COUNTING COLOURED GRAPHS. III

E. M. WRIGHT

1. Introduction. In an earlier paper [4], we found an asymptotic expansion for $M_{n}=M_{n}(k)$, the number of coloured graphs on n labelled nodes, when n is large. Such a graph is a set of n distinguishable objects called nodes, and a set of "edges", that is, undirected pairs of nodes. The nodes are mapped onto k colours. Every pair of nodes of different colours may or may not be joined by an edge, but no edge can join a pair of nodes of the same colour.

We write m_{n} for the number of these graphs which are connected, F_{n} for the number which use all k colours (i.e., at least one node in each graph is mapped onto each of the k colours), and f_{n} for the number of connected graphs which use all k colours.

We use A to denote a positive number, not always the same at each occurrence, which is independent of n but which may depend on k. The notation $O($) refers to the passage of n to infinity and the constants implied are of type A. If x is a positive integer, we write

$$
c_{x}(y)=y(y-1) \ldots(y-x+1) / x!, c_{0}(y)=1
$$

We showed $[\mathbf{4} ; \mathbf{5}]$ (see also [3]) that $M_{n}, F_{n}, m_{n}, f_{n}$ all have the same asymptotic expansion

$$
\left(\frac{k}{n \log 2}\right)^{\frac{1}{2}(k-1)_{k n_{2} N}}\left\{\sum_{h=0}^{H-1} C_{h} n^{-h}+O\left(n^{-H}\right)\right\}
$$

for large n, where $K=(k-1) /(2 k)$ and $N=K n^{2}$. The coefficient C_{h} is defined in $\S 2$ below and, for $k<1000, C_{0}$ is within 2×10^{-6} of unity.

In this paper we consider $M_{n q}$, the number of these graphs which have just q edges. We call the set of integers $\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ an n-set if

$$
\begin{equation*}
s_{1}+s_{2}+\ldots+s_{k}=n \tag{1.1}
\end{equation*}
$$

A non-negative n-set is an n set in which none of the s_{i} is negative. We write

$$
\sum_{(n)}, \sum_{((n))}
$$

to denote summation over all non-negative n-sets and over all n-sets, respectively.

In any of our graphs, there are s_{1} nodes of colour $1, s_{2}$ of colour 2 , and so on, where the s_{i} form a non-negative n-set. The number of possible edges is then

Received June 2, 1971. The research reported herein has been sponsored by the United States Government.
$E=\sum s_{i} s_{j}$, where the sum is over all i, j such that $1 \leqq i \leqq j \leqq n$. Read [2] deduces that

$$
M_{n q}=\sum_{(n)} P c_{q}(E)
$$

where

$$
P=n!/\left(s_{1}!s_{2}!\ldots s_{k}!\right)
$$

He remarks that "it does not appear that this formula is very amenable to manipulation'. This seems a very reasonable assessment so far as exact transformation is concerned, but we show here that it is possible to deduce an asymptotic approximation to $M_{n q}$ for large n and all q.
2. Preliminary results. We write

$$
\begin{aligned}
K & =(k-1) /(2 k), \\
N & =K n^{2}, \\
R & =\sum_{i=1}^{n}\left(k s_{i}-n\right)^{2} /\left(2 k^{2}\right),
\end{aligned}
$$

and a for the least non-negative residue of $n(\bmod k)$. We find that

$$
\begin{equation*}
2 k^{2} R=k^{2} \sum s_{i}{ }^{2}-k n^{2} \tag{2.1}
\end{equation*}
$$

and that $E=N-R$ by (1.1). The smallest value of R for a given n occurs when a of the s_{i} have the value $[n / k]+1$ and the remaining $k-a$ have the value $[n / k]$. We call such a set a minimal n-set; there are $c_{a}(k)$ such sets and for each of them R has the value $b=a(k-a) /(2 k)$. If we write $Q=N-b$ and $V=R-b$, we see that $\max E=Q$ and that $E=Q-V$. Hence, Q and V are integers and $V>0$ for all non-minimal n-sets.

Lemma 1. There are $O\left(V^{\frac{1}{2}(k-1)}\right) n$-sets associated with any positive V.
For a given R, we have

$$
\begin{aligned}
&\left(k s_{i}-n\right)^{2} \leqq 2 k^{2} R \\
&(n / k)-\sqrt{ }(2 R) \leqq s_{i} \leqq(n / k)+\sqrt{ }(2 R)
\end{aligned}
$$

and so there are not more than $A R^{\frac{1}{2}}$ choices of s_{i}. The lemma follows, since s_{k} is fixed, once s_{1}, \ldots, s_{k-1} are chosen, and $R<A V$ if $V \geqq 1$.

