
CHARACTERISATIONS OF PARTIALLY CONTINUOUS,
STRICTLY COSINGULAR AND tf>_ TYPE OPERATORS

by L. E. LABUSCHAGNE

(Received 25 January, 1990)

0. Introduction. We will denote the dimension of a subspace M of X by dim M and
the codimension of M with respect to X by cod* M or simply cod M if there is no danger
of confusion. The classes of infinite dimensional and closed infinite codimensional
subspaces of X will be denoted by $(X) and -?C(X) respectively with 9>(X) and &C{X)
denoting the classes of finite dimensional and of finite codimensional subspaces of X
respectively. For a subspace M of X we denote the injection of M into X by J^ and the
quotient map from X onto the quotient space XIM by QX

M. Where there is no danger of
confusion we will write JM and QM. The injection of X into its completion X will be
denoted by Jx. Letting X' denote the continuous dual of X we remark that since X' is
isometric to (X)', these two spaces will be considered identical where convenient. The
orthogonal complements of subsets M c X \n X' and K c X' in A' will be denoted by ML

and XK respectively; M±x and X±K will be used if there is danger of confusion.
For an operator T we define the adjoint or conjugate T' of T to be the adjoint of

TJD(T) in the sense of [7]. The injective operator t induced by T is defined as in [7]. In
general the dimension of the kernel N(T) of T is denoted by a(T) with b(T) and b(T)
denoting cody R(T) and codYR(T) respectively.

An operator T is defined to be strictly cosingular [10] if there is an M e &C(Y) such
that (QMT)' has a continuous inverse, F_ [5] if there is no M e SF(Y) such that (QMT)'
has a continuous inverse and F+ [4] if there is an M e ZFC(D(T)) such that TJM has a
continuous inverse. Furthermore T is said to be 0_($+) if T is a normally solvable
operator with 6(7)<°°(a(7)<oo). Whenever Y is complete, T is said to be nuclear

if there exists sequences {x'n} <=(D(T))' and {yn} <= Y such that E \\x'n\\ \\yn\\ <°o and
n = 1

Tx = E x'n(x)yn for each x e D(T). The classes of continuous, partially continuous, F_

and strictly cosingular operators in L(X, Y) will be denoted by B(X, Y), PB(X, Y),
F-(X, Y) and SC(X, Y). Square brackets will be used to indicate that only everywhere
defined operators are considered; for example B[X,Y] and PB[X, Y] denote the classes
of everywhere defined continuous and partially continuous operators respectively. An
operator T is said to be bounded if and only if T e B[X, Y]. Observe that if A e B[Y, Z],
then (AT)'= T'A' and hence for any closed subspace M of Y we have (QMT)' =
T'Q'M=T'JM± [7, 1.6.4]. For TeB(X, Y), TeB[D(T)~,Y] will denote the unique
bounded extension of JyTJD^T) to all of D(T)~.

Note that our definition of strict cosingularity generalises that of [13] with the two
definitions being equivalent in the classical case of bounded operators between Banach
spaces [7, II.4.4]. We similarly conclude from [7, II.4.4 and IV.1.13] that F_ and $_
operators coincide in the case of closed operators between Banach spaces.

The subspace D(T)cX, renormed with the norm ||.||T = ||.|| + | |7 \ | | , will be
denoted by XT, with GT denoting the identity map from XT into X with range D(T). The
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operator T composed with GT will be denoted by TG. Observe that both TG and GT are
bounded with norm not exceeding 1.

1. F_ and strictly cosingular operators.

1.1 THEOREM [5]. The following are equivalent.
(I) TtF..

(II) There exists M e $C(Y) such that QMJYT is nuclear (compact).
(HI) For any e > 0 there exists M e 3>C(Y) such that \\QMJYT\\ == e.

1.2 PROPOSITION [5, 4.15]. The following are equivalent.
(I) T e SC(X, Y).

(II) For each M e J>C(Y), QMT$F_.
(HI) For each Me$c(Y) there exists NeJ>c(Y), N=>M, such that QNJYT is nuclear

(compact).
(IV) For each M e JPC(Y) and each £ > 0 there exists Ne^c(Y), N=>M, such that

\\QNJyT\\<E.

Proof. The equivalence of (I) and (II) is an easy consequence of the definition. The
equivalence of (II), (III) and (IV) is immediate from Theorem 1.1. •

The following two results illustrate the close link between the properties T e F_ and
TeSC.

