
14 
The Hanbury-Brown-Twiss 
effect and the polarisation 
effects in the Lund model 

14.1 Introduction 

In this chapter we consider two different observables, which, within the 
Lund model, have some bearing upon the confinement properties of 
QeD. 

We start with the Hanbury-Brown-Twiss effect (the HBT effect) or, as 
it is also called, the Bose-Einstein effect. It originated in astronomical 
investigations, [78], where one uses the interference pattern of the photons 
to learn about the size of the photon emission region, i.e. the size of the 
particular star which is emitting the light. 

The Goldhabers, [65], found and used in the same way as HBT a 
correlation pattern among the produced pions when they investigated 
proton-antiproton annihilation reactions close to the threshold (i.e. when 
the annihilation occurs at very low relative velocities, so that the total 
energy is essentially twice the proton rest mass). Photons and pions have 
in common that they are bosons, which means that they thrive on being in 
the same state. The HBT effect can be described as an enhancement of the 
two-particle correlation function that occurs when the two particles are 
identical bosons and have very similar values of their energy-momentum. 

The size of the emission region obtained from these experiments in 
hadronic physics seems to be essentially the same in almost any kind of 
interaction. One obtains a radius of the order of 1 fm, which is a very 
reasonable size. The extraction of this size as well as the finer details are, 
however, still under intense discussion, [93], because it is very difficult 
to determine the relative energy-momentum of the high-energy particles 
to the necessary precision. We first discuss the idea behind the chaotic 
interference pattern which is at the basis of the HBT effect. After that 
we consider the reason why the source size should be similar for the 
above-mentioned annihilation reaction at rest (which then is a 'low-energy 
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reaction') and in a truly high-energy hadronic reaction when the decay 
products move apart with large velocities. 

According to the way we have described the final-state particle produc­
tion in the Lund model the particles emerge over a large (longitudinal) 
space-time region, which increases with the energy. Nevertheless it turns 
out that it is only the local proper times for the production vertices which 
playa role in the correlation measurement. All the proper times are essen­
tially the same for the production vertices in the Lund model and it is this 
value that will determine the HBT effect. It may very well be the same 
size in the Goldhaber annihilation measurements also. 

We will discuss the implications of the Lund string model for the 
phenomenon. We will in particular show that the matrix element At, 
which we derived in Chapter 11, provides a precise prediction, [22], for 
the HBT effect in an e+ e- annihilation event. This prediction is in good 
agreement with the data but there is nevertheless one problem left. In the 
string model for the HBT effect presented in [22] it is necessary to neglect 
the fact that a large amount of the pions are decay products of resonances. 
From ordinary quantum mechanical considerations one expects that the 
wave functions of the produced pions are affected if the pion stems from 
such a decay. It is not possible to explain the observed HBT effect if one 
removes the pions which stem from long-lived resonances or modify their 
wave functions in accordance with the expectations from the resonance 
wave functions. It was, however, pointed out by Bowler, [34], that the 
main problem relates to the Lund model rate for 1]' -mesons. If that rate 
is decreased then the predicted HBT effect from [22] is restored to almost 
the same size even if decay pions are included, i.e. it is essentially in 
agreement with experiment. 

The HBT effect is, as mentioned, also seen in other reactions beside e+ e­
annihilation events. For the case of DIS, deep inelastic scattering, there is 
also a single string in the Lund model scenario; cf. Chapter 20. Therefore 
all the considerations in our discussion of e+ e- annihilation reactions are 
also relevant to this case. However, for hadro-production and for large 
gluon activities in general it is not evident how to treat the HBT effect 
within a model of the Lund type. We will not, therefore, in this book com­
ment upon this topic for hadronic reactions, due to the lack of a sufficiently 
structured model with which to investigate the effect in these reactions. 

The second subject in this chapter is the polarisation properties which 
are observed in high-energy processes. The momentum distributions of the 
final-state hadrons are to a large extent governed by longitudinal phase­
space size and therefore polarisation properties offer a tool for gaining 
insight into the 'other dimensions' of the hadronisation process. 

Actually, polarisation effects have always been expected to die away 
at large energies because it has been hoped that for 'asymptopia' there 
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would be only a single production amplitude, which would dominate the 
processes. Under such circumstances there would be no polarisation be­
cause, according to conventional models, such a phenomenon necessitates 
interfering production amplitudes. 