For any $\alpha>0$ we write

$$
L(\alpha, n)=\sum_{((n))} e^{-2 \alpha R}=\sum_{((n))} \exp \left(-\alpha\left\{\sum_{i=1}^{k} s_{i}{ }^{2}-\left(n^{2} / k\right)\right\}\right) .
$$

We shall find an asymptotic approximation to $M_{n q}$ in terms of $L(\alpha, n)$, so that we need to evaluate the latter. It is easily verified that $L(\alpha, n+k)=$ $L(\alpha, n)$, so that $L(\alpha, n)=L(\alpha, a)$, where a is the least non-negative residue of $n(\bmod k)$. Hence, $L(\alpha, n)$ depends on α and on a, but not otherwise on n. We see also that $L(\alpha, n)$ is a continuous function of α, for $\alpha>0$. Using Lemma 1 , we have the next lemma almost trivially.

Lemma 2. As $\alpha \rightarrow \infty$,

$$
L(\alpha, a) \sim c_{a}(k) e^{-2 \alpha b} .
$$

We take $\gamma>0$ and write

$$
\begin{aligned}
Z & =\sum_{i=1}^{k-1} s_{i} \\
\Delta & =k \sum_{i=1}^{k-1} s_{i}^{2}-Z^{2} \\
H_{k}(\gamma, a) & =\sum e^{-\gamma \Delta} \cos (2 \pi a Z / k)
\end{aligned}
$$

where the sum is extended over all integral values of $s_{1}, s_{2}, \ldots, s_{k-1}$, positive, negative or zero. (The coefficient C_{0} of $\S 1$ is $H_{k}\left(2 \pi^{2} / \log 2, a\right)$.) In [$\mathbf{5}$, Theorem 3], we deduced from [1] that

$$
\begin{equation*}
L(\alpha, a)=k^{-\frac{1}{2}}(\pi / \alpha)^{\frac{1}{2}(k-1)} H_{k}(\gamma, a), \tag{2.2}
\end{equation*}
$$

where $\alpha \gamma=\pi^{2}$. (We were concerned only with the case in which $\alpha=\frac{1}{2} \log j$, where j is a positive integer, but this restriction played no part in the proof and is unnecessary. We require (2.2) here for general positive α.) From this we can deduce another lemma.

Lemma 3. As $\alpha \rightarrow 0$, we have

$$
L(\alpha, a) \sim k^{-\frac{1}{2}}(\pi / \alpha)^{\frac{1}{2}(k-1)} .
$$

We shall, however, require the value of $L(\alpha, a)$ for finite positive α. In Lemma 3, we have used the obvious fact that $H_{k}(\gamma, a) \rightarrow 1$ as $\gamma \rightarrow \infty$. More precisely, as we have shown in [5],

$$
\left\{\begin{array}{l}
H_{2}(\gamma, a)=1+2 e^{-\frac{1}{2 \gamma} \gamma} \cos \pi a+O\left(e^{-2 \gamma}\right) \tag{2.3}\\
H_{3}(\gamma, a)=1+6 e^{-2 \gamma / 3} \cos (2 \pi a / 3)+O\left(e^{-2 \gamma}\right) \\
H_{4}(\gamma, a)=1+8 e^{-3 \gamma / 4} \cos \frac{1}{2} \pi a+6 e^{-\gamma} \cos \pi a+O\left(e^{-2 \gamma}\right)
\end{array}\right.
$$

Indeed, we gave slightly more complicated formulae valid for all k and for which the error is $O\left(e^{-9 \gamma / 2}\right)$.

Thus, we have a very good approximation to $L(\alpha, a)$ when α is small, so that γ is large. As we saw in [4], the approximation for small α remained very good when $\alpha=\frac{1}{2} \log 2$ and $k<1000$, the error involved in taking $H_{k}(\gamma, a)=1$ being less than two parts in a million. Indeed, the approximations obtained from (2.2) and (2.3) remain good for $\alpha \leqq \pi$, the proportional error containing a factor $e^{-2 \gamma} \leqq e^{-2 \pi}<0.002$. Again, this can be improved by the more complicated formulae in [5].

If $\alpha>\pi$, the series $L(\alpha, a)$ converges rapidly and it is not difficult to see that

$$
L(\alpha, a)=c_{a}(k) e^{-2 \alpha b}\left\{1+O\left(e^{-2 \alpha}\right)\right\}
$$

and that $e^{-2 \alpha} \leqq e^{-2 \pi}<0.002$. Again, we can easily improve the approximation. Thus, for moderate sized $k, L(\alpha, a)$ can be readily evaluated to any reasonable degree of accuracy for finite α.