1.3 PROPOSITION. The following are equivalent.
(I) TeF_(X,Y).

(II) For each M e SC(Y), there exists N e #C(Y), N=>M, such that QNJYT $ SC.
(Ill) For each M e #C(Y), there exists N e J>C(Y), N=>M, such that QNJYT e F_.

Proof. (I)^>(HI) Suppose there exists F e &(Y) such that (QFT)' has a continuous
inverse. Let M e $C(Y) be arbitrary. Then M + Fe#c(Y) and (QM+,JYT)' =
(JYT)'J(M+F)± = T'JM±nFx is just a restriction of (QFT)' = T'JF±. Hence (QM+FJYT)' also
has a continuous inverse and so (III) follows.

(Ill) => (II) This is immediate from the definitions of F_ and strictly cosingular
operators.

(II) => (I) Suppose T 4 F_. By Theorem 1.1 there exists M e fc(Y) such that QMJYT
is compact. Hence for any N e SC(Y) with N-=>M, QNJYT = QJJM(QI,JYT) is still
compact and hence strictly cosingular [7, III.2.5]. •

1.4 PROPOSITION. Let Y be complete. Then the following are equivalent.
(I) TeSC.

(II) For each M e $C(Y), there exists N e #C(Y), NZDM, such that QNT e SC.
(III) For each M e J*C(Y), there exists N e #C(Y), N => M, such that QNT $ F_.

Proof. (I) => (II) This follows from Proposition 1.2 and the fact that compact
operators are strictly cosingular.

(II) =̂> (HI) This is a consequence of the definitions of F_ and strictly cosingular
operators.

(III) => (I) Suppose TiSC. Then there is some M e 3C(Y) such that (QMT)' has a
continuous inverse. Now for any N e 3C(Y) with N=>M, (QNT)' = T'JNr is just a
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restriction of {QMT)' = T'JMx as Mx => N1- and hence (QNT)' has a continuous inverse;
that is QNT e F_. We conclude that (I) follows from (III). •

Since #_ operators agree with F_ operators in the classical case of closed operators
between Banach spaces we note that in this case Propositions 1.3 and 1.4 can be
formulated in terms of 0_ operators, thereby providing a characterisation of classical $_
and strictly cosingular operators.

1.5 REMARK. From Proposition 1.3 we deduce that TeF_(X,Y) if and only if
JYT eF_(X, Y). Now let Y be complete. We then conclude from Proposition 1.2 that
T + SeSC(X, Y) if T,SeSC(X,Y) and hence from Propositions 1.3 and 1.4 that
T + S e F_(X, Y) whenever T e F_{X, Y), S e SC[X, Y] and Y is complete. By making
use of Proposition 1.2 it may also be verified that, as in the classical case of bounded
operators from one Banach space into another, SC(X, Y), satisfies certain ideal
properties. For example if T e SC(X, Y), B e B(Z, X) and A e B[Y, W], then TB e SC
with AT e SC whenever Y is complete and T partially continuous. For a proof of this and
related results the reader is referred to [10].

2. Partially continuous operators. We note from [9, 4.1, 5.2 and 6.2] that
S =

 Q>-D(T')T is closable with 5'/D(s.) = T'JD^T'y Consequently considering [7,11.5.1] we
see that there exists a normed space Z and a bijection B e B[Y/XD(T'), Z] such that
Z' = Y's. = Y'T. and B' = GS = Gr with both B and BS continuous (the injectivity of B
follows from the way it was defined in [7,11.5.1] and the fact that D(S') is total [7,
II.2.11]). Let HT = BQxD(T.y Then both HT and HTT are continuous with (HT)'=
J(,D(r^ • Gs. = GT and (HTT)' = T'GT:

We will make use of the operator HT in order to characterise partial continuity of T
in terms of closed infinite codimensional subspaces of Y. Consequently we first investigate
the relationship between the property of partial continuity and the operator HT.

2.1 PROPOSITION. The following are equivalent.
(I) There exists F e &(Y) such that QFT is continuous.

(II) HT is an open map with a{HT) < <».

