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Abstract

Wreath products of nondiscrete locally compact groups are usually not locally compact groups, nor even
topological groups. As a substitute introduce a natural extension of the wreath product construction to the
setting of locally compact groups. Applying this construction, we disprove a conjecture of Trofimov,
constructing compactly generated locally compact groups of intermediate growth without any open
compact normal subgroup.
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1. Introduction
Let B,H be groups and let X be an H-set. The unrestricted wreath product B ōXH
is the semidirect product BX o H, where H permutes the copies in the power BX .
The (restricted) wreath product is its subgroup B oX H = B(X) o H, where B(X) is the
restricted power. When X = H with action by left translation, these are called the
unrestricted and restricted standard wreath product. In both cases, some authors also
refer to the standard wreath product simply as the ‘wreath product’, and to the general
case as the ‘permutational wreath product’.

Originally the definition comes from finite groups, where the restricted–unrestricted
distinction does not appear. Specifically, the first example to occur was probably the
wreath product C2 o{1,...,n} Sn, where C2 is cyclic of order 2 and Sn is the symmetric
group. It is a Coxeter group of type Bn/Cn and thus isomorphic to the Weyl group in
simple algebraic groups of these types.

An early use of general wreath products is the classical theorem [26] that every
group that is an extension of a normal subgroup B with quotient H embeds into the
unrestricted standard wreath product B ōH. See [9, Theorem 6.2] for a topological
version (with B compact and H discrete), as well as [33] for a more subtle
generalization in the case of profinite groups.
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[2] Locally compact wreath products 27

In geometric group theory, the restricted wreath product occurs more naturally:
indeed it is finitely generated as soon as B,H are finitely generated and X has finitely
many orbits (while the unrestricted one is uncountable as soon as X is infinite and B
nontrivial).

Still, the definition does not immediately generalize to locally compact groups.
Indeed, for X infinite, the power BX fails to be locally compact as soon as B is
noncompact, and the restricted power B(X) fails to be locally compact as soon as B
is nondiscrete. This bad behavior is essentially well known. For instance, for the
standard unrestricted wreath product, it was observed in [21] that, for B , 1 and H
nondiscrete, the obvious product topology is not even a group topology on B o H.

The purpose of this note is to indicate how the definition of wreath products
naturally extends, in the context of geometric group theory, to the setting of locally
compact groups. This is done in Section 2.

This extension is natural even within the study of discrete groups. Let us provide
three illustrations.

• It is well known that for any two finite groups F1, F2 of the same cardinality n, the
groups F1 o Z and F2 o Z admit isomorphic (unlabeled) Cayley graphs, just taking
Fi ∪ {1Z} as generating subset. This means that these groups admit embeddings as
cocompact lattices in a single locally compact group, namely the isometry group of
this common Cayley graph. A natural explicit group in which they indeed embed
as cocompact lattices is the topological wreath product Sn o

Sn−1 Z (to be defined in
Section 2), where Sk is the symmetric group on k letters (see Example 2.7).
• Adrien Le Boudec [28] uses lattices in such wreath products to obtain two quasi-

isometric nonamenable finitely generated groups, one being simple and the other
having infinite amenable radical.
• It is a difficult question to determine which wreath products of discrete groups

G = B oH/L H have the Haagerup property, assuming that B and H have the Haagerup
property. It was proved in [18] that this holds if L = 1. Furthermore, assuming
that L = N is normal, we can embed it diagonally into H × B oH/N (H/N); thus if in
addition H/N has the Haagerup property, then G also has the Haagerup property.
Considering topological wreath products allows us to extend this result to the case
where L is a commensurated subgroup.

Theorem 1.1. Assume that B, H have the Haagerup property, that L is a
commensurated subgroup of H such that the relative profinite completion H i L
(which is nondiscrete in general; see Section 3.2) has the Haagerup property. Then
the wreath product B oH/L H also has the Haagerup property.

(All relevant definitions are given in Section 3.) This is a particular case of
Theorem 3.3, which applies to more general (nondiscrete) groups. An instance
where it applies is when H = SL2(Z[1/k]) and L = SL2(Z[1/`]), where ` divides
k. It is not covered by the previously known results (except in the trivial case when
k divides some power of `, in which case Z[1/`] = Z[1/k]). Let us also mention that
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Theorem 3.3 also includes a statement about Property PW, a combinatorial stronger
analogue of the Haagerup property.

Finally, using one instance of this wreath product construction, we obtain the
following result.

Theorem 1.2 (see Theorem 5.1). There exists a totally disconnected, compactly
generated, locally compact group that has subexponential growth and is not compact-
by-discrete (i.e., has no compact open normal subgroup).

This relies on the construction by Bartholdi and Erschler [3] of some (discrete)
wreath products of subexponential growth. This disproves a conjecture of Trofimov
[37, (**), page 120] about the structure of vertex-transitive graphs; see Section 5.2.
This conjecture was also the main subject of discussion in the more recent paper by
the same author [38].

1.1. Outline.

• In Section 2 we introduce semirestricted wreath products, the promised natural
extension of wreath products to the setting of locally compact groups.

• In Section 3 we prove a stability result for the Haagerup property and its
combinatorial strengthening, Property PW, including Theorem 1.1 as a particular
case.

• In Section 4 we describe the subgroup of bounded elements and the polycompact
radical for arbitrary semirestricted locally compact wreath products. This is used
in a very particular case to obtain that this subgroup is trivial, so as to prove that
one group is not compact-by-discrete, in Section 5.

• In Section 5 we prove Theorem 1.2, explain why it disproves Trofimov’s
conjecture, and ask some further open questions on locally compact groups of
intermediate growth.

• In Section 6 we extend some results of infinite presentability to the locally
compact setting, and we also consider them in the analogous context of wreathed
Coxeter groups.

• In Section 7 we present a variant of the construction of Section 2, relying on a
commensurating action of the acting group.

2. Wreath products in the locally compact context

We wish to extend the wreath product B oX H to locally compact groups. In
all the following, B, H are groups and X is an H-set; the group H acts on BX by
h · f (x) = f (h−1x).

We begin with the easier case where B is still assumed to be discrete; now H is a
locally compact group. On the other hand, we still assume that X is discrete: X is a
continuous discrete H-set. This means that one of the following equivalent conditions
is fulfilled:
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• the action of H on X is continuous (that is, the action map H × X → X is
continuous);

• for every x ∈ X, the stabilizer Hx is open in H;
• X is isomorphic as an H-set to a disjoint union

⊔
i∈I H/Li, where (Li)i∈I is a family

of open subgroups of H.

Then the action of H on the discrete group B(X) (restriction of the action on BX) is
continuous. The semidirect product B(X) o H is a locally compact group for the product
topology. Note that when H is nondiscrete, this does not subsume the standard wreath
product; in this setting, the closest generalization is the case where X = H/L with L
compact open.

Now let us deal with the general case. We know that the restricted wreath product
behaves well when B is discrete and the unrestricted wreath product behaves well when
B is compact. The natural definition consists in interpolating between restricted and
unrestricted wreath products. We first define it with no topological assumption:

Definition 2.1. Let B,H, X be as above and let A be a subgroup of B. We first define
the semirestricted power

BX,A = { f ∈ BX : f (x) ∈ A, ∀∗x ∈ X},

where ∀∗ means ‘for all but finitely many’. The semirestricted wreath product is
defined as the semidirect product

B oAX H = BX,A o H.

Remark 2.2. The semirestricted power is a particular case of the (semi)restricted
product, which underlies the classical notion of Adele group, and is also considered
more generally (and with closer motivation) in [2, Section 3.1], to notably construct
noncocompact lattices in some metabelian locally compact groups.

An instance of a semirestricted power (attributed to the author) appears in a paper
of Eisenmann and Monod [22, Section 3]: namely, F is a finite perfect group and K a
nontrivial subgroup such that F is not normally generated by any element of K, but that
generates F normally. Then, for X infinite, FX,K is a perfect locally compact group,
with no infinite discrete quotient, that is not topologically normally generated by any
element.

Locally compact wreath products B oH/L H with B discrete, but H arbitrary, are
mentioned in [23, Theorem C]. An instance of semirestricted wreath product is
mentioned in [27, Proposition 6.14].

Next, the general definition in the locally compact setting is when A is compact
open in B.

The following lemma is standard.

Lemma 2.3 [16, Proposition 8.2.4]. Let G be a group and H a subgroup. Let T be
a group topology on H. Suppose that every inner automorphism of G restricts to a
continuous isomorphism between two open subgroups of H. Then there is a unique
topology on G making H open with the induced topology coinciding with T . �
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Proposition 2.4. Suppose that B is a locally compact group, A is a compact open
subgroup and X a (discrete) set. There is a unique topological group structure on BX,A

that makes the embedding of AX a topological isomorphism to an open subgroup. It is
locally compact.