Lemma 4. If $N-q \rightarrow \infty$, we have

$$
c_{q}(Q) N^{b} \sim c_{q}(N)(N-q)^{b} .
$$

This can be easily verified if we use the well-known asymptotic expansion of the logarithm of the Γ-function in the form that, if $y=O(1)$ and $X \rightarrow \infty$, then
(2.4) $\log \Gamma(X+y+1)=\left(X+y+\frac{1}{2}\right) \log X-X+\frac{1}{2} \log (2 \pi)+O(1 / X)$.

If $N-q=h=O(1)$, however, the result of the lemma is true only if $\Gamma(h+1)=h^{b}(h-b)!$, which is certainly false for integral $b \geqq 2$, for example, when $k=16, a=8$.
3. Asymptotic approximation to $M_{n q}$: statement of results. We write

$$
\begin{aligned}
H & =k^{n+\frac{1}{2} k}(2 \pi n)^{-\frac{1}{2}(k-1)} \\
\beta & =\frac{1}{2} \log (N /(N-q))+\frac{1}{2}(k / n) .
\end{aligned}
$$

Theorem 1. If $0 \leqq q<Q$, then, as $n \rightarrow \infty$,

$$
M_{n q} \sim H c_{q}(Q) N^{b}(N-q)^{-b} L(\beta, a) .
$$

If $q=Q$ then $M_{n q} \sim H c_{a}(k)$.
This appears a somewhat complicated statement, but that is because it covers all q. From it and the lemmas of the last section we can deduce a series of results for different ranges of q, which are much simpler.

Theorem 2. If $q=o(n)$, then

$$
M_{n q} \sim k^{n} c_{q}(Q) \sim k^{n} c_{q}(N)
$$

Theorem 3. If $q / n \rightarrow \delta>0$, then

$$
M_{n q} \sim k^{n} c_{q}(Q)\left(\frac{k-1}{k-1+2 \delta}\right)^{\frac{1}{2}(k-1)}
$$

Theorem 4. If $n=o(q), q=o(N)$, then

$$
M_{n q} \sim k^{n} c_{q}(Q)\{(k-1) n /(2 q)\}^{\frac{1}{2}(k-1)} .
$$

Theorem 5. If $N-q=o(N)$, then

$$
\begin{equation*}
M_{n q} \sim H c_{a}(k) c_{q}(Q) \tag{3.1}
\end{equation*}
$$

Theorem 6. If $q / N \rightarrow \delta$ and $0<\delta<1$, then

$$
M_{n q} \sim H c_{q}(N) L\left(-\frac{1}{2} \log (1-\delta), a\right)
$$

We write $c=\frac{1}{8}$. We can easily verify that it is sufficient to prove the following two lemmas.

Lemma 5. If $N-q \leqq N^{1-c}$, then (3.1) is true.

Lemma 6. If $N-q>N^{1-c}$, then

$$
M_{n q} \sim H c_{q}(N) L(\beta, a)
$$

4. Proof of Lemma 5. We need first two preliminary lemmas.

Lemma 7. If $R=o\left(n^{4 / 3}\right)$, then

$$
\log P=\log H-(k R / n)+o(1)
$$

If ξ is small, we have

$$
\begin{equation*}
(1-\xi) \log (1-\xi)=-\xi+\frac{1}{2} \xi^{2}+0\left(\xi^{3}\right) \tag{4.1}
\end{equation*}
$$

We write $\xi_{i}=\left(n-k s_{i}\right) / n$, so that $\sum \xi_{i}=0, \sum \xi_{i}{ }^{2}=2 k^{2} R / n^{2}, \xi_{i}=o(1)$, and $n \xi_{i}{ }^{3}=o(1)$. Again, $s_{i} \rightarrow \infty$ with n. Hence, by (2.4) and (4.1), we have

$$
\begin{aligned}
\log (n!)-k \log \left(s_{i}!\right) & =\log H-n\left\{\left(1-\xi_{i}\right) \log \left(1-\xi_{i}\right)+\xi_{i}\right\}+o(1) \\
& =\log H-\frac{1}{2} n \xi_{i}{ }^{2}+o(1)
\end{aligned}
$$