Nevertheless, even at the largest energies available there are strong 
polarisation effects noticeable in inclusive A-particle production. This 
cannot be explained from hard scattering processes as calculated in QCD 
and therefore it should stem from the soft confining interactions. We also 
note that the observed polarisation is not a large-angle phenomenon. It 
seems to saturate already at transverse momenta of the order of 1 Ge V / c. 

It is interesting to note that polarisation will come out naturally in a 
confined production scenario like the Lund model. An intuitive argument 
is that in a confined field there is always a local direction, the force 
direction n, i.e. the direction of the flux of the color electric field. This 
means that, if we have a final-state particle which moves outwards with 
a momentum p not parallel to the direction n, there is a non vanishing 
axial vector, a, obtained from the vector product a = n x p. A general 
experience of physics in any context is that wherever a possibility exists, 
Nature makes use of it. In this case it means that there is the possibility 
of a scalar coupling, in the overall hamiltonian, between the spin vector S 
of the quantum and the axial vector a. (Note that all angular momentum 
vectors have an axial character.) 

We will provide a simple semi-classical model, [9], in which this is a 
very noticeable effect. We will show the difference between a confined 
scenario and the production of e+ e--pairs in an external electromagnetic 
field. We have used this picture before to illustrate various features. 
Polarisation properties are one of the few cases where there are major 
differences between the the dynamics of QED and of QCD. The other 
cases considered in this book are the behaviour of the running coupling 
constant, Chapter 4, and the growth of the phase space in multigluon 
emissions, Chapter 17. 

We will be content to apply the model to the polarisation properties 
of the A-particle in baryon fragmentation. It is possible to provide many 
more predictions using the model but that would mean that we would 
need a more elaborate formalism. 

14.2 The Hanbury-Brown-Twiss effect 

1 The classical argument, coherence and chaos 

The arguments in this subsection are based upon the discussion in [33]. 
We will consider the production of pions from a set of sources localised 
at different positions Xj. Each of them will have some time-dependent 
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wave function fj(tj). Then the total amplitude for emission of a pion with 
energy-momentum (wI,kt) is given by 

Al = Lfj(tj)exp[i(ki . Xj - wItj)] (14.1) 
j 

The joint amplitude for emission of pions with energy-momentum vectors 
(Wt, k t ), t = 1,2, is then evidently given by the double sum 

A12 = Lfj(tj)exp(-ikIxj) Lft(tt)exp(-ik2Xt) (14.2) 
j t 

where we have used four-vector notation in the complex exponentials. 
We note that this corresponds to a totally symmetric amplitude. This is 
necessary because the pions are bosons. 

According to quantum mechanics the emission probability is propor­
tional to the square of the amplitude, P12 IX IAII2' i.e. 

P12 IX L exp(-ikIXj) exp(-ik2Xt) exp(ikIXi) exp(ik2Xk) 
i,j,ki 

(14.3) 

The basic idea in the HBT effect is to assume that the wave functions of 
the sources are wildly fluctuating so that there are only contributions to 
the sums above if 

j = i, t = k or j = k, t = i (14.4) 

This is called the chaotic limit and we then obtain, writing Pj = Ifjl2 for 
the source densities and exchanging the sums for integrals, 

PI2 ~ J dXjdxtpjpt[1 + exp(iq~x)] 
We have here introduced the notation 

q = k1-k2, ~x = -Xj +Xt 

The result is evidently that 

P = R2(O) (1 + IR(q)1 2) 
12 R2(O) 

in terms of the Fourier transform of the sources 

R(q) = J dxexp(iqx)p(x) 

(14.5) 

(14.6) 

(14.7) 

(14.8) 

If we calculate the one-particle yield in the same chaotic limit we obtain 

PI = '2;, exp(-ikIXj)exp(ik1Xi)fj(tj)f;(td ~ J dxp(x) = R(O) (14.9) 
IJ 
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and we note that R(O) is a real, positive number. We conclude that the 
normalised two-particle correlation function in this case will be 

C~BT = P12 = 1 + 1~(q)12 (14.10) 
P1 P2 

where ~ is the normalised Fourier transform of the source densities, 

~(q) = J p(x)dx exp(iqx) 
J p(x)dx 

(14.11) 

In this way we measure by means of the two-particle correlations some­
thing very similar to a form factor of the source. We conclude, just as we 
did for form factors, that the Fourier transform is sensitive to (-q2)-values 
larger than the inverse squared length scale of the source. In principle it 
should even be possible to deduce the detailed shape of the source by 
performing the inverse Fourier transform. However, there is not only the 
problem that we lack a knowledge of the phases; it is also a sad fact 
that it is difficult to obtain sufficiently precise experimental data to dis­
tinguish between even very different assumptions on the general shape of 
the source. 