Suppose in addition that H is a locally compact group and that the H-action on
X is continuous (i.e., has open point stabilizers). Then there is a unique structure of
topological group on B oAX H = BX,A o H that makes it a topological semidirect product.

Proof. The first fact follows from Lemma 2.3. Let us now check that H acts
continuously on BX,A. If hi → h, wi → w, then, for i large enough, we can write
wi = αiw with αi ∈ AX , αi → 1. Also write hi = mih, where mi → 1. Then

hi · wi = hi · (αiw) = (hi · αi)(hi · w) = (mi · (h · αi))(mi · (h · w)).

We have νi = h · αi → 1, and hence mi · νi → 1: indeed, for all x ∈ X, mi · νi(x) =

νi(m−1
i x); since mi → 1, for large i we have m−1

i x = x, whence the fact. Similarly,
mi · (h · w) tends to h · w, and since BX,A is a topological group, we obtain hi · wi →

h · w. �

Recall that a homomorphism between locally compact groups is copci if it is
continuous, proper, with cocompact image.

Proposition 2.5. Let B1, B2 be locally compact groups with compact open subgroups
A1, A2, and u : B1 → B2 be a continuous homomorphism mapping from A1 into A2.
This yields continuous homomorphisms

f : BX,A1
1 → BX,A2

2 , f ′ : B1 o
A1
X H → B2 o

A2
X H.

Consider the induced map ū : B1/A1 → B2/A2.

(1) Suppose that X , ∅. Then f is proper if and only if f ′ is proper, if and only if ū
is injective (that is, u−1(A2) = A1).

(2) Suppose that X is infinite. Then f has cocompact image if and only f ′ has
cocompact image, if and only if ū is surjective (that is, the composite map
B1 → B2 → B2/A2 is surjective).

(3) Thus for X infinite, f is copci if and only if ū is bijective.

Proof. It is enough to check everything for f . The inverse image of the compact open
subgroup A2

X is (u−1(A2))X,A1 , and is compact if and only if u−1(A2) = A1. This yields
the first part.

For the second, if M is the projection in B2/A2 of the image, then the projection in
(B2/A2)(X) = BX,A2

2 /AX
2 of the image is M(X). It has finite index only when M = B2/A2,

and since AX
2 is compact, conversely if M = B2/A2 then cocompactness follows. �

Remark 2.6. Since A is a compact open subgroup of B, the unit connected component
B◦ = A◦ is compact. We readily see that (B oAX H)◦ is the unrestricted wreath product
B◦ ōXH◦ ' (B◦)X × H◦.
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Example 2.7. Fix any finitely generated group Γ. Let F be a finite group, and fix a
bijection of F with {1, . . . , n}. The left action of F on itself yields a homomorphism
F → Sn, inducing a bijection F → Sn/Sn−1, where Sn−1 is any point stabilizer.
Hence, by Proposition 2.5, it induces an embedding of F o Γ into Sn o

Sn−1 Γ as a
cocompact lattice.

It would thus be interesting to further investigate these groups Sn o
Sn−1 Γ.

Actually, the isometry group H of the Cayley graph of Γ, with respect to some
finite generating subset S, can turn out to be larger than Γ, for example, nondiscrete
(as when Γ is free over S and S contains at least two elements). Then the isometry
group of the Cayley graph of F o Γ (with respect to F ∪ S ) includes a larger subgroup
including Sn o

Sn−1 Γ, namely Sn o
Sn−1
L H, where L is the (compact) stabilizer of 1 ∈ Γ in

the isometry group of the Cayley graph of Γ. We can expect this to often coincide with
the full isometry group of the given Cayley graph of F o Γ.

Note that for the wreath product C o Z, this only yields an embedding into an
overgroup of finite index, while there are natural known nondiscrete envelopes; see
Example 7.2 for q = 2.

The semirestricted wreath product construction preserves unimodularity.

Proposition 2.8. The semirestricted wreath product B oAX H is unimodular as soon as
B and H are unimodular.

Proof. Since A is open in B and B is unimodular, A is unimodular and conjugation
by B preserves locally its Haar measure around 1. It follows that conjugation of
AX by an element of the form δx(b) (mapping x to b and other elements of X to 1)
preserves locally the Haar measure of AX , and hence this holds for all elements of
BX,A. Hence BX,A is unimodular.

Clearly H preserves the Haar measure of AX , and hence it locally preserves the Haar
measure of BX,A. Since H is unimodular, it follows that the semidirect product is also
unimodular. �

Remark 2.9. Some authors, such as Klopsch [25, Section 4.3] refer to a possible notion
of profinite wreath product between profinite groups, defining it in a particular case.

Let us define it here, calling it a compact wreath product; it will not be used
elsewhere in the paper and is distinct from the constructions we consider. Namely,
let B be an abelian compact group and H a profinite group. The compact wreath
product B ôH is the projective limit of B ō P, where P ranges over (Hausdorff) finite
quotients of P. It is mentioned in the particular case: B cyclic of order p and H the
p-adic group Zp in [25, Section 4.3]; the same example also occurs in [20, Section 11,
Exercise 8].

The main drawback of this construction, namely the restriction to B abelian, is due
to the fact that when P is a finite quotient of K and P′ a proper quotient of P, there is
a canonical homomorphism from B o P onto B o P′ only when B is abelian. Its main
advantage is that it does not refer to any choice of open subgroup in B and does not
require H to be discrete.
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3. Haagerup and PW properties

3.1. Definition of Haagerup and PW properties. Recall that a locally compact
group has the Haagerup property if the function 1 on G admits an approximation,
uniformly on compact subsets, by continuous positive-definite functions vanishing at
infinity. A locally compact group has the Haagerup property if and only if all its open,
compactly generated subgroups have the Haagerup property. For these compactly
generated subgroups, or more generally for σ-compact locally compact groups, the
Haagerup property is equivalent to the existence of a proper continuous conditionally
negative-definite function, or equivalently to a metrically proper affine isometric action
on a Hilbert space. All these facts are due to Akemann and Walter [1].

Also recall that a locally compact group has Property PW if it admits a continuous
action on a discrete set X with a subset M ⊂ X such that the function g 7→ `(g) =

#(M 4 gM) takes finite values and is proper. This notion has been widely considered
(at least for discrete group actions) before being given a name in [17] and being studied
in [15] (where, in particular, it is checked that ` is automatically continuous). Clearly
Property PW implies σ-compactness. It is equivalent to the existence of a metrically
proper continuous action on a CAT(0) cube complex.

3.2. Commensurated subgroups and relative profinite completion. Recall that
two subgroups of a group are commensurate if their intersection has finite index in
both; a subgroup is commensurated if its conjugates are pairwise commensurate. It is
a classical observation that a subgroup L of a group H is commensurated if and only
if L has finite orbits on H/L.

Definition 3.1. Let H be a locally compact group and L be an open subgroup of H.
The relative profinite completion of (H, L) is the projective limit H i L = lim

←−−
H/M,

where M ranges over the open finite index subgroups of L.

Endowed with the projective limit topology, this is a locally compact space
(regardless of L being commensurated) with continuous (left) H-action and a canonical
continuous H-equivariant map H → H i L. If, in addition, L is commensurated, then
there is a unique continuous group law making it a group homomorphism.

The closure Li L of the image of L in H i L is an open subgroup and L→ Li L is
the usual profinite completion of L. Note that the induced map H/L→ (H i L)/(Li
L) is a bijection, so we denote the latter by H/L if necessary.

Remark 3.2. (a) The relative profinite completion was introduced by Belyaev [4]; it
is sometimes called the Belyaev completion, or profinite completion of H localized at
the subgroup L (all references I am aware of assume that H is discrete).

(b) Now let L again be an open commensurated subgroup of H. A closely related
construction is the Schlichting completion H iSchl L: this is the closure of the image
of H in the Polish group of permutations of H/L. Actually, this is canonically the
quotient of the relative profinite completion by the core of Li L in H i L (that is, the
largest normal subgroup of H i L included in the closure Li L of the image of L).
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In particular, this canonical quotient map H i L→ H iSchl L has a compact kernel.
(See, for instance, [32, Section 4] for these facts.)

(c) The Schlichting completion is sometimes called the relative profinite
completion. This choice is, in my opinion, confusing and we did not follow it,
notably because H i H is the profinite completion, while H iSchl H is the trivial
group. An object called the ‘relative profinite completion’ should include the usual
profinite completion as a particular case. The Schlichting completion is a practical
construction, but is a derived object of the more fundamental relative profinite (or
Belyaev) completion.

