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COUNTING COLOURED GRAPHS. Ill 

E. M. W R I G H T 

1. Introduction. In an earlier paper [4], we found an asymptotic expansion 
for Mn = Mn(k), the number of coloured graphs on n labelled nodes, when 
n is large. Such a graph is a set of n distinguishable objects called nodes, and 
a set of "edges", that is, undirected pairs of nodes. The nodes are mapped 
onto k colours. Every pair of nodes of different colours may or may not be 
joined by an edge, but no edge can join a pair of nodes of the same colour. 

We write mn for the number of these graphs which are connected, Fn for 
the number which use all k colours (i.e., at least one node in each graph is 
mapped onto each of the k colours), and/w for the number of connected graphs 
which use all k colours. 

We use A to denote a positive number, not always the same at each occur
rence, which is independent of n but which may depend on k. The notation 
0 ( ) refers to the passage of n to infinity and the constants implied are of 
type A. If x is a positive integer, we write 

Cx(y) = y(y - 1) ... (y - x + l)/x!, c0(y) = 1. 

We showed [4; 5] (see also [3]) that Mny Fny mnyfn all have the same asymp
totic expansion 

/ h \\&-Vkn2N (H-\ ) 

b y {£<.»-+oc-»)} 
for large nf where K = (k — l)/(2&) and N = Kn2. The coefficient Ch is 
defined in § 2 below and, for k < 1000, C0 is within 2 X 10~6 of unity. 

In this paper we consider Mnq, the number of these graphs which have just 
a edges. We call the set of integers (si, s2, . • . , sk) an n-set if 

(1.1) si + s2 + . . . + sk = n. 

A non-negative n-set is an n set in which none of the st is negative. We write 

Z -E 
(») ((»)) 

to denote summation over all non-negative n-sets and over all w-sets, respec
tively. 

In any of our graphs, there are si nodes of colour 1, s2 of colour 2, and so on, 
where the st form a non-negative w-set. The number of possible edges is then 
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E — Z) sisj> where the sum is over all i, j such that 1 ^ i ^ j ^ n. Read [2] 
deduces that 

Mnq = 2 Pc,(£), 
(w) 

where 
P = nl/(s1ls2l...skl). 

He remarks that "it does not appear that this formula is very amenable to 
manipulation". This seems a very reasonable assessment so far as exact 
transformation is concerned, but we show here that it is possible to deduce 
an asymptotic approximation to Mnq for large n and all a. 

2. Preliminary results. We write 

K = (k - l)/(2fe), 
N = Kn\ 

R = Y<U(ksi-n)2/(2k2), 

and a for the least non-negative residue of n (mod k). We find that 

(2.1) 2k2R = £ 2 2>* 2 - kn2 

and that E = N — R by (1.1). The smallest value of R for a given n occurs 
when a of the st have the value [n/k] + 1 and the remaining k — a have the 
value [n/k]. We call such a set a minimal n-set\ there are ca{k) such sets and for 
each of them R has the value b = a(k — a)/(2k). If we write Q = N — b 
and F = R — b, we see that max E = Q and that E = Q — F. Hence, 
Q and V are integers and V > 0 for all non-minimal ^-sets. 

LEMMA 1. There are 0(V^k~l)) n-sets associated with any positive V. 

For a given R, we have 

(foi - n)2 S 2k2R, 

(n/k) - V (2R) S Si S (n/k) + V (2R), 

and so there are not more than AR* choices of st. The lemma follows, since 
sk is fixed, once Si, . . . , sk-i are chosen, and R < AV iî V ^ 1. 

For any a > 0 we write 

L(a,n) = £ e-2a* = £ e x p ( - a { i : *4
2 - (w2 /*)}) . 

((»)) ((»)) \ Vf=l / / 

We shall find an asymptotic approximation to Mnq in terms of L(a,n), so 
that we need to evaluate the latter. It is easily verified that L(a, n + k) = 
L(a, ft), so that L(ay n) = L(a, a), where a is the least non-negative residue of 
n(mod k). Hence, L(a, n) depends on a and on a, but not otherwise on n. We 
see also that L(a, n) is a continuous function of a, for a > 0. Using Lemma 1, 
we have the next lemma almost trivially. 
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L E M M A 2. As a —> GO, 

L(a,a) ~ca(k)e-2a\ 

We take y > 0 and write 
ifc-i 

z = Z) **, 
J c - 1 

A = kY, Si2 - Z\ 

Hk(y, a) = X) e~7A cos(27raZ/^), 

where the sum is extended over all integral values of $i, s2, . . . , sk-i, positive, 
negative or zero. (The coefficient C0 of § 1 is Hk(27r2/log 2, a).) In [5, Theorem 
3], we deduced from [1] that 

(2.2) L(a, a) = k^{ir/a)^^Hk{y, a), 

where 0:7 = ir2. (We were concerned only with the case in which a = \ log j , 
where j is a positive integer, but this restriction played no part in the proof 
and is unnecessary. We require (2.2) here for general positive a.) From this 
we can deduce another lemma. 

