. The result of linear stability shows that the rotation
is destabilizing without changing the phase speed of the disturbance. The growth rate
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and the wavenumber of the most unstable mode, λm and km, are proportion to (1 + ΩN)2

and (1 + ΩN)1/2, respectively. We also performed a spatio-temporal stability analysis
to examine the effect of rotation on the characteristics of the absolute and convective
instabilities. The results showed that the increase of ΩN promotes the absolute instability.
The result of the spatio-temporal stability analysis was validated by comparison with
numerical simulations on the nonlinear evolution of the long-wave model equation. The
results of numerical simulations indicate that with the increase of ΩN the convectively
unstable flow can become absolutely unstable. This result is in excellent agreement with
the linear spatio-temporal stability analysis.

The travelling-wave solutions were solved using the Newton method with branch
continuation. The effect of rotation on the structure and speed of these solutions was
analysed. When the rotation is slow, ΩN < 0.5, we observed that the travelling-wave
speed is promoted by the axial rotation because the height of the droplet becomes larger.
However, the travelling-wave speed starts to decrease as the rotation speed increases
further because of the strong reversal flow in the wave hump, which retards the motion
of droplets.

Linear stability analysis of the travelling-wave solutions was investigated, which showed
that the travelling-wave solutions could lose their stabilities to an oscillatory mode when
the wavelength exceeds the critical value. With the increase of ΩN , the travelling-wave
solutions become more stable. When the travelling wave is unstable, the disturbance
evolves into a near recurrent solution, which was identified as an RPO. We demonstrated
that there exists series of RPOs, which are born from the travelling-wave solutions through
Hopf bifurcations. Numerical solutions also demonstrate that axial rotation accelerates the
mean wave speed of the RPOs and reduce their periods, indicating that axial rotation can
promote the droplet coalescence and breakup process in the system.
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Appendix A. Direct simulations on the evolution of coating flow

In § 2.2, the results of linear stability analysis showed that both the axisymmetric mode
and the non-axisymmetric mode with m = 1, k = 0 can be the most unstable mode. In
the appendix, we will perform direct simulations on the nonlinear evolutions on these
two cases. For the axisymmetric case, the results of the Navier–Stokes equations are used
to validate the long wave model. For the non-axisymmetric case with m = 1, k = 0, no
asymptotic model has been derived for thick films. The nonlinear evolution has to be
examined based on the direct simulations.
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A.1. Axisymmetric case
For axisymmetric problem, i.e. ∂θ = 0 for all variables, we introduce the coordinate
transformation

t = t̃, z = z̃, r = h(z̃, t̃)r̃ + a, (A 1)

where the thickness of the film h(z̃, t̃) = S(z̃, t̃) − a. This set of mappings transforms an
arbitrarily shaped flow region to a rectangular region. The first-order derivatives read

∂r = 1
h
∂r̃, ∂z = ∂z̃ − ∂z̃h

h
r̃∂r̃, ∂t = ∂t̃ − r̃

∂t̃h
h

∂r̃, (A 2)

and the second-order derivatives read

∂rr = 1
h2

∂r̃r̃,

∂zz = ∂z̃z̃ +
[

2
(

∂z̃h
h

)2

− ∂z̃z̃h
h

]
r̃∂r̃ − 2

∂z̃h
h

r̃∂r̃z̃ +
(

∂z̃h
h

)2

r̃2∂r̃r̃. (A 3)

Inserting (A 2) and (A 3) into the Navier–Stokes equations yields(
1
h
∂r̃ + 1

r

)
u +

(
∂z̃ − ∂z̃h

h
r̃∂r̃

)
w = 0, (A 4)

ε2Re
{(

∂t̃ − r̃
∂t̃h
h

∂r̃

)
u + Fu

}
= −ε−2 1

h
∂r̃p + ε−2ΩN(hr̃ + a) +

(
Δ − 1

r2

)
u, (A 5)