3.3. The stability results.

Theorem 3.3. Consider a semirestricted wreath product G = B oAX H (H, B are locally
compact groups, X is an H-set with open point stabilizers, and A is a compact open
subgroup of B).

(1) Assume that B,H have the Haagerup property. Assume that for every point
stabilizer L of X, L is a commensurated subgroup of H and the relative profinite
completion H i L has the Haagerup property. Then G has the Haagerup property.

(2) Assume that G is compactly generated (when X is nonempty and A , B, this
means that H, B are compactly generated and X has finitely many H-orbits). Then
the previous statement holds true when all occurrences of ‘Haagerup property’ are
replaced with ‘Property PW’.

The proof will be by reduction to the case where X = H/L, with L compact open.
The latter case can be viewed as a locally compact extension of the case of standard
wreath products (slightly more general in the discrete case, where it covers the case
with finite stabilizers).

Lemma 3.4. Consider a semirestricted wreath product G = B oAH/L H, with L compact
open in H. Assume that B,H have the Haagerup property. Then G has the Haagerup
property.

Proof. First recall that an H-invariant walling on H/L means an H-invariant Radon
measure µ on the locally compact space 2H/L

∗ = 2H/L r {∅,H/L}. To such a walling we
can associate the pseudo-distance dµ on H/L defined by

dµ(x, x′) = µ
{
M ⊂ H/L : M ` {x, x′}

}
.

Here ` reads as ‘cuts’ and M ` N means that both intersections M ∩ N and M ∩ Nc

(Nc being the complement) are nonempty.
Let us now prove the result. Using the fact that the Haagerup property is stable

under directed unions of open subgroups [12, Proposition 6.1.1], we first reduce to
the case where G is σ-compact. Namely, we need to show that every σ-compact
open subgroup U of the given semirestricted product G = BH/L,A o H is included in
an open subgroup that is also, after modding out by a compact normal subgroup,
a semirestricted product of the same form, but in addition σ-compact. (Taking the
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quotient by a compact normal subgroup does not matter because the Haagerup property
is clearly invariant under taking extensions by compact kernels.)

Denote by (B/A)(H/L) the set of functions from H/L to B/A with finite support,
where the support is the set of points on which the value differs from the basepoint of
B/A (that is, the trivial left A-coset). The projection B→ B/A induces a continuous
projection ρ : BH/L,A → (B/A)(H/L). Also denote by π1 and π2 the projections from
BH/L,A o H to BH/L,A and H defined by π1( f , h) = f , π2( f , h) = h. These are continuous
maps.

Since U is σ-compact and (B/A)(H/L) is discrete, ρ(π1(U)) is countable, and hence
included in (B1/A)(V/L) for some open, σ-compact subgroup B1 of B, including A, and
some open, σ-compact subgroup V of H, including L ∪ π2(U). Then U is included in
the open subgroup B1 o

A
H/L V , and actually sits in a smaller open subgroup, namely the

semidirect product G1 = (B(V/L)
1 AH/L) o V . Define Y = H/L r V/L. Then

G1 = (BV/L,A
1 × AY ) o V.

Observing that Y is V-invariant, we deduce that AY is a compact normal subgroup of
G1 and G1/AY is isomorphic to the σ-compact semirestricted wreath product B1 o

A
V/L V .

This concludes the proof of the reduction to the case where H and B are σ-compact.
Since H has the Haagerup property and is σ-compact, it admits a continuous proper

conditionally definite function. By averaging by the compact subgroup L, we can
choose it to be right L-invariant. Thus it yields a proper H-invariant kernel ψ on H/L.
Set κ =

√
ψ. By [18, Proposition 2.8(iii)] (which is strongly inspired by Robertson and

Steger [34, Proposition 1.4]), there exists an H-invariant walling µ on H/L such that
κ = dµ.

For f ∈ BH/L,A, define SuppA( f ) = {x ∈ H/L : f (x) < A}. Define Dµ : G ×G→ R as
follows: for fi ∈ BH/L,A, hi ∈ H, i = 1, 2,

Dµ( f1h1, f2h2) = µ
{
M ⊂ H/L : M ` SuppA( f −1

1 f2) ∪ {h1L, h2L}
}
.

The difference with the case of standard wreath products from [18] is that we have
{h1L, h2L} instead of {h1, h2} and SuppA instead of Supp. The proof follows, however,
the same lines.

Then Dµ is well defined, continuous, and left-invariant. It is well defined because
the set SuppA( f −1

1 f2) ∪ {h1L, h2L} is finite and the set of M cutting a given finite subset
is a compact open subset of 2H/L

∗ . It is continuous because it is locally constant.
It is obviously left-invariant by BH/L,A. Finally, it is H-invariant by an immediate
verification using the fact that µ is H-invariant.

Recall that a map Ψ : Y × Y → R is measure-definite if it is L1-embeddable, in the
sense that there is a map ϕ from Y to some L1-space such that Ψ(y, y′) = ‖ϕ(y) − ϕ(y′)‖
for all y, y′ ∈ Y (that is, Ψ is isometric, although not necessarily injective). It is well
known that measure-definite implies conditionally negative definite (see [34], from
which the terminology is borrowed).

We claim that Dµ is measure-definite, that is, isometrically embeddable into L1

(this, regardless of the assumption that µ is H-invariant). This fact being closed under
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combinations and pointwise limits, it is enough to check it when µ = δ is a Dirac
measure at some M ⊂ H/L. Here Dδ( f1h1, f2h2) is 1 or 0 according to whether M cuts
SuppA( f −1

1 f2) ∪ {h1L, h2L}. Being a {0, 1}-valued kernel, that Dδ is a pseudo-distance
is equivalent to the condition that being at Dδ-distance zero is an equivalence relation;
the easy argument, already set out in [18], is left to the reader. Next, a {0, 1}-valued
pseudo-distance is obviously measure-definite.

If Dµ(1, f h) ≤ n, then µ{M : M ` SuppA( f ) ∪ {L, hL}} ≤ n. If F is a finite subset,
then µ{M : M ` F} ≥ supx,y∈F µ{M : M ` {x, y}. Hence for all x, y ∈ SuppA( f ) ∪ {L, hL},
we have dµ(x, y) ≤ n. In particular, SuppA( f ) ∪ {hL} is included in the n-ball Bn of
H/L, which is finite by properness.

To conclude, we combine with another affine action. Using the fact that B is σ-
compact, we can fix one continuous proper affine isometric action of B on a Hilbert
space H ; we can suppose that A fixes 0. Let ξ be the corresponding conditionally
negative-definite function on B. Then let BH/L,A act on the `2-sum

⊕
x∈H/LHx of

copies of x, the xth component in BH/L,A acting on the x-component of the direct sum
by the given action, and trivially on other components. The action extends to an action
of the semirestricted wreath product, H, permuting the components. The resulting
conditionally negative-definite function is ξ′( f h) =

∑
x∈H/L ξ( f (x)); it is continuous.

If ξ′( f h) ≤ n, then ξ( f (x)) ≤ n for all x. In particular, if both Dµ(1, f h) ≤ n and
ξ′( f h) ≤ n, then SuppA( f ) ⊂ Bn, and in Bn, f takes values in the compact subset
ξ−1([0, n]) and h ∈ Bn. We see that this forces f h to belong to some compact subset
of G. Thus the continuous conditionally negative-definite function f h 7→ Dµ(1, f h) +

ξ′( f h) is proper on G. �

Lemma 3.5. Consider a semirestricted wreath product G = B oAH/L H, with L compact
open in H. Assume that B,H have Property PW. Then G has Property PW.

Proof. The proof could be expected to work along the same lines as for Property PW.
The problem is that for Property PW, we do not know if it is enough to have a left-
invariant continuous proper distance that is a sum of cut-metrics: Property PW indeed
requires that the decomposition under cut-metrics be invariant by left-translation,
which is not a priori clear. This means that we have to be more explicit, essentially
following the discrete case [17], or rather its version in terms of commensurating
actions given in [15, Proposition 4.G.2].

Consider a continuous discrete H-set Y with commensurated subset M, in the sense
that `0(h) = M 4 hM is finite for all h ∈ H. We will eventually assume that `0 is proper
on H. We can suppose that M is L-invariant. For y ∈ Y , define Wy = {hL ∈ H/L : y ∈
hM} (indeed y ∈ hM is a right-H-invariant condition on h). Let Z be the set of pairs
(y, p), where y ∈ Y and p is a function H/L→ B/A with Supp(p) finite and included in
the complement Wc

x of Wx.
We want to define an action of B oAH/L H on Z. We begin defining

h · (y, p) = (hy, h · p); f · (y, p) = (y, f̄ |Wc
y p), h ∈ H, f ∈ BH/L,A,
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f̄ being the image of f in (B/A)(H/L). First, for (y, p) ∈ Z, observe that

SuppA(h · p) = h SuppA(p) ⊂ hWc
y = Wc

hy.