The only thing upon which all experiments seem to agree is that there 
is one size-scale, of order 1 fm. There is no noticeable change in the HBT 
effect for larger values of _q2 than those corresponding to this scale. But it 
is not known whether there are in addition larger size-scales in space-time 
(i.e. smaller in energy-momentum space) because to see this we would 
need precise measurements down to very small relative energy-momentum 
vectors q. 

The HBT effect discussed above stems from the squaring of the (sym­
metrised) amplitude in Eq. (14.3) and the neglect of all contributions 
which do not fulfil the conditions in Eq. (14.4). Let us assume that the 
sums in Eq. (14.2) converge to a regular function F: 

A12 ~ J dXjf(xj)exp(-ik1Xj) J dx/ exp(-ik2X/)f(x/) ~ F(kt}F(k2). 

(14.12) 

Using the same arguments as before we find that the single rate is then 
IF(k)12 and the 'double' rate is IF(kt}1 2IF(k2)1 2. This means that in this 
case we simply obtain the result 

Ccoh - 1 12 - (14.13) 

without the second, chaotic, term which occurs in Eq. (14.10)! This second 
limit is called the totally coherent limit. The term 'coherent' has been 
introduced because this is the result if we use the coherent states in a 
field theory coupled to external sources (this case is considered in Chapter 
3). There the probability for emission of one or two quanta with given 
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energy-momenta depends only upon the square of the Fourier transform 
of the external current density. This corresponds to the source density 
discussed above. There are no chaotic phases in this case. 

In Chapter 6 we discussed a simple model for particle production, [39]. 
In that model the final-state particles stem from the application of an 
external current to the Schwinger model; then this particular coherent 
state is obtained as a description of the reaction of the quantised dipole 
density field. This led to early predictions that there should be no HBT 
effect in a simple particle-production process such as e+ e- annihilation. 
The fact that there is and that it can be explained within the Lund model 
is an explicit proof that there are basic dynamical differences between the 
Schwinger model with an external source and the Lund model. 

There has been intense theoretical discussion of whether the sources 
in high-energy particle physics are partially chaotic, meaning that we 
might have a scenario which is in between the chaotic HBT and the 
coherent-state results. We will not develop this discussion here; we refer 
the interested reader to the reviews [93]. 

Before we turn to the Lund model interpretation we will comment 
upon the effects arising when the production regions are in large relative 
motion, which they evidently are in the Lund model as well as in any 
other relativistically covariant multi particle production scenario. 

2 The effect of moving sources on the H BT effect 

The discussion of the HBT effect given above is sufficient for its application 
in astronomy where there are, very probably, many photon emission 
sources with (relative) chaotic phases. But they are all at rest or at least 
moving slowly with respect to each other. This is not the case for high­
energy multi particle production. 

In the Lund model we have learned that the particle production struc­
ture is that, in the mean, all particles are produced after a certain proper 
time in the local rest frame. Thus the particle production points are scat­
tered around a hyperbola in space-time t2 - x 2 = T2. The full particle 
production region has a large longitudinal extension, L '" )S/T<, for the 
production sources, although each vertex is governed by T. 

There is, however, also a strong correlation between the particle pro­
duction points x '" Y(V)T and the momentum p '" mvy(v), where we 
use the usual notation for velocity v and the Lorentz contraction fac­
tor y-l = ,Jl - v2. This means that particles from distant parts of the 
production region will typically exhibit large momentum differences. Con­
sequently the probability of finding particles from opposite ends of a 
two-jet event with momenta less than 1/ L (which is necessary to obtain 
significant interference effects) should be negligible. Therefore the length 
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scale measured by the HBT effect in this case is not L; it is instead the 
distance apart of production points for which the momentum distributions of 
the produced particles will still overlap. 