ε2Re
{(

∂t̃ − r̃
∂t̃h
h

∂r̃

)
w + Fw

}
= 1 −

(
∂z̃ − ∂z̃h

h
r̃∂r̃

)
p + Δw, (A 6)

in which

Δ = 1
h2

∂r̃r̃ + 1
rh

∂r̃ + ε2

{
∂z̃z̃ +

[
2

(
∂z̃h
h

)2

− ∂z̃z̃h
h

]
r̃∂r̃ − 2

∂z̃h
h

r̃∂r̃z̃ +
(

∂z̃h
h

)2

r̃2∂r̃r̃

}
,

(A 7)

and

Fu = u
1
h
∂r̃u + w

(
∂z̃ − ∂z̃h

h
r̃∂r̃

)
u, (A 8)

Fw = u
1
h
∂r̃w + w

(
∂z̃ − ∂z̃h

h
r̃∂r̃

)
w. (A 9)

The boundary conditions at the fibre wall are

u = w = 0, (A 10)

and at the surface are

− 2ε2

1 + ε2 (∂z̃S)2

{[
1 + ε2(∂z̃S)2] u

r
+ ∂z̃w + ε2∂z̃S∂z̃u

}

= p − 1

S
[
1 + ε2 (∂z̃S)2]1/2 + ε2∂z̃z̃S[

1 + ε2 (∂z̃S)2]3/2 , (A 11)
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FIGURE 17. The profiles of the interface of the travelling-wave solution of the full
Navier–Stokes equations (NS) and the long-wave model (LW). (a) ΩN = 0.0; (b) ΩN = 0.5.
Other parameters are ε = 0.2, a = 0.25 and l = 2.

[
1 + ε2 (∂z̃S)2]2

h
∂r̃w

= ε2 [
3 + ε2 (∂z̃S)2] ∂z̃S∂z̃w − ε2 (

1 − ε2∂z̃S2) ∂z̃u + [
1 + ε2 (∂z̃S)2] ε2∂z̃S

u
r
, (A 12)

∂t̃S2 + 2∂z̃

(∫ S

a
wr dr

)
= 0. (A 13)

The rectangular domain is discretized by the Fourier–Chebyshev method, grid
[z̃1, z̃2, . . . , z̃M] × [r̃1, r̃2, . . . , r̃N] with M and N mesh points in z̃ and r̃ directions,
respectively. The temporal evolution of the problem is obtained by two steps:

h(z̃, t̃) → h(z̃, t̃ + δt̃),

(u, w)(z̃, t̃) → (u, w)(z̃, t̃ + δt̃).

}
(A 14)

For more details of the procedure of the time stepping, we refer the readers to the work
by Richter & Bestehorn (2019) in which an algorithm based on a nonlinear coordinate
transformation is used for direct numerical simulations of liquid films under horizontal
and vertical external vibrations.

In order to validate our long-wave model, we have compared the travelling-wave
solutions of the long-wave model with that of the Navier–Stokes equations for several
sets of parameters. The results of the Navier–Stokes equations are the saturated states of
the most unstable modes after a long-time evolution. In figure 17, we present the results
of these two models for ΩN = 0 and 0.5. As shown in figure 17(a,b), the profiles of the
interface of the long-wave mode are similar to those of the Navier–Stokes equations. In
figure 18, we compare the maximum of the position of the interface, Smax, of the long-wave
model and Navier–Stokes for various ΩN . As shown in this figure, the results of the
long-wave model are in good agreement with those of the Navier–Stokes equations. This
means that the long-wave model is valid for the parameters in the present study.
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FIGURE 18. The comparison between the travelling-wave solution of the full Navier–Stokes
equations (NS) and the long-wave model (LW) for various ΩN . Other parameters are ε = 0.2,
a = 0.25 and l = 2.