Thus h · (y, p) ∈ Z. That f · (y, p) ∈ Z is clear. That these maps define actions of H and
BH/L,A is clear; both actions have open stabilizers and thus are continuous. To see that
this extends to an action of the topological semidirect product, we have to compute,
for h ∈ H, f ∈ BH/L,A,

h · f · h−1 · (y, p) = h · f · (h−1y, h−1 · p)
= h · (h−1y, f̄ |Wc

h−1y
h−1 · p) = (y, h · f̄ |Wc

h−1y
p);

we have h · f̄ |Wc
h−1y

= (h · f )|hWc
h−1y

= (h · f )|Wc
y = (h f h−1)|Wc

y . Thus h · f · h−1 · (y, p) =

(h f h−1) · (y, p) and this duly yields a continuous action of the semidirect product.
Define N = M × {1}, `0(h) = #(M 4 hM) and `(g) = #(N 4 gN). Let us check that

` takes finite values. By subadditivity, it is enough to check that ` takes finite values
on both H and BH/L,A. For h ∈ H, we have hN 4 N = (hM 4 M) × {1} and hence ` is
finite on H, where it coincides with `0. We have f · (y, p) ∈ N if and only if y ∈ M
and f̄Wc

y p = 1. Thus (y, p) ∈ N r f −1N if and only if y ∈ M, p = 1, and f̄Wc
y , 1. The

latter means that Wc
y ∩ SuppA( f ) , ∅. For a given element hL ∈ SuppA( f ) ⊂ H/L, the

condition hL ∈ Wc
y means hL < Wy, that is, y < hM. Thus we have

N r f −1N =

{
(m, 1) : m ∈

⋃
hL∈SuppA( f )

M r hM
}
.

Thus f −1N r N = f −1(N r f N) is also finite. So ` takes finite values on both BH/L,A

and H, and hence on all of G, by subadditivity.
We have (M 4 hM) × {1} ⊂ N 4 f hN. Thus `( f h) ≥ `0(h). Also since for each

fixed hL ∈ SuppA( f ), the subset N r f −1N includes (M r hM) × {1}, we have `( f ) ≥
#(M r hM).

We can assume from the beginning that M r hM and hM r M have the same
cardinal for all h (if necessary, replace Y with Y × {0, 1} and M with M × {0} ∪
Mc × {1}). Under this assumption (made for convenience), we have 2`( f ) ≥ `(h) for
all hL ∈ SuppA( f ). In other words, SuppA( f ) is included in the set of hL such that
`0(h) ≤ 2`( f ). Assuming from now on that `0 is proper, this set is finite.

Let ( fnhn) be a sequence in G, with fn ∈ BH/L,A and hn ∈ H, such that `( fnhn) is
bounded. The property `( fnhn) ≥ `0(hn) and the properness of `0 ensure that (hn) is
bounded. Hence `( fn) ≤ `( fnhn) + `(hn) is also bounded, say by k0. Let F(k0) be the
set of hL ∈ H/L such that `0(h) ≤ 2k0; it is finite by properness of `0. Then SuppA( fn)
is included in F(k0).

If B is compact, this shows that ` is proper on G and we are done. In general, we
consider another, simpler commensurating action of G, so as to also make use of the
assumption that H has Property PW. Namely, start from a commensurating action of B,
say on Y ′, commensurating a subset M′, such that the function `1 : b 7→ #(M′ 4 bM′)
is proper on B. We can suppose that M′ is A-invariant.
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Let BH/L,A act on Z′ = Y ′ × H/L by f · (y, x) = ( f (x)y, x) (we can think of Z′ as
disjoint copies of Y ′ on which the factors in BH/L,A act separately). This action has
open stabilizers and hence is continuous. It commensurates the subset N′ = M′ × H/L.
The group H also acts on Z′ by permuting copies; this action is continuous and
preserves M′; clearly it extends the semirestricted wreath product. For g ∈ B oAH/L H,
define `′(g) = #(M′ 4 gM′). Then `′( f h) = `′( f ) for all f ∈ BH/L,A and h ∈ H. To be
precise, `′( f h) =

∑
γL∈H/L `1( f (γL)). In particular, if `′( f h) ≤ k1, then f is valued in

K1 = `−1
1 ([0, k1]), which is compact by properness of `1.

Therefore, if `( fnhn) + `′( fnhn) is bounded, then (hn) is bounded, and for some k0 as
above, SuppA( fn) is included in F(k0) and f takes values in some compact subset K1.
This means that fnhn stays in some compact subset of B oAH/L H, showing the properness
of ` + `′. �

Proof of Theorem 3.3. If X = ∅ or B = A, the quotient of G by the compact normal
subgroup BX is isomorphic to H, and the Haagerup/PW property follows. We can thus
suppose, in each case, that X , ∅ and B , A.

Recall that a group has the Haagerup property if and only if all its compactly
generated open subgroups do. So we can suppose that G is compactly generated (in
the PW case this is an assumption). In particular, H, B are compactly generated and
X has finitely many H-orbits: X =

⊔n
i=1 Xi. Then G embeds as a closed subgroup in∏n

i=1 B oAXi
H, which reduces to the transitive case: X = H/L. By assumption, L is

commensurated.
Consider the diagonal embedding G→ (B oAH/L (H i L)) × H. It is proper: indeed,

if Q is a compact neighborhood of 1 in H, the inverse image of the compact
neighborhood of (AH/L × (Li L)) × Q of 1 is included in the subset AH/L × Q. (We
use here the fact that a continuous homomorphism between locally compact group is
proper if and only if the inverse image of some compact neighborhood of 1 is compact.)

Therefore, it is enough to show that B oAH/L (H i L) has the Haagerup property
(Property PW). In other words, we are reduced to the case where L is compact. This is
the content of Lemma 3.4 in the Haagerup case and Lemma 3.5 in the PW case. �

We leave the converse of Theorem 3.3, for the Haagerup property, as a conjecture.

Conjecture 3.6. Under the assumptions that all point stabilizers are commensurated
subgroups of H (and assuming A , B), the converse holds: if B oAX H has the Haagerup
property, then for every point stabilizer L of X, the relative profinite completion H i L
has the Haagerup property.

Remark 3.7. Conjecture 3.6 can be reduced to the case where A = 1 and B is discrete
cyclic of prime order, and X = H/L is a transitive H-set.

Indeed, we can first choose b ∈ B r A and consider the closure of the subgroup
it generates, to assume that B has a dense cyclic subgroup. This implies that B is
either infinite cyclic or compact abelian. Then, in the latter case, AX is a compact
normal subgroup in the semirestricted wreath product, and hence we can mod it out
and still preserve the Haagerup property. Therefore, we can suppose A = 1. Thus we
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can suppose that B is discrete and cyclic (infinite or prime order if necessary), and
G = B oX H. Also, if the stabilizer condition fails for some x, we can pass to the closed
subgroup B oY H, where Y is the H-orbit of x.

Proposition 3.8. Conjecture 3.6 holds when L is a normal subgroup.

Proof. By Remark 3.7, we can assume that A = 1 and B is discrete abelian nontrivial.
By assumption, G = B(H/L) o H has the Haagerup property. Thus (B(H/L) o H, B(H/L))
has the relative Haagerup property (assuming, as we can, that G is σ-compact, this
means that it admits a continuous affine isometric action on a Hilbert space that
is proper in restriction to B(H/L). By [19, Corollary 5], it follows that (B(H/L) o
(H/L), B(H/L)) also has the relative Haagerup property. Let ψ be a continuous
conditionally positive-definite function on G. If (hn) is any sequence in H/L leaving
compact subsets and b is a nontrivial element in B, and δ the function on H/L mapping
1 to b and other elements to 1, then hnδh−1

n ∈ B(H/L) tends to infinity. Since ψ is proper
on B(H/L), we obtain that ψ(hnδh−1

n ) tends to infinity, and hence (since
√
ψ is symmetric

and subadditive) that ψ(hn) tends to infinity. Since this holds for every (hn), we deduce
that ψ is proper on H. Actually, the argument also works for any sequence ( fnhn)
with hn leaving compact subsets of H; for a sequence fnhn with (hn) bounded and ( fn)
leaving compact subsets of B(H/L), we directly use properness on B(H/L) to infer that
ψ( fnhn) tends to infinity. �

Remark 3.9. The converse of Theorem 3.3 in the PW case can also naturally be asked;
however I refrain from any conjecture since the analogues of the results of [19] are not
available in this setting.