Proof. (I) =>(II) Suppose QFT is continuous for some F e f ( 7 ) . Then (QFT)' =
77Fx is bounded [7, II.2.8] and codFx<<=° [7,1.6.4]. Therefore D(T') contains a
o(Y', Y)-closed finite codimensional subspace of Y' and hence D(T') is o(Y', Y)-closed
and finite codimensional in Y'. Hence a(HT) = dim XD(T') = cod(xZ)(r'))J- =
cod D(T') < oo with HT an open map by [8, 9.6.4].

(II)=>(I) If HT is open, then so is (HT) [8, 4.2.4]. Thus ( ^ r ) " ' and hence
(HT)~' {HTT) = Qi.D(T-yT is continuous. Since dim XD{T') = a(HT) < «>, we are done. •

2.2 LEMMA [6]. T is partially continuous if and only if there is some F e ^(Y) such
that Q/JYT is continuous.

2.3 LEMMA [4, Theorem 38]. T e F+ if and only if T e 0_.

We note from the above and from [7, Theorems IV. 1.2 and IV.2.3] that if T is closed
and X and Y complete, then T eF+'xi and only if T e </>+.

2.4 LEMMA. Let T be closed, X and Y complete, and codD(T)<<*>. Then D(T) is
closed and hence T is continuous.
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Proof. Note that if T is closed and X and Y complete, then XT is complete. If in
addition D(T) = R(GT) is finite codimensional in X, it is closed by [7, IV. 1.13] since GT

is a closed operator. The rest of the result now follows from the closed graph
theorem. •

2.5 THEOREM. The following are equivalent.
(I) T is partially continuous.

(II) D(T') is finite codimensional in Y'.
(Ill) HTeF+.

Proof. (I) => (II) Suppose T is partially continuous. By Lemma 2.2 there is some
F e ^ ( Y ) such that QpYT is continuous. Hence (QpJyT)' = (JYT)'JF± = T'JF± is
bounded [7, II.2.8]. Therefore cod D(T') < °o since Fx c D(T') and cod Fx = dim F < ».

(II) => (III) Supposing that cod D(T ' ) < 0 ° w e s e e f r o m Lemma 2.4 that D(T') =
R(GT) = R((HT)') is closed and hence (HT)' e #_. Consequently HT eF+ by Lemma 2.3.

(III) => (I) Suppose HTeF+. Thus (HT)' e </>_ by Lemma 2.3 whence codD(T') =
cod/?((//r)')<oo. As (JYT)' = T' is therefore continuous by Lemma 2.4, it follows that
(HJYT)' = GT = (HT)' is an isomorphism and hence that HJyT is an open map [7, Theorem
II.4.3]. Observe that R(HJYT) is complete as HJyT is both bounded and open whence
a(HjYT)<<x> by [7, Theorem IV.2.3]. We now deduce from Proposition 2.1 and Lemma
2.2 that T is partially continuous. •

2.6 COROLLARY. Let D(T')* denote the o(Y',Y)-closure of D{T'). Then
D(F). D(T')<ooifand only if D(T')* = F(T').

Proof. Suppose cod^^,. D(T') <«>. Denote YXD(T') by XD. Considering 5 =
QxD(JYT) we note that 5' = (JYT)'J^Dy = T'J^f], and hence S is partially continuous
by Theorem 2.5. By Lemma 2.2 there is some F e&{Y/LD) such that QFS is continuous.
Now let K = (QYD)~lF, where (Q^D)1 is taken in the set theoretic sense. Then K is a
closed subspace of Y such that QK{JyT) — QFS is continuous with K 3 XD and
dim(fl7xfl)<oo. Hence (QK(JYT))' = T'JKx is bounded [7, II.2.8] with
dim(Z)(r')*/#-L)<°°; that is Kx is contained in D(T') and is finite codimensional in
D(T'). Thus as Kx is o(Y', Y)-closed, so is D{T'). U

As in [15] we define a normed space Z to be subprojective if for each closed infinite
dimensional subspace M of Z, there exists a closed infinite dimensional subspace N of M
which is topologically complemented in Z. Considering such spaces we obtain the
following characterisation of partial continuity (we note that this result as well as
Corollary 2.18 are in a sense dual to [3, Theorem 4]).

2.7 LEMMA. Let M be a closed subspace of Y and let F be a finite dimensional
subspace of Ysuch that M@F = Y. Then M + Fis closed in Y + F.