In order to get an estimate of the length scale inside which a particular 
source will deliver its final-state particles let us assume that we have a 
decay distribution which is completely isotropic in the rest frame of the 
source. We define the rapidity with respect to some axis. We will neglect 
the rest masses of the decay products, so that a particle produced along a 
direction at an angle () to the rapidity axis will have the rapidity 

y = ~ log (! ~ ~~) = log cot ~ (14.14) 

where we have used Pt = E cos (). Expressed in terms of this (pseudo)­
rapidity variable we find the isotropic angular distribution 

sin () d(}dcf> dcf>dy 1 
cosh2 y 

(14.15) 

The angle cf> is the azimuthal angle around the rapidity axis. Thus in 
this case a typical particle source will produce particles inside a rapidity 
region with a width around 0.7 rapidity units. We conclude that the 
particle distributions from sources moving with a rapidity difference .1y 
will overlap reasonably well as long as .1y ~ 1. 

Therefore this exercise shows that the HBT effect actually must cor­
respond to the measurement of a source size of the order of the local 
proper time scale, i.e. 1" ~ L. In particular the distributions should hardly 
look more elongated in the longitudinal than in the transverse direction 
with respect to the main axis and the measured distributions should be 
independent of the cms energies involved. 

3 The interference effect in the Lund model 

In Fig. 14.1 we exhibit again the breakup of the Lund string into many 
final-state yoyo-hadrons, which stem from the combination of q- and q­
particles from adjacent vertices. In the same figure we show (by a broken 
line) the production of the very same final state but in this case the two 
particles, denoted 1 and 2, have been interchanged. 

If these two particles are identical bosons then the amplitudes corre­
sponding to the two possibilies shown in Fig. 14.1 will interfere according 
to quantum mechanics. We have up to now considered only the proba­
bilities, and not the amplitudes, for the production processes in the Lund 
model. But, in connection with the discussion in Chapter 11 of the Wilson 
loop-integral analogy to the production process, we did provide a tentative 
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Fig. 14.1. The breakup situation when two identical bosons, 1 and 2, are produced 
in the Lund model together with an intermediate state I and a set of hadrons 
outside the regions between the points A and B. The distance between the centres 
of the yoyo-hadrons is shown by the dotted arrows. 

matrix element of the following form: 

A = exp(i~A), ~ = 1/2K + ib/2 (14.16) 

The area A is as usual the space-time region (in energy-momentum space 
units) swept out before the string breaks. Note that throughout we use the 
lightcone-metric area just as we did in the derivation of the Lund model 
fragmentation functions. This means that it is a factor of two larger than 
the 'true' area and we have corrected for this with the factor 1/2 in the 
real part of the parameter ~. 

We note in particular that the areas are not the same in the two cases. 
Thus for the configuration shown by solid lines in Fig. 14.1 we have 

an area A12 in the matrix element A 12 and for the one that includes 
the broken lines we have an area A21 in the matrix element A2l. The 
production of the state with two identical bosons 1 and 2 must then be 
described by the symmetrised matrix element 

A = A12 +A2l (14.17) 

From this we conclude that the probability will contain the factor 

with 

IAI2 = IA1212 + IA2112 + 2Re A~2A21 
= [exp(-bAn) + exp(-bA2dl (1 +.if) (14.18) 

.if = cOS(.1A/K) 
cosh(bM/2) 

(14.19) 
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These formulas are proved by straightforward algebra from the area law 
in Eq. (14.17). 

The result is evidently that we may obtain the final state either through 
the channel '12' or through the channel '21'. But the interference between 
the two situations will result in a multiplicative enhancement factor corre­
sponding to the term 1 + ye, which depends upon the area difference ~A 
between the two space-time breakups. This area difference will depend not 
only upon the two particles 1 and 2 but also upon the state produced in 
between, which we have denoted by I in the figure. We note that the area 
difference exactly vanishes if the energy momentum vectors P1 and P2 are 
equal but grows rapidly from zero with the mass of the state I. 

Before we provide formulas for ~A we note that if two identical charged 
pions are produced then it is necessary to have the state I in between 
in order to compensate the quantum numbers. Thus if 1,2 are positively 
charged pions then it is necessary to compensate by a state of nega­
tive charge, and vice versa if they are negatively charged pions. If two 
neutral pions are produced, however, then there is no such requirement. Con­
sequently in an ideal world where it would be just as possible to make 
measurements on neutral pions as on charged ones we would obtain by 
straightforward means a smaller area for the neutral pions in general, 
and the model could thus be easily checked. Up to now this has not 
been possible because it is very difficult to disentangle a signal from two 
neutral pions with sufficient precision. They each decay predominantly to 
a two-photon state, and it is very difficult to pick out four photons with 
sufficient precision in multi particle surroundings. 