A.2. Non-axisymmetric case of k = 0
For the non-axisymmetric case of k = 0, the flow is streamwise uniform, i.e. ∂z = 0. The
controlling equations are expressed as

∂ru + u
r

+ 1
r
∂θv = 0, (A 15)

ε4Re
(

∂tu + u∂ru + v

r
∂θu − v2

r

)
= −∂rp + ΩNr + ε2

[
∂rru + ∂ru

r
+ 1

r2
∂θθu − u

r2

]
,

(A 16)

ε4Re
(
∂tv + u∂rv + v

r
∂θv + uv

r

)
= −1

r
∂θp + ε2

[
∂rrv + ∂rv

r
+ 1

r2
∂θθv − v

r2

]
. (A 17)

At the fibre wall (r = a), the boundary conditions are

u = v = 0. (A 18)

At the free surface, the boundary conditions are

[
1 −

(
∂θS
r

)2
]{

r∂r

(v

r

)
+ ∂θu

r

}
+ 2

∂θS
r

(
∂ru − ∂θv

r
− u

r

)
= 0, (A 19)

−p + 2ε2N−2

{
∂ru − ∂θS

r

[
r∂r

(v

r

)
+ ∂θu

r

]
+

(
∂θS
r

)2 (
∂θv

r
+ u

r

)}
= 2H, (A 20)

St + 1
S
∂θ

∫ S

a
v dr = 0. (A 21)
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in which the principal curvature

2H = − 1
N

{
1
S

+ (∂θS)2

S3
− ∂θθS

S2

}
− 1

N2

∂θN∂θS
S2

, (A 22)

where

N =
√

1 + r−2(∂θS)2. (A 23)

We introduced the coordinate transformation

t = t̃, θ = θ̃ , r = h(θ̃ , t̃)r̃ + a, (A 24)

where the thickness of the film h = S(θ, t) − a. The first-order derivatives

∂r = 1
h
∂r̃, ∂θ = ∂θ̃ − ∂θ̃h

h
r̃∂r̃, ∂t = ∂t̃ − r̃

∂t̃h
h

∂r̃, (A 25)

and the second-order derivatives

∂rr = 1
h2

∂r̃r̃,

∂θθ = ∂θ̃θ̃ +
[

2
(

∂θ̃h
h

)2

− ∂θ̃θ̃h
h

]
r̃∂r̃ − 2

∂θ̃h
h

r̃∂r̃θ̃ +
(

∂θ̃h
h

)2

r̃2∂r̃r̃. (A 26)

The numerical method for solving the problem is similar to the axisymmetric case.
In the numerical simulations, the initial state is given by

S(θ, 0) = 1 + δ cos(θ), (A 27)

in which δ is a small number. At the initial time, the maximum and the minimum of S
locates at θ = 0 and θ = π, respectively. Because of the destabilizing effect of rotation,
the film thickness increases with time near the region of θ = 0 and the decreases gradually
on the opposite side. After a long-time evolution, the film thickness at θ = π approaches
zero. This process corresponds to the fluid detachment from the substrate. As the minimum
thickness approaches zero, the stiffness of the numerical procedure increases dramatically.
In our simulations, we terminate the process of time stepping when the minimum thickness
is close to 0.01. In figure 19, we present the profile of the free surface of the evolution of the
non-axisymmetric mode with m = 1 and k = 0 when the film is close to the detachment.
As shown in figure 19(a) for a = 0.8, the profile of the free surface is close to a circle.
However, as shown in figure 19(b) for a = 0.3, the profile evolves into a flat lobe due to
the destabilizing body force.

The simulations on the disturbance with m = 1 and k = 0 showed the process of
detachment from the substrate. However, these streamwise uniform surface is unstable due
to the Rayleigh–Plateau mechanism. We can expect that in the process of detachment, there
exists the formation of non-axisymmetric beads. The dynamics of this complex process
needs further investigation on the stability analysis of the full linearized Navier–Stokes
equations.
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FIGURE 19. The profile of free surface of the evolution of the non-axisymmetric mode with
m = 1 and k = 0. (a) For a = 0.8; (b) for a = 0.3. The parameters ε = 0.3 and ΩN = 0.489
corresponding to the frequency of rotation f = 20.