Proof. Let P be a bounded projection defined on Y with range M and null space F.
Suppose M + F is not closed in Y + F. Then there exists a sequence yk = xk + zk where
xkeM, zkeF with zk unbounded such that >*->>' + z(y eY, z e F). Then P(xk + zk) =
xk—*Py. Consequently zk converges, contradicting the unboundedness of zk. •

2.8 COROLLARY. M e i c ( Y ) ^ M e Je(Y).
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Proof. Let M e $C{Y) and suppose that M ffi F = Y, where dimF<°°. We have
M + F <= (M + F)~ c Y, so that M + F is dense in (Y + F)~ = Y. Therefore M + F is a
dense subspace of Y + F. Hence by the Lemma M © F = Y + F. Therefore

Y = (M + F) n y = (M © F) n Y = M © (F n y),

contradicting A/ e ̂ C(

2.9 THEOREM. Lef y 6e subprojective. Then T is partially continuous if and only if for
each M e -$C{Y) there exists N e $C(Y), N => M, such that QNJYT is continuous.

Proof. Suppose T is partially continuous. By Lemma 2.2 there is some F e 3>{Y)
such that QpJYT is continuous. Selecting M e $C(Y) arbitrarily we note that M e $C{Y) by
Corollary 2.8 and hence N = M + F e $C(Y), by the finite dimensionality of F. Observing
that N => M and that \\QNJYT\\ < | | 2 / J y r | | since N r> F, the first part of the result follows.

Conversely suppose that T is not partially continuous. Hence HT $ F+ by Theorem
2.5 and so by [2, 2.2] there exists M e S{Y) such that HjJM is precompact. Since HT is
continuous we may assume M to be a closed subspace of Y. Note that (HjJM)' =
QM±.GT' is compact [7, HI. 1.11]. As Y is subprojective there is some subspace
W e ${M) such that W is topologically complemented in Y by say K. Observe that since
W a M, HrJw and hence Qw±. Gr is still precompact. Furthermore letting P be the
bounded projection from Y onto W with N(P) = K we see that for any y' e Y',
y'=y'P+y'(I-P) with y'PeKx and / ( / - P) e Wx. Hence Y' = W±®K±.
Considering [7, II.1.14] and [14, V.7.29] it follows that Y'lW^ is isomorphic to KL under
the isomorphism Qw± . JK±. Consequently (JKL)~1GT' = (Qw± • JK^^QWAK1^ • GT- is com-
pact by the ideal property of compact operators. Observe that cod K = dim W = °°.
Finally suppose there is some Ne£c(Y), N=>K, such that QNJYT is continuous. Then
(QNJYT)' = T'JNx is bounded [7, II.2.8], and therefore (GT-.)~'/N± is an isomorphism with
Nx e ̂ (D(r ' ) ) . This now leads to a contradiction as Nx <= K± with (/^x)~'Gr a compact
operator. Hence the result follows. •

As an application of the above we obtain the following result.

2.10 COROLLARY. Let Y be subprojective. Then SC(X, Y) c PB(X, Y).

Proof. Combine 1.2 with 2.9. •

The following Corollary further illustrates the close link between the properties of
partial continuity and strict cosingularity.

2.11 COROLLARY. Let X and Y be any two non-identical spaces belonging to the class
{cQ} U {lp: K p < °°} and let T e L(X, Y) be densely defined. Then T is strictly cosingular
if and only if it is partially continuous.

Proof. The fact that TeSC(X,Y) implies TePB(X,Y) is immediate from
Corollary 2.10 and the subprojectivity of Y [15, Theorem 3.2]. Hence assume T to be
partially continuous. Selecting M e &C(Y) arbitrarily it follows that D(T'JM±) = D(T')n
Mx is infinite dimensional as dim Mx. = cod M = <» [7; 1.6.4] and codD(r ' )<°° , by
Theorem 2.5. As T' is continuous, by Lemma 2.4, it follows from [11] (the remark
preceding Theorem 2.a.3) that T'JM± = (QMT)' does not have a continuous inverse and
hence that TeSC(X,Y). U
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2.12 COROLLARY. Let Y be subprojective. Then the following are equivalent.
(I) There exists F e &(Y) such that (Q/JyT)' is a bounded isomorphism.

(II) For each M e fc(Y) there exists Ne#c(Y), N=>M, such that (QNJYT)' is a
bounded isomorphism.