LEMMA 3. As a —> 0, we have 

L(a,a)~k-^(>K/a)^k-l\ 

We shall, however, require the value of L(a, a) for finite positive a. In 
Lemma 3, we have used the obvious fact that Hk(y, a) —> 1 as 7 —> 00. More 
precisely, as we have shown in [5], 

(H2(y, a) = 1 + 2er*y cos ira + 0(e~^), 
(2.3) <H,(y, a) = 1 + 6éT2^/3 cos(2xa/3) + 0(e-^), 

(#4(7, a) = 1 + 8éf-3T/4 cos \va + 6éT* cos ira + 0(e~^). 

Indeed, we gave slightly more complicated formulae valid for all k and for 
which the error is 0(e~~9y/2). 

Thus, we have a very good approximation to L(a, a) when a is small, so 
that 7 is large. As we saw in [4], the approximation for small a remained very 
good when a = J log 2 and k < 1000, the error involved in taking Hk (7, a) = 1 
being less than two parts in a million. Indeed, the approximations obtained 
from (2.2) and (2.3) remain good for a ^ ir, the proportional error containing 
a factor e~2y rg e~2ir < 0.002. Again, this can be improved by the more compli
cated formulae in [5]. 

If a > ir, the series L(a, a) converges rapidly and it is not difficult to see 
that 

L{a, a) = ca(k)e-2«»{l+0(e-2«)} 

and that e~2a ^ e~2ir < 0.002. Again, we can easily improve the approxima
tion. Thus, for moderate sized k, L(a} a) can be readily evaluated to any 
reasonable degree of accuracy for finite a. 
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LEMMA 4. If N — q —> oo, we have 

ct(Q)N»~cQ(N)(N-q)». 

This can be easily verified if we use the well-known asymptotic expansion 
of the logarithm of the T-function in the form that, if y — 0(1) and X —» oo , 
then 

(2.4) log T(X + y + 1) = (X + y + ±) logX - X + il0g(27r) + 0(1/X). 

If N — q = h = 0(1), however, the result of the lemma is true only if 
T(h + 1) = hb(h — b)\, which is certainly false for integral b ^ 2, for example, 
when k = 16, a = 8. 

3. Asymptotic approximation to Mnq : statement of results. We write 

H = ifen+**(27r»)-*(*-1), 

P = ilog(N/(N - q)) + W/n). 
THEOREM 1. If 0 ^ q < Q, then, as n —> oo, 

Mnq ~ Hcq(Q)N»(N - q)~bL(p, a). 

If q = Q then Mnq ~ Hca(k). 

This appears a somewhat complicated statement, but that is because it 
covers all q. From it and the lemmas of the last section we can deduce a series 
of results for different ranges of q, which are much simpler. 

THEOREM 2. If q = o(n), then 

MnQ~kncq(Q)~kncq(N). 

THEOREM 3. / / q/n —> 8 > 0, then 

( k _ i \*(*~1} 

M^kn^\vhhù • 
THEOREM 4. If n = o(q), q = o(N), then 

Mnq~kncq(Q){(k - l)n/(&)}*<*-». 

THEOREM 5. If N — q = o(N), then 

(3.1) Mnq~Hca(k)cq(Q). 

THEOREM 6. If q/N -> Ô and 0 < 6 < 1, then 

Mnq ~ Hcq(N)L(-± log (1 - 6), a). 

We write c = f. We can easily verify that it is sufficient to prove the 
following two lemmas. 

LEMMA 5. If N - q ^ N1-0, then (3.1) w frwe. 
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LEMMA 6. If N - q > iV1"0, then 

Mnq~Hcq(N)L(t3,a). 

4. Proof of Lemma 5. We need first two preliminary lemmas. 

LEMMA 7. If R = o(nA/3), then 

logP = log H - (kR/n) + 0(1). 

If £ is small, we have 

(4.1) (1 - £) log(l - £ ) = - £ + he + 0(£3). 

We write £, = (» - kst)/n, so that £ £< = 0, L £,2 = 2k2R/n2, f, = o(l), 
and w£i3 = 0(1). Again, ^ —> 00 with n. Hence, by (2.4) and (4.1), we have 

log(w!) - klog(stl) =\ogH- n{{\ - £,)log(l - £,) + £,} + 0(1) 

= l o g t f - » + o( l ) . 

The lemma follows when we sum over i. 

LEMMA 8. / / , for a non-negative n-set, we have R > n1+c, then 

logP < logH - knc + 0(1). 

Let Bh be a non-minimal, non-negative w-set and let P^, P^ be the corre
sponding values of R and P. Without loss of generality, we may take 
Si S s2 ^ . . • ^ sk. Since Bh is non-minimal, we have sk — 2 ^ Si ^ 0. We 
construct 5^+i by replacing $i by Si + 1 and sk by sk — 1. It follows that 
Pft+i = PjiSjc/is! + 1) > Ph and from (2.1) that Rh — Rh+i = sk — si — 1, 
and so 

(4.2) I SRn- Rn+i < n. 