Appendix B. Thin film model for 3-D evolutions

We introduce the dimensionless variables as follows:

(r, z) = a(r∗, z∗), y = Hy∗, t = aV−1t∗, (u, v, w) = V(εu∗, v∗, w∗), p = ρgap∗,
(B 1)

where the star, ∗, denotes dimensionless variables. A new variable is introduced,
y = r − a, in the terms related to ∂r. The aspect ratio ε = H/a, the velocity scale V ≡
ρgH2/μ in which H = R − a. We consider the thin film problem in which ε � 1.

For simplicity, we dropped ∗ for all dimensionless variables. Neglecting the contribution
of inertial terms and the higher terms of ε The dimensionless nonlinear evolution equation
is expressed as

S∂tS + ∂θQθ + ∂zQz = 0, (B 2)

in which

Qθ = ε−2∂θp
{

1
ln S − 1

+ 1
2
(S2 + 1)

}
, (B 3)

Qz = ε−2(∂zp − 1)

{
(S2 − 1)(3S2 − 1)

16
− 1

4
S4 ln S

}
, (B 4)

p = 1
2
ε−1Ω ′

N(r2 − S2) + Ca−1

[
1
S

− ∂θθS
S2

− ∂zzS
]

. (B 5)

The parameter Ω ′
N = aΩ2/g and Ca = ρga2/σ . Note that when discussing the results, we

used ΩN instead of Ω ′
N .

The linear stability analysis showed that both axisymmetric and non-axisymmetric
disturbance can be the unstable mode. For the nonlinear dynamics in fluid mechanics,
many previous studies showed that the transition has non-unique routes, which depend on
the initial conditions. In this appendix, we will show that there exists different routes of
evolutions for various rotation parameters.
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FIGURE 20. The profile of the surface at the saturated state for the case at ΩN = 0.122,
ε = 0.3. The dimensional parameters are a = 0.8 mm and the thickness is H = 0.2 mm.
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FIGURE 21. The profile of the surface at the saturated state for the case at ΩN = 0.5, ε = 0.3.
The dimensional parameters are a = 0.8 mm and the thickness is H = 0.2 mm.

Firstly, we study the case of a small rotation number. We choose the parameters
ΩN = 0.122 and ε = 0.3 as in figure 2. For a non-axisymmetric initial condition (there is
no streamwise component), h = 1 + δ sin(θ) or h = 1 + δ sin(θ + kz), the flow is unstable
and a non-axisymmetric and a streamwise uniform state can develop. But if there is a
streamwise component (we set h = 1 + δ sin(θ) + δ sin(kz)), we observe that the final
state is axisymmetric which indicates that the non-axisymmetric mode is suppressed by
the axisymmetric mode (see figure 20). This study indicates that the axisymmetric state
will be observed in experiments when the rotation is slow, because the axisymmetric mode
is the most unstable and grows fastest.
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FIGURE 22. The profile of the surface at the saturated state for the case at ΩN = 0.5,
ε = 0.3. The dimensional parameters are a = 0.8 mm and the thickness is H = 0.2 mm. Here
we perturbed the saturated axisymmetric state by a non-axisymmetric disturbance.

We also studied the case of a large rotation number. We choose ΩN = 0.5 and ε = 0.3
as in figure 2. We tested two different initial conditions, h = 1 + δ sin(θ) + δ sin(kz))
and h = 1 + δ sin(kz). For the axisymmetric initial condition, we observe that the state
remains axisymmetric. However, as expected, a 3-D state develops when the system
is perturbed by the non-axisymmetric initial condition (see figure 21). However, if we
rotate the cylinder after the formation of axisymmetric beads (or perturb the saturated
axisymmetric state by non-axisymmetric disturbances), we did observe that the system
reverts back to the axisymmetric state in the parametric space considered in the present
study (see figure 22). This demonstrates that we may observe an axisymmetric film in
experiments if we gradually increase the rotation speed or rotate the cylinder after the
formation of axisymmetric beads.
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