(Ill) T is partially continuous and there is no M e $C(Y) such that QMJYT is strictly
cosingular (nuclear, compact).

Proof. (I)=>(II) Suppose there exists F e f ( y ) such that (QpJYT)' is a bounded
isomorphism. Let M e J>C(Y) be arbitrary and set N = M + F e ^C(Y). Since (QNJYT)' is
then just a restriction of (QpJYT)' we conclude that (II) follows from (I).

(II) =̂> (III) Suppose (II) holds. For any KeSc(Y), Ke3>c(Y) by Corollary 2.8 and
so there exists N e $C(Y), N=>K=>K, such that (QKJYT)' is bounded. Considering [7,
II.2.8.] and Theorem 2.9, we conclude that T is partially continuous. It follows from
Proposition 1.3 that F e F . and hence by Theorem 1.1 there is no M e $C{Y) such that
QMJYT is nuclear (compact). The statement about strict cosingularity is an immediate
consequence of the definition.

(III)=>(I) Suppose (III) holds. By Proposition 1.3 and Lemma 2.2 there exists
F, e^(Y) and F2e&(Y) such that (QF,T)' has a continuous inverse and QFlJYT is
continuous; that is (QF2JYT)' is bounded. Let F = F, + F2. Then (Q/JYT)' is a restriction
of both {QpJ)' and {QFlJYT)' and hence the result follows. •

In conclusion we investigate operators with continuous adjoint. Such operators
feature prominently in, for example, the study of unbounded Tauberian operators where
the continuity of the adjoint is a prerequisite for much of the theory (cf. [1]).

2.13 PROPOSITION. T' is continuous whenever D(T) is finite codimensional in its
completion.

Proof. Let D(T) be finite codimensional in its completion. Denote Y±D(T') by K.
As before we note from [9] that QKJYT is closable in L(D(T)~, Y/K) and hence
continuous by Lemma 2.4. We conclude that (QKJYT)' = T'J^py is bounded and hence
that T is continuous. •

2.14. LEMMA. R(T') is closed if and only if it is o((D(T))', D(T)~)-closed.

Proof. As (JYT)' = 7" we may assume without loss of generality that Y is complete
and D(T) = X. Let 5 be the operator Q±D^)T considered as an element of
L(X, Y/XD(T')). By [9], 5 is closable and so, denoting the minimal closed extension of 5
by 5, we note from [7, II.2.11] that S' = S' and hence R(S') = R(T'), by [9, 6.2]. It now
follows from [7, IV.1.2] that R(T') = ±N(S) whenever R(T') is closed. Consequently
R(T') is o(X',X)-closed whenever it is closed. The converse is clear. •

2.15 THEOREM. The following are equivalent.
(I) V is continuous.

(II) 7" is partially continuous.
(III) D(T') is closed.
(IV) D(T') is a(Y', Y)-closed.
(V) QKJyT is continuous, where K = 9±D(T').

(VI) For any M e £C(D(T)~) there is no injective restriction T[ of T such that
{T'^)~XJML is a bounded nuclear (compact) operator.
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(VII) There is some e>0 such that for any M e $C{D(T)~) there is no injective
restriction T\ of 7" for which (T[)~lJM± is a bounded operator with norm not
exceeding e.

(VIII) For every M e #C(D(T)~) there exists Ne$c{D{T)~), N=>M, such that
(7Nx)~'7' is continuous.

Proof. ( I )O(II)»(III) This follows from [7, II.2.15] and [3, Corollary 11].

(III)<=>(IV) Observe that D(T') = R(GT) = R((HT)'). The equivalence of (III) and
(IV) now follows from Lemma 2.14.

(IV) O(V) Letting K = 9±D(T') we observe that (QKJYT)' = ( A T ) ' / ^ . =
T'JDTF)'- The equivalence of (IV) and (V) now follows from [7, II.2.8].

(II)<=>(VI) First suppose that T' is not partially continuous. Inductively define a
sequence of integers {an} as follows:

n - l

a, = 2, «„ = 2 ( l + 2 fl*)(n=2'3" ••)•

Let e > 0 be arbitrary. Since 7" is not partially continuous, there is some y[ e D(T') with
||>-;i|<£/4 and ||T'>>;|| = 1. Select x,6 0 ( r ) such that T'y\xx = \ and | |x,| |<2.
Suppose that xux2, • • • ,*„_, and y\,y'2, • • • ,y'n-\ have been found in D{T) and D(T')
respectively, such that

\\y'k\\*e/(2kak), | | r ^ | | = l, \\xk\\*ak,
d.j for l s f c , / < « - l .