4. Polycompact and bounded radicals

Recall that in a locally compact group:

• W(G) denotes the polycompact radical, namely the subgroup generated by all
compact normal subgroups, which is also the union of all compact normal
subgroups.

• B(G) denotes the bounded radical, namely the union of all relatively compact
conjugacy classes (B stands for bounded). It is also sometimes called ‘topological
FC-center’.

We have W(G) ⊂ B(G) ⊃ Z(G), where the latter is the center. Beware that W(G) and
B(G) can fail to be closed (see [40], and also precisely in the case of semirestricted
wreath products, see Examples 4.6 and 4.7).

Proposition 4.1. Consider a semirestricted locally compact wreath product G = B oAX H
with A , B and X , ∅.

• Write X = X∞ t Xf , separating the union of all infinite and all finite orbits.
• Let N be the kernel of the H-action on X. Define N′ ⊃ N to be the inverse

image in H of W((H/N)δ),where (H/N)δ denotes H/N with the discrete topology

https://doi.org/10.1017/S1446788718000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000216


[14] Locally compact wreath products 39

(so that W((H/N)δ) is the union of all finite normal subgroups of H/N). Define
N′′ ⊃ N to be the set of elements of h acting on X as a finitely supported
permutation.
Define Ξ ⊂ H to be N if B is noncompact and Ξ = N′ ∩ N′′ if B is compact.

• Define CoreB(A) to be the largest normal subgroup of B included in A.

Then

W(G) = (CoreB(A)X∞ ×W(B)Xfin,W(B)∩CoreB(A)) o (W(H) ∩ Ξ),
B(G) = (CoreB(A)X∞ × B(B)Xfin,B(B)∩CoreB(A)) o (B(H) ∩ Ξ).

In particular, if X has no finite H-orbit, then

W(G) = CoreB(A)X o (W(H) ∩ N), B(G) = CoreB(A)X o (B(H) ∩ N).
Proof. Modding out by the compact normal subgroup CoreB(A), we can reduce to
assuming CoreB(A) = 1 and prove, in this case, that

W(G) = W(B)(Xfin) o (W(H) ∩ Ξ), B(G) = B(B)(Xfin) o (B(H) ∩ Ξ).
Let M be the group on the right-hand side. We first check the inclusions ⊃ in both

cases. They follow from the following inclusions.

• W(B)(Xfin) ⊂ W(G). For every compact normal subgroup K of B and finite H-
invariant subset F ⊂ X, W(B)F is a compact normal subgroup and hence is
included in W(G); it follows that the union of all these subgroups (F ranging
over finite H-invariant subsets of X and K among all compact normal subgroups
of B), which is precisely W(B)(Xfin), is included in W(G).

• B(B)(Xfin) ⊂ B(G). Let f belong to this subgroup. Then the support of f being
finite and included in Xfin, the union of H-orbits is a finite H-invariant subset F.
If I is the finite image of f and J is the union of closures of conjugacy classes
of I, then J is compact and the conjugacy class of f is included in JF , which is
compact.

• W(H) ∩ N ⊂ W(G): indeed this is the union of K ∩ N where K ranges over
compact normal subgroups of H. Since K ∩ N is also normal in G, it is therefore
included in W(G). Taking the union yields the inclusion.

• B(H) ∩ N ⊂ B(G): if f ∈ N, then it centralizes BX,A and hence its H-conjugacy
class equals its G-conjugacy class. Hence if f ∈ B(H) ∩ N then f ∈ B(G).

• If B is compact, W(H) ∩ N′ ∩ N′′ ⊂W(G). Let h be an element in N′ ∩ N′′ ∩
W(H). Let M be the closure of the normal subgroup of H generated by h. Since
h ∈ N′′, M acts on X by finitely supported permutations. Since h ∈ N′, the image
of M in the group of permutations of X is finite. Combining, the union Y of all
supports of elements of M is a finite subset of X. Since M is normal in H, Y is
H-invariant. Since h ∈W(H), M is compact. Hence BY o M is a compact normal
subgroup of G. Hence h ∈W(G).

• If B is compact, B(H) ∩ N′ ∩ N′′ ⊂ B(G). We argue as in the previous case. The
difference is that M is not necessarily compact; however, M/(M ∩ N) is still finite.
In BY o M, modulo the compact normal subgroup BY , the G-conjugacy class of f
has compact closure; hence this holds in BY o M and hence in G.
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We now have to prove the reverse inclusions. Denote by π the projection G→ H.

• W(G) ⊂ π−1(W(H)) and B(G) ⊂ π−1(B(H)) are clear.
• W(G) ⊂ B(G) ⊂ π−1(N′ ∩ N′′). Indeed, let C be a conjugacy class included in

B(G). For g ∈ BX,A and f h ∈ C, we have g( f h)g−1 = g f (hgh−1)−1h. Define δx(b)
as the function mapping x to b ∈ B and other elements of X to 1, and apply this
to g = δx(b). Then δx(b) f hδx(b)−1 = δx(b f (x))δhx(b−1). Fix b < A. Then, when
f h ranges over C and x ranges over elements such that hx , x, the x-projection of
δx(b) f hδx(b)−1 is b−1, and thus x has to range over finitely many elements only.
In other words, the set Z of x such that h(x) , x for some f h ∈ C is finite. This
means that, for every f h ∈ C, h acts as the identity on the complement of Z. This
shows that C ⊂ π−1(N′ ∩ N′′).

• If B is noncompact, W(G) ⊂ B(G) ⊂ π−1(N). We prove the complementary
inclusion: suppose that f h ∈ G with h < N. Fix x such that hx , x. Then

p := [ f h, δx(b)] = f hδx(b)h−1 f −1δx(b−1) = f δhx(b) f −1δx(b−1)

= δhx( f (hx)b f (hx)−1)δx(b−1).

So p(x) = b−1. Since B is noncompact, this shows that these commutators, when
b ranges over B, do not have a compact closure and thus f h < B(G).

Now we know that the projection to H is exactly W(H) ∩ Ξ, we only have to
show the reverse inclusions for f ∈ W(G) ∩ BX,A, namely W(G) ∩ BX,A ⊂ W(B)(Xfin)

and B(G) ∩ BX,A ⊂ B(B)(Xfin). These are equivalent to the three inclusions below.

• W(G) ∩ BX,A ⊂ W(B)X,A and B(G) ∩ BX,A ⊂ B(B)X,A: both inclusions are
immediate.

• W(G) ∩ BX,A ⊂ B(G) ∩ BX,A ⊂ B(Xfin). Let f belong to B(G) ∩ BX,A. Suppose by
contradiction that f is not supported by Xfin. Then there exists x ∈ X∞ such that
f (x) , 1. Conjugating f by some element of the form δx(b), we can suppose
that f (x) < A. Hence the H-conjugates of f do not have compact closure, a
contradiction. This shows that f is supported by Xf .

To see that the last statement follows, we need to check that N′ ∩ N′′ = N in the
case where there is no finite orbit. Indeed, (N′ ∩ N) is the union of all subgroups of
the form M where M includes N with finite index, M/N is normal in H/N and acts
on X with finite support. Given such an M, the union of all its supports is finite and
H-invariant, hence empty, so M = N and finally N ∩ N′ = N. �

Corollary 4.2. W(G) = 1 if and only if W(H) ∩ Ξ = 1, (Xfin , ∅ ⇒ W(B) = 1), and
CoreA(B) = 1.

If Xfin = ∅(, X), this can be restated as W(G) = 1 if and only if W(H) ∩ N = 1 and
CoreA(B) = 1.

Corollary 4.3. Assume that Xfin is infinite. Then W(G) is closed if and only if
W(B/CoreB(A)) = 1 and W(H) ∩ N is closed.
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Proof. Since both properties are unchanged when modding out by the compact normal
subgroup CoreB(A), we can suppose that CoreB(A) = 1, and the result then immediately
follows. �

Remark 4.4. Note that (W(G) is closed)⇔ (B(G) is closed) holds for arbitrary locally
compact groups. Indeed ⇐ is stated in [14, Proposition 2.4(ii)], but the converse ⇒
follows from [14, Proposition 2.4(iv)].

Remark 4.5. The assumption only excludes two trivial cases, that is A = B or X = ∅.
Actually, W(G) = AX oW(H) if A = B and W(G) = W(H) if X = ∅, and similarly for
B(G).

Example 4.6. Let (Fi) be a family of finite groups, each Fi acting faithfully on some
finite set Xi. Then the compact group H =

∏
Fi acts on X =

⊔
Xi. Then in this

case, N′ = N′′ =
⊕

Fi. So if B is any nontrivial finite group, we have W(B oX H) =

B(X) o
⊕

Fi =
⊕

B o Fi. In this case W(G) is not closed. This example is very similar
to the classical original example of Wu and Yu [40].