The lemma follows when we sum over i.
Lemma 8. If, for a non-negative n-set, we have $R>n^{1+c}$, then

$$
\log P<\log H-k n^{c}+0(1)
$$

Let B_{h} be a non-minimal, non-negative n-set and let R_{h}, P_{h} be the corresponding values of R and P. Without loss of generality, we may take $s_{1} \leqq s_{2} \leqq \ldots \leqq s_{k}$. Since B_{h} is non-minimal, we have $s_{k}-2 \geqq s_{1} \geqq 0$. We construct B_{h+1} by replacing s_{1} by $s_{1}+1$ and s_{k} by $s_{k}-1$. It follows that $P_{h+1}=P_{h} s_{k} /\left(s_{1}+1\right)>P_{h}$ and from (2.1) that $R_{h}-R_{h+1}=s_{k}-s_{1}-1$, and so

$$
\begin{equation*}
1 \leqq R_{h}-R_{n+1}<n \tag{4.2}
\end{equation*}
$$

If we take B_{1} to be the n-set of our lemma, we can construct a sequence of non-negative n-sets, viz. $B_{1}, B_{2}, \ldots, B_{l}$, by the above process. The P_{n} sequence is steadily increasing and the R_{h} sequence steadily decreasing, both in the strict sense. The B-sequence will come to an end at B_{t}, a minimal n-set. But, by (4.2), at least one member of the sequence (say B_{j}) will have $R_{j}=n^{1+c}+O(n)=o\left(n^{4 / 3}\right)$. Hence, by Lemma 7,

$$
\log P_{1}<\log P_{j}=\log H-k n^{c}+O(1)
$$

and this is Lemma 8.
If $q \leqq Q-V$, we have

$$
\begin{equation*}
\frac{c_{q}(Q-V)}{c_{q}(Q)}=\frac{(Q-q) \ldots(Q-q-V+1)}{Q(Q-1) \ldots(Q-V+1)} \leqq \frac{(Q-q)^{V}}{Q^{V}} \tag{4.3}
\end{equation*}
$$

and otherwise $c_{q}(Q-V)=0$.

We can now prove Lemma 5 . We take $N-q \leqq N^{1-c}$ and deduce from (4.3) that

$$
c_{q}(Q-V) / c_{q}(Q) \leqq A N^{-c V} .
$$

For each of the $c_{a}(k)$ minimal n-sets, we have $R=b$, and so $P \sim H$, by Lemma 7. For all other non-negative n-sets, $P<A H$, by Lemmas 7 and 8 . Hence, by Lemma 1,

$$
\begin{aligned}
& M_{n q}-H c_{a}(k) c_{q}(Q) \\
& \quad \leqq A H c_{q}(Q) \sum_{V \geqq 1} V^{\frac{1}{2}(k-1)} N^{-c V}<A H c_{q}(Q) N^{-c},
\end{aligned}
$$

and Lemma 5 follows.
5. Proof of Lemma 6. We write

$$
J=\min \left(n^{c+1}, n^{c+2} / q\right)
$$

\sum_{1} to denote summation over all n-sets (necessarily non-negative) for which $V \leqq J$, and

$$
\sum_{2}=\sum_{(n)}-\sum_{1}, \sum_{3}=\sum_{((n))}-\sum_{1} .
$$

We also write

$$
\begin{aligned}
& E_{1}=\sum_{1}\left\{P c_{q}(N-R)-H c_{q}(N) e^{-2 \beta R}\right\} \\
& E_{2}=\sum_{2} P c_{q}(N-R), E_{3}=H c_{q}(N) \sum_{3} e^{-2 \beta R}
\end{aligned}
$$

so that

$$
\begin{equation*}
M_{n q}-H c_{q}(N) L(\beta, n)=E_{1}+E_{2}-E_{3} . \tag{5.1}
\end{equation*}
$$

We have $N-q \geqq N^{1-c}$, and so $q \leqq N-N^{1-c}$. We remark that $L(\beta, n)>$ $A e^{-2 \beta b}$, and that

$$
\beta \leqq A+\frac{1}{2} \log \left(N /(N-q) \leqq A+\frac{1}{2} \log N^{c} \leqq A+c \log n\right.
$$

Hence,

$$
\begin{equation*}
L(\beta, n)>A n^{-2 b c} . \tag{5.2}
\end{equation*}
$$

If $q \leqq n$, we have $J=n^{c+1}$ and, in \sum_{2},

$$
\log P<\log H-k n^{c}+o(1)
$$

by Lemma 8. Hence

$$
\sum_{2} p<A H e^{-k n c} \sum_{2} 1 \leqq A H n^{k-1} e^{-k n c}
$$

since $\sum_{2} 1 \leqq n^{k-1}$. Hence,

$$
\begin{equation*}
E_{2}=o\left(H c_{q}(N) L(\beta, n)\right) \tag{5.3}
\end{equation*}
$$

by (5.2). If $q>n$, we have $J=n^{c+2} / q$ and, in \sum_{2},

$$
c_{q}(N-R) \leqq c_{q}(Q)\{(Q-q) / Q\}^{J}
$$

by (4.3). Again,

$$
J \log \left(\frac{Q-q}{Q}\right) \leqq-\frac{q J}{Q} \leqq-\frac{n^{c+2}}{Q} \leqq-A n^{c}
$$