Let F = span{Txi,Tx2, • . . ,Txn-i}. Then cod F1- = dim F < 00 and hence T'JF± is not
continuous. Consequently there exists y'n e {Txu Tx2,. . . , 7jcn_1}

j- D D(T') such that
| | ^ | | < £ / ( 2 X ) a n d | | r ' ^ | | = l. Select x e D(T) so that T'y'jc = 1 and \\x\\<2. Let

xn=x-
k=\

Then T'y'^j = 6kj for 1 < k, j < n and ||jrn|| < ||*||(l + "E ||jct||) <an. Hence by induction
A : = l

we may construct {*„} c D(T) and {_ŷ ,} c D(T') such that (1) is satisfied for all neN.
Now define a nuclear (compact) operator B e L[Y, D(T)~] as follows:

00

By = 2 y'k{y)xk for each y e Y.

For each k e N we now have that

T'yk(BTx)=y'kTx = T'yk

and hence each T'y* annihilates R(BT -JD) = M, where JD denotes the injection of
D(T) into its completion. From (1) we conclude that M is infinite codimensional in
D{T)~. Since Mx = N((BT-JD)'), by [7], we have that (BT -JD)' = (BT)' -1 =
T'B' -1 = 0 everywhere on Mx (I denotes the identity on D(T)'). Therefore T'B'JM± =
JM± and consequently there is some injective restriction T[ of T such that (rj)~'7Mi
agrees with the nuclear (compact) operator B'JM±. The converse is a consequence of the
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fact that one cannot have a nuclear (compact) isomorphism on an infinite dimensional
space.

(VII) => (II) This follows from the fact that the operator B constructed above has
norm not exceeding e.

(I)=>(VII) Suppose T is continuous and that (VII) is false. Hence we may select
M e$c{D(T)~) such that, for some injective restriction T\ of T, (T[ylJM± is bounded
with norm less than (2 HT'll)"1. For any / e R((T[)~lJM±) we then have that

2 | | n | H / l l = 2 | | n | . (\\(T[)-lJM,. T'y'\\)< \\T'y'\\ < | | 7 " | | \\y'\\;

an obvious contradiction. The result follows.
(I)O(VIII) The converse being trivial, suppose that 7" is not continuous. Hence

there exists M e J>C(D(T)~) such that (T[)~1JM± is a bounded compact operator where T[
is some injective restriction of T'. Clearly there can be no N e $>C(D(T)~), N => M, such
that ( / ^ i ) " ^ ' and hence (JN±)~lT[ is continuous (note that Nx e #(MX)). U

The following Corollary generalises [7, II.4.8].

2.16 COROLLARY. Let Y be complete and T dosable. Then the following are
equivalent.

(I) T' is continuous (D(T') is closed).
(II) r is bounded (D(T') = Y').

(Ill) T is continuous.

Proof. The equivalence of (II) and (III) is a consequence of [7, II.2.8]. As T is
closable, D{T') is total [7, H.2.11]; that is XD(T') = {0}. The equivalence of (I) an (III)
now follows from Theorem 2.15. •

Defining quasi-complementation as in [12], we obtain the following result.

2.17 PROPOSITION. Let Y be either separable {more generally let XD{T') be quasi-
complemented) or reflexive and let T be such that for each M e $C{Y) there exists
NeJ>c(Y), N=>M, with QNT closable. Then the o(Y', Y)-closure of D(T') is finite
codimensional in Y' {or equivalently dim ±D{T')<°° [7,1.6.4]).