Example 4.7. Let B be a finite group and A a proper subgroup with trivial core (e.g.,
B is nonabelian of order 6 and A has order 2). Let X be a faithful Z-set with only
finite orbits. Then for G = B oAX Z, both W(G) and B(G) are equal to B(X) (which is not
closed).

5. Locally compact groups of intermediate growth

5.1. The construction. It is natural to wonder whether there exist compactly
generated locally compact (CGLC) groups of intermediate growth that are not too
close to discrete groups.

This naturally led to the following question: is every CGLC group of subexponential
growth compact-by-Lie? The point is that the answer is positive for groups of
polynomial growth [29].

A construction of Bartholdi and Erschler [3], along with the semirestricted wreath
product construction, leads to a negative answer.

Theorem 5.1. There exists a totally disconnected CGLC group of intermediate growth
that is not compact-by-discrete.

Proof. Bartholdi and Erschler [3] have shown that the first Grigorchuk group Γ, which
has intermediate growth, has a subgroup Λ of infinite index such that, for every finite
group F, the wreath product ∆ = F oΓ/Λ Γ has intermediate growth as well.

Then assume that n = |F| ≥ 3. Embed, by Proposition 2.5 the latter as a cocompact
lattice into the semirestricted wreath product G = Sn o

Sn−1
Γ/Λ

Γ. Then the latter has
W(G) = 1 by the second case of Corollary 4.2 (using either that W(Γ) = 1 or that Γ

acts faithfully on Γ/Λ). Since ∆ has intermediate growth, so does G. �

We leave the following three questions open.
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Question 5.2. Does there exist a totally disconnected CGLC group of subexponential
growth G that satisfies one of the following:

(1) G is noncompact and has no infinite discrete quotient (as a topological group)?
(2) G is not commable to any discrete group? (Recall that commable is

the ‘equivalence relation’ between locally compact groups generated by the
‘relations’: G2 is isomorphic to a quotient of G1 by normal compact subgroup of
G1; and G2 is isomorphic to a closed cocompact subgroup of G1.)

(3) (Caprace [8, Question 3.9]) G is topologically simple and nondiscrete? (Wesolek
[11, Problem 20.9.6]) G is not Wesolek-elementary? (Wesolek-elementary [39]
means that it lies in the smallest isomorphism-closed class of locally compact
groups containing the trivial groups and stable under taking directed unions and
extensions with discrete or profinite quotients.)

Remark 5.3. (1) If G has polynomial growth, it is compact-by-discrete [29] and hence
cannot fulfill any of the requirements (this also follows as a consequence of Trofimov’s
results on graphs [36]).

(2) If G is a noncompact totally disconnected CGLC group, by [10, Theorem
A], either it has an infinite discrete quotient, or it has a noncompact nondiscrete
topologically simple, compactly generated subquotient S . If G has intermediate
growth, then so does S ; in particular, a positive answer to (1) is equivalent to the
existence of a nondiscrete CGLC, topologically simple group of intermediate growth;
thus a positive answer to (1) would also answer (3).

See Section 7 for an alternative construction for Theorem 5.1, yielding possible
candidates for Question 5.2(2).

Remark 5.4. It is well known that a discrete-by-compact CGLC group G is
automatically compact-by-discrete. Indeed, let D be a cocompact normal discrete
subgroup. Being finitely generated, its centralizer C is open. Since clearly G◦ is
compact, C admits an open compact subgroup K, and hence KD is a cocompact open
subgroup, thus has finite index. So the intersection of all conjugates of K is also open,
and thus G is compact-by-discrete.

It is also well known that this implication does not hold for arbitrary σ-compact
locally compact groups: the group of Example 4.6 is a typical counterexample.

5.2. Trofimov’s conjecture. We say that a connected graph X essentially includes
a tree if there exists an injective, Lipschitz map from the regular trivalent tree into X.
(Trofimov calls this ‘hyperbolic’ but this differs from usual terminology.)

In the following, a graph is identified with its vertex set (so the only graph structure
that matters is the given adjacency relation between vertices); in particular, a graph
homomorphism is understood to be a map between vertex sets mapping adjacent
vertices to adjacent or equal vertices; it also means a 1-Lipschitz map. We call it a
graph-quotient homomorphism if every edge from Y is the image of an edge in X.

Let G be a group acting on a connected graph X. We say that the action is block-
discrete if there exist a graph Y and a continuous action of G on X, a surjective
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G-equivariant graph-quotient homomorphism X → Y with finite fibers, such that,
denoting by GY the image of G in Aut(Y), the vertex stabilizers of the GY -action on Y
are finite.

Trofimov’s conjecture can now be stated.

Conjecture 5.5 (Trofimov [37, 38]). Let G be a group acting vertex-transitively on
a connected graph X of finite valency. Then either the action is block-discrete, or X
essentially includes a tree.

In particular, it predicts that if X has subexponential growth, the action is block-
discrete. On the other hand, we have the following easy observation.

Fact 5.6. Let X be a connected graph of finite valency. Let G be a locally compact
group acting properly vertex-transitively on X. Then the G-action is block-discrete if
and only if G has a compact open normal subgroup.

Proof. We only prove the implication we need, leaving the converse to the reader.
Suppose that the action is block-discrete, and let Y be as in its definition. Since the
vertex stabilizers in Y include vertex stabilizers in X, the G-action on Y is continuous.
Since the G-action on X is proper and fibers are finite (and since X → Y is a graph-
quotient homomorphism), the G-action on Y is proper. Let W be the kernel of the
G-action on Y and let H be a vertex-stabilizer. Since H/W is finite, H is open and W
is a closed subgroup of H, the normal subgroup W is open as well. By properness, W
is compact, proving the implication. �

We can conclude, as a corollary of Theorem 5.1, the following result.

Corollary 5.7. Trofimov’s conjecture above is not true.

Proof. Let G be a totally disconnected CGLC group of intermediate growth and no
compact open subgroup, as asserted in the theorem. Let X be a Cayley–Abels graph
for G (see [16, Section 2.E]): this is a connected graph of finite valency on which G
acts continuously, properly and vertex-transitively. Since G is quasi-isometric to X,
the graph X has subexponential growth and, in particular, does not essentially include
a tree in the above sense. By the fact above, the action is not block-discrete. So it does
not satisfy the conjecture. �

Remark 5.8. Part of the discussion in [38] is about when the above conjecture is
specified when the action of the vertex stabilizer Gv on the 1-sphere around one vertex
Gv is specified to be, modulo its kernel, a given finite permutation group. We have
not tried to describe this permutation group in this construction. However, we can
at least say something: we can arrange the counterexample so that the group in this
finite permutation group is a 2-group. Indeed, it is enough to construct G as a 2-group.
Using the notation from the proof of Theorem 5.1, we can make a slight change in the
construction and assume that G = F oL

Γ/Λ Γ, where F is a nontrivial finite 2-group and L
is a nontrivial subgroup of F with trivial core (e.g., F the dihedral group of order 8 and
L a noncentral cyclic subgroup of order 2). Then W(G) = 1 by Corollary 4.2, and G has
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intermediate growth for the same reason as in the proof of Theorem 5.1. (Alternatively,
we can use the construction of Proposition 7.4, which yields a 2-group.)

In [38, Remark 2.3], Trofimov says that he would be ‘rather surprised if [his]
conjecture were proved in general’, but is optimistic about the case where the local
permutation group is primitive. We do not even know if our example can be arranged
to yield transitive local permutation groups (beware that this depends on the choice
of Cayley–Abels graph, and forces one to study the structure of the Grigorchuk group
action, rather than using it as a black box).

6. Presentability

The material of this section is essentially borrowed from an expunged part,
appearing in an earlier version of [6] (arXiv:1010.0271v2, 2012), exclusively for
discrete groups, in keeping with [6].

We first introduce the following definition, which is [6, Definition 5.9] in the
discrete case.

Definition 6.1. A CGLC group H is largely related if for every epimorphism G� H
of a compactly presented locally compact group G onto H with discrete kernel, the
kernel admits a nonabelian free quotient.

Definition 6.2. A family (Ni)i∈I of closed normal subgroups of a locally compact group
G is independent if Ni is not included in 〈N j : j ∈ I r {i}〉 for any i ∈ I, or equivalently
if the map from 2I to the space N(G) of closed normal subgroups of G mapping J to
〈N j : j ∈ J〉 is injective.

[6, Definition 1.2] A CGLC group G is infinitely independently presented (INIP)
if for some/every compactly presented locally compact group G0 with a quotient map
G0 � G with discrete kernel, the kernel is generated by an infinite independent family
of G0-normal subgroups.