If we take B\ to be the n-set of our lemma, we can construct a sequence of 
non-negative n-sets, viz. B\, B2, . . . , Bh by the above process. The Ph 

sequence is steadily increasing and the Rh sequence steadily decreasing, both 
in the strict sense. The ^-sequence will come to an end at Bt, a minimal n-set. 
But, by (4.2), at least one member of the sequence (say Bf) will have 
Rj = ni+c + 0(n) = o(nAIZ). Hence, by Lemma 7, 

log P i < logPj = log H - knc + 0(1) , 

and this is Lemma 8. 

U q ^ Q — V, we have 

u*\ C«(Q - ^ _ { Q - q ) • • • ( Q - q - V + 1 } < i Q - q)V 
{ ' ct{Q) Q(Q-l)...(Q-V+i) = Qv ' 

and otherwise cq(Q — V) = 0. 
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We can now prove Lemma 5. We take N — q ^ iV1_<! and deduce from 
(4.3) that 

ct(Q - V)/ct(Q) è AN-". 

For each of the ca(k) minimal n-sets, we have R = b, and so P ~ H, by 
Lemma 7. For all other non-negative w-sets, P < AH, by Lemmas 7 and 8. 
Hence, by Lemma 1, 

Mnq - Hca(k)cq(Q) 

g AHcq{Q)Y<v^V^-»N-cV < AHcg(Q)N-c, 

and Lemma 5 follows. 

5. Proof of Lemma 6. We write 

J = min(?zc+1, nc+2/q), 

2 i to denote summation over all n-sets (necessarily non-negative) for which 
V ^ J, and 

2 (n) 1 3 ((n)) 1 

We also write 

£1 = Z i { ^ ( ^ - 20 - HcQ(N)e-w*}, 

E* = Hfcq{N - R), £3 = Hcq(N)Y^e~2fiR' 
so that 

(5.1) il4* - Hcq(N)L((3, n) = E1 + E2- Ez. 

We have N — q è iV1-c, and so q ^ N — N1-'. We remark that L(/3, ») > 
^L^-^&, and that 

P ^ A + i \og(N/(N - q) ^ A + ±logNc ^ A + clogn. 

Hence, 

(5.2) L(p,n) > An~2bc. 

H q ^ n, we have J = n**1 and, in £ 2 , 

logP < log If - knc+ o(l), 

by Lemma 8. Hence 

X ) ^ < AHe-kn°J^2l ^ AHn^er**', 

since £ 2 1 ^ n*'1. Hence, 

(5.3) E2 = o(Hcq(N)L(t3,n))t 

by (5.2). If q > n, we have / = nc+2/q and, in £ 2 , 

ct(N-R)£c,{Q){(Q-2)/Q}J, 
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by (4.3). Again, 

Q I = Q = Q 
Hence, 

£2 è cq{Q)e-^Y^P ^ k%(Q) e-Anc, 

and (5.3) follows again. 
We have also 

0 = - I log{ (N - q)/N] + UWn) ^ An-*(q + n), 

and so fiJ > An". Hence, by Lemma 1, 

D e~m S Ae~m £ F*- 1 exp( -20F) 
3 V>J 

S AnAe~m~An\ 
and so, by (5.2), 

(5.4) £ 3 = o(HcQ(N)L(p,n)). 

To deal with £1 we need one further lemma. 

LEMMA 9. If 0 ^ q S N - Nl~c and R = o((N - q)2/8), then 

'-(i!<^)=«'-('-i)-svf^+»«-
We have 

ct(N -R) _T(N -R+ l)T(N - g + 1) 
c,(N) T(N-R-q+l)T(N + l)-

We write F = N - q, £ = R/ Y, and 

«(g) = l o g r ( F + 1) -\ogT(Y-R+ 1) - i ? l o g F + i R £ . 

It is enough to prove that ca(q) — w(0) = o( l ) . We see that £ = o(l) and 
that F£3 = o( l ) . Hence, by (2.4) and (4.1), 

«(g) = ( F - R + i){log F - log ( F - 2?)} - 2? + |i?J + o(l) 

= - F{ (1 - ê)log(l - { ) + * - è£2} + o(l) = o( l ) , 

and the lemma follows. 

In ]Ti, we have 

R^b + J g*A + m'm(nc+\ n^/q). 
Hence 

R ^ A + nc+l = o(N^-^/z) = o((N - g)2/3), 

since c + 1 < 4(1 — c)/3. Again, 

r>2 ; 2 2c+3 

^ ^ ( 1 ) + ^ ^ ( 1 ) + ^ = , ( 1 ) . 
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Hence, in ]£i, by Lemmas 7 and 9, 

PcQ(N -R)= Hcq(N)e~wR{l + o(l)}, 
and so 

E1 = o(Hca(N)L(p,n)). 

Combining this with (5.1), (5.3), and (5.4), we have Lemma 6. 
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