Proof. Suppose that dim LD{T') = <x>. In the case where Y is separable we select a
quasi-complement of XD{T'), say M [12]. Then Me#c{Y) with Mx n (-LD(7'))± =
{M 0 XD{T'))X = {0}; that is M1 n D{T') = {0}. Alternatively if Y is reflexive, we select
a linearly independent sequence {y'n} c Y' such that for any neN, y'n$ (XD(7"))X

(observe that dim XD(7") = cod(xO(7"))x = <»). Note that span{^;,y2, • • •} is separable
and hence let £ be a quasi-complement of span{yj,y2> • • •} H (XD(T'))X in
span{y[,y2, •••} [12]. Then E e ${Y') with E o{Y', Y)-closed, by the reflexivity of Y'.
Hence letting M - XE, we note that cod M = dim(xE)x = dim E = °o with Mx fl
{xD{T'))x = {0}; that is MX HD{T') = {0}. Observe that in each case we obtain
MeSc{Y) such that Mx (1D{T') = {0}. Suppose there exists NeS>c{Y), N=>M, such
that QNT is closable. Then D{{QNT)') = D{T'JN±) is o{Y', Y)-dense in Nx = (YIN)' by
[7, II.2.11]. This gives a contradiction since D(T'JN±) a D(T') f)Mx = {0}. •

By considering [7, H.2.11], we see that the property of having the o(Y', Y)-closure
of D(T') finite codimensional in Y' is closely related to T being closable. Thus
Proposition 2.17 provides a sufficient condition for T to be "almost closable".
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2.18 COROLLARY. Let Y be either a separable or a reflexive Banach space and let 7"
be continuous. Then T is partially continuous if and only if for every M e SC{Y) there exists
N e J?C(Y), N z> M, such that QNT is continuous.

Proof. Suppose that for each M e $C(Y) there exists Ne^c(Y), N=>M, such that
QNT is continuous. By Proposition 2.17 ±D(T') e ^F(Y). Since T is continuous, we note
from Theorem 2.15 that Q±D(T)T\s continuous. Hence Tis partially continuous by Lemma
2.2. The converse follows as in Theorem 2.9. •

2.19 COROLLARY. Let X and Y be Banach spaces with Y either separable or reflexive.
Then SC[X, Y] a PB[X, Y].

Proof. This is an easy consequence of Corollary 2.18 and Propositions 2.17 and
1.2. •

2.20 EXAMPLE. There exists an unbounded partially continuous strictly cosingular
operator. Consider, for example, any unbounded finite rank operator. Less trivially we
may construct the required qperator as follows. Let A e SC[X, Y] be an arbitrary
bounded strictly cosingular operator and let £ be a dense subspace of X of codimension 1
(the kernel of a discontinuous linear functional). Select *<, e X such that *„ $ E and define
T e L[X, Y] as follows: TJE = AJE with either Tx() = 0 if Axn * 0, or Txl} = y0 if Ax0 = 0,
where ya is some arbitrarily chosen non-zero element of Y. It is clear that T is partially
continuous with xQ being a point of discontinuity. It remains to verify that T is in fact
strictly cosingular. Supposing the contrary it follows that there exists M e &C(Y) such that
T'JM± has a continuous inverse. Letting F = span{7jt0,Ar0} we conclude that M + Fe
SC{Y) with (QM+FT)' = T7MxnFx having a continuous inverse. However this is a
contradiction as QM+FT agrees with QM+FA. Consequently T eSC[X, Y], •

The following example gives more insight into unbounded strictly cosingular
operators.

2.21 EXAMPLE. We construct an unbounded strictly cosingular operator in the class
L(cn, /«,). Let D(T) be the span of the unit vectors

ek-(0,0,. . . , 1 , 0 ,0 , . . . )

in c0. Now define T: D(T) a c()—»/„ as follows:

T ( x i , x 2 , . . . , x n , 0 , 0 , . . . ) = ( 2 k x k , x 2 , x - s , . . . , * „ , 0 , 0 , . . . ) .

Clearly T is unbounded. Next suppose there exists M e #C{Y) such that (QMT)' = T'JM±
has a continuous inverse. Denoting span{e,} by F it follows that M + F e &C(Y) and that
(QM+FT)' = T'JM±nF± has a continuous inverse. Next observe that QM+FT is continuous
as M + F n F and that (QM+FT)' = (QM+FT)'. However this leads to a contradiction since
QM+FT agrees with QM+FJ, where J denotes the canonical injection of c(, into /„ and it
is known that J is strictly cosingular [13, Example 2]. Hence Tis strictly cosingular. (Note
that, by Lemma 2.2, T is in fact partially continuous as QFT is continuous.) •

It is an open problem whether the characterisation of partial continuity given in
Theorem 2.9 holds for arbitrary normed linear spaces Y. An affirmative answer to this
would settle another open problem; that is whether there exists a non-partially continuous
strictly cosingular operator.
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