Hence,

$$
E_{2} \leqq c_{q}(Q) e^{-A n c} \sum_{2} p \leqq k^{n} c_{q}(Q) e^{-A n c}
$$

and (5.3) follows again.
We have also

$$
\beta=-\frac{1}{2} \log \{(N-q) / N\}+\frac{1}{2}(k / n) \geqq A n^{-2}(q+n),
$$

and so $\beta J>A n^{c}$. Hence, by Lemma 1 ,

$$
\begin{aligned}
\sum_{3} e^{-2 \beta R} & \leqq A e^{-2 \beta b} \sum_{V>J} V^{k-1} \exp (-2 \beta V) \\
& \leqq A n^{A} e^{-2 \beta b-A n^{c}}
\end{aligned}
$$

and so, by (5.2),

$$
\begin{equation*}
E_{3}=o\left(H c_{q}(N) L(\beta, n)\right) \tag{5.4}
\end{equation*}
$$

To deal with E_{1} we need one further lemma.
Lemma 9. If $0 \leqq q \leqq N-N^{1-c}$ and $R=o\left((N-q)^{2 / 3}\right)$, then

$$
\log \left(\frac{c_{q}(N-R)}{c_{q}(N)}\right)=R \log \left(1-\frac{q}{N}\right)-\frac{q R^{2}}{2 N(N-q)}+o(1)
$$

We have

$$
\frac{c_{q}(N-R)}{c_{q}(N)}=\frac{\Gamma(N-R+1) \Gamma(N-q+1)}{\Gamma(N-R-q+1) \Gamma(N+1)}
$$

We write $Y=N-q, \xi=R / Y$, and

$$
\omega(q)=\log \Gamma(Y+1)-\log \Gamma(Y-R+1)-R \log Y+\frac{1}{2} R \xi
$$

It is enough to prove that $\omega(q)-\omega(0)=o(1)$. We see that $\xi=o(1)$ and that $Y \xi^{3}=o(1)$. Hence, by (2.4) and (4.1),

$$
\begin{aligned}
\omega(q) & =\left(Y-R+\frac{1}{2}\right)\{\log Y-\log (Y-R)\}-R+\frac{1}{2} R \xi+o(1) \\
& =-Y\left\{(1-\xi) \log (1-\xi)+\xi-\frac{1}{2} \xi^{2}\right\}+o(1)=o(1),
\end{aligned}
$$

and the lemma follows.
In \sum_{1}, we have

$$
R \leqq b+J \leqq A+\min \left(n^{c+1}, n^{c+2} / q\right)
$$

Hence

$$
R \leqq A+n^{c+1}=o\left(N^{2(1-c) / 3}\right)=o\left((N-q)^{2 / 3}\right)
$$

since $c+1<4(1-c) / 3$. Again,

$$
\frac{q R^{2}}{N(N-q)} \leqq o(1)+\frac{q \dot{J}^{2}}{n^{4-2 c}} \leqq o(1)+\frac{n^{2 c+3}}{n^{4-2 c}}=o(1) .
$$

Hence, in \sum_{1}, by Lemmas 7 and 9 ,

$$
P c_{q}(N-R)=H c_{q}(N) e^{-2 \beta R}\{1+o(1)\}
$$

and so

$$
E_{1}=o\left(H c_{q}(N) L(\beta, n)\right)
$$

Combining this with (5.1), (5.3), and (5.4), we have Lemma 6.

References

1. R. Bellman, A brief introduction to theta-functions (Holt, Reinhart and Winston, New York, 1961).
2. R. C. Read, The number of k-coloured graphs on labelled nodes, Can. J. Math. 12 (1960), 409-413.
3. R. C. Read and E. M. Wright, Coloured graphs: a correction and extension, Can. J. Math. 22 (1970), 594-596.
4. E. M. Wright, Counting coloured graphs, Can. J. Math. 13 (1961), 683-693.
5. ——Counting coloured graphs. II, Can. J. Math. 16 (1964), 128-135.

University of Aberdeen, Aberdeen, Scotland

