# ADDENDUM: REAL TOPOLOGICAL HOCHSCHILD HOMOLOGY OF SCHEMES 

JENS HORNBOSTEL© ${ }^{1}$ AND DOOSUNG PARK ${ }^{2}$<br>${ }^{1}$ Bergische Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Mathematik und Informatik, Gaußstrasse 20, 42119 Wuppertal, Germany (hornbostel@math.uni-wuppertal.de)<br>${ }^{2}$ Bergische Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Mathematik und Informatik, Gaußstrasse 20, 42119 Wuppertal, Germany (dpark@uni-wuppertal.de)

(Received 31 October 2023; revised 29 January 2024; accepted 30 January 2024)

DOI: https://doi.org/10.1017/S1474748023000178. Published by Cambridge University Press, 7 June 2023.

For commutative rings $A$ in which 2 is invertible, as well as for $A=\mathbb{Z}$, [3, Proposition 2.3.5] is true. However, for some rings $A$ in which 2 is not invertible, the result is not correct as stated. The reason is the description of the ideal $T$ in the proof of loc. cit. is not correct in this case, and this might imply that the map $\alpha$ in loc. cit. is not an isomorphism. In more detail, let $A$ be a commutative ring. Due to [1, Corollary 5.2], $\underline{\pi}_{0} \operatorname{THR}(A)$ is isomorphic to the Mackey functor

$$
\underset{\bigcup_{i}}{A} \underset{\text { res }}{\stackrel{\operatorname{tran}}{\leftrightarrows}}(A \otimes A) / T_{A},
$$

where $\operatorname{res}(x \otimes y)=x y$ for $x, y \in A, \operatorname{tran}(a)=2 a \otimes 1$ for $a \in A$, and $T_{A}$ is the subgroup generated by $x \otimes a^{2} y-a^{2} x \otimes y$ and $x \otimes 2 a y-2 a x \otimes y$ for $a, x, y \in A$. Let $2 A$ denote the ideal (2) in $A$. We have the monomorphism $2 A \rightarrow(A \otimes A) / T_{A}$ given by $2 a \mapsto 2 a \otimes 1$ for $2 a \in 2 A$. Its cokernel is isomorphic to $(A / 2 \otimes A / 2) / T_{A / 2}$, where $A / 2:=A / 2 A$. Observe that $T_{A / 2}$ is the subgroup generated by $x \otimes a^{2} y-a^{2} x \otimes y$ for $a, x, y \in A / 2$. Hence, we have the short exact sequence

$$
0 \rightarrow 2 A \rightarrow(A \otimes A) / T_{A} \rightarrow A / 2 \otimes_{\varphi, A / 2, \varphi} A / 2 \rightarrow 0
$$

(C) The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
where $\varphi: A / 2 \rightarrow A / 2$ denotes the Frobenius (i.e., the squaring map). In particular, [3, Proposition 2.3.5] holds if and only if $\varphi$ is surjective.
The only statement in [3] where this proposition is used is the following one in the proof of [3, Proposition 3.2.2], for which we now provide an alternative proof.

Proposition 1. Let $A \rightarrow B$ be an étale homomorphism of commutative rings. Then the induced morphism of Mackey functors

$$
\underline{\pi}_{0} \operatorname{THR}(\iota A) \square_{\iota A} \iota B \rightarrow \underline{\pi}_{0} \operatorname{THR}(\iota B)
$$

is an isomorphism.
Proof. By [2, Lemma 5.1], the Mackey functor $\underline{\pi}_{0} \operatorname{THR}(\iota A) \square_{\iota A} \iota B$ is isomorphic to

$$
\underset{\underset{w}{\mathrm{u}}}{B} \underset{\text { res }}{\stackrel{\text { tran }}{\rightleftarrows}}(A \otimes A) / T_{A} \otimes_{A} B .
$$

Using the above computations, we have the following commutative diagram where the vertical maps are induced by multiplication:


We only need to show that $\beta$ is an isomorphism. Since $B$ is flat over $A$, the rows are short exact sequences, and $\alpha$ is an isomorphism. The induced square of commutative rings

is coCartesian by [4, Tag 0EBS] since $A / 2 \rightarrow B / 2$ is étale. It follows that $\gamma$ is an isomorphism. Hence, $\beta$ is an isomorphism by the five lemma.

## References

[1] E. Dotto, K. Moi, I. Patchkoria and S. P. Reeh, Real topological Hochschild homology, J. Eur. Math. Soc. (JEMS) 23 (2021), 63-152.
[2] J. Hornbostel and D. Park, Real topological Hochschild homology of perfectoid rings, Preprint, 2023, arXiv:2310.11183.
[3] J. Hornbostel and D. Park, Real topological Hochschild homology of schemes, JIMJ (2023) 1-58. doi:10.1017/S1474748023000178.
[4] Stacks Project Authors, The Stacks Project. https://stacks.math.columbia.edu, 2022.