Definition 6.3. Let H be a group and L ⊂ H a subgroup. Consider the equivalence
relation on H: g1 ∼ g2 if g1 belongs to the same L-double coset as g2 or g−1

2 . Let Q
be the quotient of H by this equivalence relation and Q∗ = Q r {L} (observe that L is a
single equivalence class).

Now assume that H is a locally compact group, L an open subgroup, B another
locally compact group and A a compact open subgroup of B. We need to define a
locally compact group G0 with a continuous quotient homomorphism with discrete
kernel G0→ B oAH/L H. If A = 1 (so B is discrete and this is a usual wreath product), the
definition of G0 is given by the amalgamated product (B × L) ∗L H. As an amalgam of
two locally compact groups over a common open subgroup, this is naturally a locally
compact group. As an abstract group, this is the quotient of the free product B ∗ H by
the normal subgroup generated by commutators [B, L]; however, B ∗ H is not a locally
compact group in a natural way unless H is discrete. In general, G0 is defined as the
locally compact group

G0 = (ΠB,A,H/L) ∗AH/L (A ōH),
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where

ΠB,A,H/L =
{
f ∈ BH/L : f (H/L r {L}) ⊂ A

}
(so ΠB,A,H/L ' B × AH/Lr{L}).

Note that G0 is compactly generated as soon as H, B are. From the universal
property, there is a unique homomorphism G0 → B oAH/L H mapping both factors
identically. It is continuous and surjective, and has discrete kernel N. (That it is
continuous with discrete kernel follows from the fact that it restricts to the standard
embedding of the open subgroup AH/L o L.)

Observe that in G0, the normal subgroup Ng generated by [gBg−1, B], for g ∈ H r L,
only depends on the class of g in Q∗. It is easy to see that the Ng generate the kernel N.

Proposition 6.4. If B , A, then the family of normal subgroups (Ng) of G0 is
independent, when g ranges over Q∗. In particular, if the double coset space L\H/L
is infinite and both B and H are compactly generated, then the semirestricted wreath
product G = B oAH/L H is INIP, and moreover it is largely related.

This extends a result of [13], where it was shown under the same assumptions (and
in the discrete case) that the wreath product B oG/H G is infinitely presented.

Proof. In G0, denote by H and B the obvious copies of these groups. For h ∈ H and
x = hL ∈ H/L, define Bx = hBh−1, and Ax = hAh−1 ⊂ Bx. Note that in G0, the subgroup
U generated by all Bx is the quotient of their free product by the relations [Ax, By] for
x , y ∈ H/L.

Observe that Q∗ is obtained from L\H/L by removing one point and modding out
an action of the cyclic group of order 2 (by inversion). So if L\H/L is infinite, so is
Q∗. So once we will have proved that (Ng)g∈Q∗ is independent, it will follow that the
quotient G is INIP.

Lift Q∗ to a subset of H. If I is a subset of Q∗, let NI be the normal subgroup
of H generated by

⋃
g∈I Ng. Then NI is generated, as a normal subgroup of H, by⋃

g∈I[BgH , B]. That (Ng) is independent means that for every s ∈ Q∗, the group NQ∗r{s}

is not equal to NQ∗ . We will actually show that for every s ∈ Q∗, the group NQ∗/NQ∗r{s}

is nontrivial.
By a straightforward verification, NQ∗r{s} is generated, as a normal subgroup of U,

by ⋃
g∈Q∗r{s},γ∈H

γ[Bgξ, Bξ]γ−1

(where ξ denotes the basepoint in H/L), or equivalently by⋃
g∈Q∗r{s}

⋃
γ∈H

[Bγgξ, Bγξ].

Let Js be the normal subgroup of U generated by⋃
x∈H/L\{ξ,sξ}

Bx,
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so U/Js is naturally identified with

Ξ = (Bξ ∗ Bsξ)/〈[Aξ, Bsξ], [Bξ, Asξ]〉 ' (Bξ × Asξ) ∗Aξ×Asξ (Aξ × Bsξ).

The kernel K of U/Js → Bξ × Bsξ is discrete and free: indeed it acts trivially on the
Bass–Serre tree for this amalgam decomposition. If |B/A| ≥ 3, it is nonabelian.

Observe that NQ∗r{s} is included in Js: indeed it is generated by commutators
[Bx, By] with {x, y} , {ξ, sξ}, so each of these commutators is contained in Js. Thus
there is a natural epimorphism U/NQ∗r{s} � Bξ ∗ Bsξ. It restricts to an epimorphism

NQ∗/NQ∗r{s} � K.

If |B/A| = 2, we can fix the argument as follows. First, in this case A is normal, so
we can mod it out and hence suppose that B is discrete. Then we show that if s, t are
distinct in Q∗, the group NQ∗/NQ∗r{s,t} surjects onto a nonabelian free group, namely
the kernel of the projection Bξ ∗ (Bsξ × Btξ)� Bξ × Bsξ × Btξ.

This shows that, whenever B , A, for every subset I ⊂ Q∗ whose complement
contains at least two elements, NQ∗/NI has a nonabelian free quotient.

Thus if Q∗ is infinite, and if P is compactly presented group with an epimorphism π
onto B oAG/H G, this epimorphism factors through the projection G0/NI for some finite
I ⊂ Q∗. So, the kernel of π admits NQ∗/NI as a quotient and therefore possesses a
nonabelian free group as a quotient. This shows that B oG/H G is largely related. �

We now turn to another similar example based on Coxeter groups.

Definition 6.5. Consider a Coxeter matrix on V , that is, a symmetric matrix µ :
V × V → {1, 2, 3, . . . ,∞} with diagonal entries equal to 1 and nondiagonal entries in
{2, 3, . . . ,∞}. It defines the Coxeter group with Coxeter presentation

W(V, µ) = 〈(wv)v∈V | ((wswt)µ(s,t))(s,t)∈V2〉.

Let a group H act on V . Now assume that µ is H-invariant, in the sense that
µ(gs, gt) = µ(s, t) for all g ∈ H and (s, t) ∈ V2. This induces a natural action of H by
automorphisms on W(V, µ), so that g · ws = wgs. The corresponding semidirect product

W(V, µ) o H

is called a wreathed Coxeter group.

When H is locally compact and acts continuously on V (which is discrete), that is,
with open stabilizers, then the wreathed Coxeter group W(V, µ) o H is a topological
group (W(V, µ) being discrete and normal). This group was already considered, from
a different perspective, in [18], when H is discrete.

If H acts with finitely many orbits on V and is finitely generated discrete
(respectively, compactly generated), then the wreathed Coxeter group W(V, µ) o H is
discrete finitely generated (respectively, compactly generated).
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Theorem 6.6. Assume V , ∅. The wreathed Coxeter group G = W(V, µ) o H is
compactly presented if and only if V has finitely many H-orbits with compactly
generated stabilizers, H is compactly presented, and the set of pairs {(v,w) ∈ V2 :
µ(v,w) <∞} consists of finitely many H-orbits.

In particular, if V = H/L and µ has no∞ entry, then this holds if and only if L\H/L
is finite.

If the set of pairs {(v,w) ∈ V2 : µ(v,w) < ∞} consists of infinitely many H-orbits,
then G is INIP.

Proof. We only sketch the proof. Fix v1, . . . , vk representative of the H-orbits in V ,
with stabilizers L1, . . . , Lk. For i = 1, . . . , k, let Ci = 〈ti〉 be a copy of the cyclic group
of order 2. Consider the amalgam G0 of all Ci × Li and G over their intersections. It
can be constructed iteratively:

G0 = ((· · · (G ∗L1 (C1 × L1)) ∗L2 (C2 × L2) · · ·) ∗Lk (Ck × Lk)).

Then G0 is compactly presented as soon as H is compactly presented and all Li are
compactly generated. Then the wreathed Coxeter group is the quotient by the relations
rg,h = (gtig−1ht jh−1)µ(gvi,hv j) whenever µ(gvi, hv j) <∞. Actually two such relations rg,h

and rg′,h′ are equivalent as soon as (gvi, hv j) = (g′vi, h′v j). Hence if there are finitely
many such orbits of pairs, then G is compactly presented.

The converse follows the same lines as the case of wreath products, relying on a
well-known result of Tits (Theorem 6.7).

Because of the similarity with the proof of Proposition 6.4, we will prove the result
in a particular case that is enough to encompass all the differences, namely the case
where H = Z = 〈t〉 = X (simply transitive action). The reader is invited to prove the
general case as an exercise.

So we have to prove that in the free product Γ = 〈t,w|w2 = 1〉, the family of relators
rn = (wtnwt−n)µ(0,n), for n ∈ Z1 = {n ≥ 1 : µ(0, n) <∞}, is independent.

If p ∈ Z1, let Γ[p] be the group obtained by modding out Γ by all relators rn for
n , p, and let µ′ be the matrix obtained from µ by replacing all entries µ(n, n + p) by
∞. We see that in Γ[p] = W(V, µ′) o Z. By Tits’s theorem, wtpwt−p has infinite order in
Γ[p], so rp , 1 in Γ[p]. This proves independence of the family of relators. �

Theorem 6.7 (Tits). Given a Coxeter group generated by involutions (σs)s∈S , subject
to relators (σsσt)µ(s,t) for all s, t (where µ(s, t)(s,t)∈S×S is a Coxeter matrix), the element
σsσt has order exactly µ(s, t), and every subgroup generated by a subset (σs)s∈T is a
Coxeter group over this system of generators.

This follows from [7, V. Section 4.3 Proposition 4] and [7, IV. Section 1.8
Theorem 2].

Example 6.8. The group Γ of permutations of Z generated by the transposition 0↔ 1
and the shift n 7→ n + 1, which is isomorphic to wreathed Coxeter group Sym0(Z) o Z,
is INIP; here Sym0(Z) denotes the group of finitely supported permutations of Z. That
the group Γ is infinitely presented is implicit in Neumann [31], who expressed it as
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quotient of a finitely generated group by a properly increasing union of finite normal
subgroups. Half a century later, it was mentioned by Stëpin [35] as an example of
a finitely generated group that is locally embeddable in finite groups in the sense of
Maltsev [30] (this also means: approximable by finite groups for the topology of the
space of marked groups) but is not residually finite, a combination that cannot be
achieved by finitely presented groups.

7. Variants using commensurating actions

Let X be a set andM = (Mi)i∈I be partition of X (i.e., pairwise disjoint and covering
X). Let B be a locally compact group and A = (Ai)i∈I a family of compact open
subgroups. Consider the subgroup of BX generated by its subgroups

∏
i∈I Ai

Mi and
B(X). Denote it by BX,M,A.

For instance, if I is a singleton {1} and M1 = X, then this is precisely BX,A. The main
motivating case is when I has two elements.

BX,M,A is endowed with the group topology making
∏

i∈I Ai
Mi a compact open

subgroup. It is standard (e.g., follows from Lemma 2.3) that this is well defined.
Now let H be a locally compact group and assume that X is a continuous discrete

H-set.
Assume that the familyM is uniformly commensurated by H, in the sense that, for

every h ∈ H, we have (4 denoting symmetric difference)∑
i

#(Mi 4 hMi) <∞.

Note that if H is finitely generated, then this forces all but finitely many of
the Mi to be H-invariant; this can be extended to the case where H is compactly
generated (see Proposition 7.5), but not in general. For instance, for H = Q2 and
X = Q2/Z2, one can consider the family (modulo Z2) indexed by N: M0 = Z2/Z2 = {0},
Mi = (2−iZ2 r 2−i+1Z2)/Z2 for i ≥ 1.

Under the above assumptions, the action of H on BX preserves BX,M,A, and is
continuous. Therefore the semidirect product

B oM,A
X H = BX,M,A o H

is a locally compact group.
Let us focus on a specified case I = {1, 2}, B is a finite group, A1 = {1} and A2 = B;

we can only specify M = M2 since M1 is its complement. Then denote BX,M,A =

B(X,M]: it is just the direct product B(XrM) × BM . The assumption of commensuration
reduces to the requirement that M is commensurated by the H-action: M 4 hM is
finite for all h ∈ H. Denote B o(X,M] H = B(X,M] o H and call it a half-restricted wreath
product. This important particular case was introduced by Kepert and Willis [24].
It was used by Bhattacharjee and Macpherson [5] to exhibit a compactly generated
totally disconnected locally compact group that is uniscalar but has no open compact
normal subgroup.
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Example 7.1. Here is one particular case where a group naturally occurs and actually
turns out to be a half-restricted wreath product. Let K be the field Fq((t)) of Laurent
series over the finite field Fq. Then the affine group K oK∗ over K can naturally be
identified with

Fq o(X,M] K∗,

where X = K∗/K∗1 ' Z (quotient by the subgroups of elements of modulus 1) and M is
the image of the closed ball of radius 1 (corresponding in Z to the set N of nonnegative
integers).

This shows that this construction can produce nonunimodular groups, in contrast to
Proposition 2.8.

Example 7.2. Consider X = Z × {1, 2}, M1 = (N × {1}) t (Z r N) × {2} and M2 its
complement. Choose B = Fq (finite field), A1 = B, A2 = {0}. Finally, let Z act on X
by n · (m, i) = (m + n, i). Then B o(X,M] H can be identified with the semidirect product
(Fq((t)) × Fq((t−1))) o Z, where the positive generator of Z acts by multiplication by t
on both sides. This group naturally includes a cocompact lattice isomorphic to the
lamplighter group Fq o Z.

We now address the description of W(G) and B(G). For simplicity, let us reduce the
study of W(G) and B(G) to the case with no finite orbit.

Proposition 7.3. Suppose that H has a single infinite orbit on X. Let N be the
kernel of the H-action on X. Define C =

⋂
i∈B,b∈B gAig−1 =

⋂
i∈I CoreB(Ai). Then, for

G = B oM,A
X H, we have W(G) = CX o (N ∩W(H)) and B(G) = CX o (N ∩ B(H)).

Proof. Since C is compact normal in B, CX is compact normal in G, and is included
in all the terms considered; hence we can suppose that C = 1.

The subgroup N of H is normal, and on N the H- and G-conjugacy classes coincide.
It immediately follows that N ∩W(H) ⊂W(G) and N ∩ B(H) ⊂ B(G).

Let π be the projection G→ H. Clearly π(W(G)) ⊂W(H) and π(B(G)) ⊂W(FC).
Let us show that B(G) ∩ BX,M,A = 1. By contradiction, let f be a nontrivial element.

Then c = f (x) , 1 for some x. Then there exists i such that c < CoreB(Ai). Conjugating
if necessary, we can suppose c < Ai. Then by transitivity, the H-conjugates of f do not
remain in a compact subset, and this is a contradiction.

Let us show that π(B(G)) ⊂ N. Let f h be an element of B(G) with h ∈ H and
f ∈ BX,M,A. If π(h) < N, there exists x ∈ X such that h(x) , x. For any b ∈ B, let
δx(b) be defined as in the proof of Proposition 4.1. Then, writing c = f (x),

( f h)−1δx(b) f hδx(b)−1 = h−1δx(c−1bc)hδx(b−1) = δh−1 x(c−1bc)δx(b−1);

this is a nontrivial element of B(G) ∩ BX,M,A, which is a contradiction.
Gathering everything, W(G) is a subgroup whose projection to H is equal to

W(H) ∩ N, it includes W(H) ∩ N, and its intersection with BX,M,A is trivial. Hence
W(G) = W(H) ∩ N. Similarly, B(G) = B(H) ∩ N. �
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Let Γ be the first Grigorchuk group and Λ its subgroup as in Theorem 5.1. Then the
Schreier graph Γ/Λ is known to be 2-ended. Pick one half M. Denote by C2 the cyclic
group on two generators.

Proposition 7.4. The embedding C2 oΓ/Λ Γ→ C2 o(Γ/Λ,M] Γ has a dense image. In
particular, G = C2 o(Γ/Λ,M] Γ has intermediate growth. It has W(G) = B(G) = 1 and,
in particular, is not compact-by-discrete.

Proof. The density is clear and the only nontrivial point is Bartholdi and Erschler’s
theorem that the left-hand discrete group has intermediate growth. It follows that the
right-hand group has subexponential growth (bounded above by that of the discrete
one). It does not have polynomial growth, since its quotient Γ does not. It has B(G) = 1,
by Proposition 7.3. �

This example is motivated by Question 5.2(2): unlike the examples in the proof
of Theorem 5.1, which by construction have a cocompact lattice, these ones do not a
priori (note that this is not a single group: several examples are provided in [3] and
also the choice of M or rather its complement could a priori matter).

Proposition 7.5. In the setting above (beginning of the section), if H is compactly
generated (or, more generally, has uncountable cofinality, in the sense that it is not the
union of a properly increasing sequence of subgroups), then all but finitely many of the
Mi are H-invariant.

Proof. Define X′ = X × {i}, with the component-wise action of H. Define M =⋃
i∈I Mi × {i}. Then M is commensurated by the H-action. Since G is compactly

generated, M intersects only finitely many orbits in a noninvariant subset [15,
Proposition 4.B.2]. Hence M ∩ (X × {i}) is H-invariant for all but finitely many i,
and this precisely means that Mi is H-invariant. �
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