We will provide two different formulas for the area difference ~A. The 
first one corresponds to an energy-momentum description: 

(14.20) 

in easily understood notation. This is the true area, i.e. without the use 
of the lightcone metric and relevant to the result in Eq. (14.19). We note 
that it will vanish when the energy-momentum vectors of the bosons are 
equal and that it will grow quickly with the intermediate-system mass. 

Another form that is interesting is obtained by rewriting ~A as 

(14.21) 

and it is easy to construct the space and time differences bx, M which will 
fulfil Eq. (14.21): 

S:t + P1 + P2 
Ku = PI 

2 

s: E E1 +E2 
KuX = I + 2 

(14.22) 
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These are the space-time difference vectors between the centres of the 
two-particle yoyos during the cycle when, according to the Lund model 
interpretation, they are produced. These points are indicated in the figure 
and we note that although they do not coincide in the two cases their 
difference vector is, of course, the same. 

With this interpretation of the area difference the result for the correla­
tion term :Yt' in Eq. (14.19) is in a very natural way related to the chaotic 
correlation r!4 which we obtained in Eq. (14.11); the phase difference 
between the two 'production points' occurs weighted by a denominator. 

We can also easily understand that this phase difference is, in the Lund 
string model, related to the fact that there must in general be something 
else produced in between the pair. This intermediate state, called I above, 
is needed in order to conserve the quantum numbers in the production 
process. In this interpretation the HBT effect measures the region inside 
which the quantum numbers of the production process are compensated. 

4 The introduction of transverse momentum 

Before we compare the model to the experimental data it is necessary to 
account for transverse momentum generation and for the fact that many 
particles are not directly produced but come from the decay of resonances. 

By means of the tunnelling mechanism described by WKB methods in 
Chapter 11 (cf. also Chapter 12), we should in the Lund model introduce 
the real factors 

exp[-n,ui)/(2K)] (14.23) 

in the matrix element at each production vertex. The quark-mass factors 
will be the same. But it is necessary to generate different transverse 
momenta for the two cases at the two vertices adjoining the state I, in 
order to obtain the same states. In order to see this we note that the 
transverse momentum kj generated at the vertex j can be expressed in 
terms of the transverse particle momenta p~ as 

(14.24) 

The sum runs over all particles from one end of the string to the production 
point of the given q or q. When the two particles are exchanged and there 
is a nonvanishing transverse momentum vector difference, P~l - P~2 =1= 0, 
then this will result in changes in the transverse momentum generated at 
the q and the q. 

This means that the denominator term in :Yt' from Eq. (14.19) will 
change as follows: 

cosh(bdA/2) ~ cosh(bdA/2 + b~) (14.25) 
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(jl. = nM2: k2) 
2K 
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and ~(2: k2)) means the necessary changes in the sum. Note that the 
numerator stems entirely from the imaginary phases. 

5 The resonance decay problems 

A much more involved problem is the treatment of the particles which 
stem from the decay of directly produced resonances. We will briefly 
discuss what one should expect from a phenomenological treatment of 
the resonances in terms of Breit-Wigner form factors. 

A decaying state with mass m must have in its own rest frame a wave 
function tp satisfying 

tp '" exp( -imt - tr /2) so that Itpl2 '" exp( -rt) (14.26) 

if we are to obtain the well-known exponential decay law with lifetime 
l/r. This means that such a state behaves as if it has a complex mass 
m - ir /2, which in the limit r ~ 0 corresponds to Feynman's prescription 
for the propagator, as described in Chapter 3. 

Accordingly, one describes the propagation of such a state as a solution 
of the Klein-Gordon (or any other relativistically covariant) equation with 
this mass value inserted. We start by assuming that the resonance will be 
produced at the space-time point XR == (tR, R) with a certain production 
amplitude f(XR). We further assume, for simplicity, that it will decay to a 
two-particle state with energy-momentum vectors (Wj, k j ), j = 1,2, at the 
space-time point Xl == (tl, rt). 

There will be a decay amplitude for this, which we obtain by a coherent 
sum over all space-time points for the wave functions. For simplicity we 
assume that the decay products are described by plane wave solutions. 
The amplitude for the propagation and decay is then 

M = J dxA(x), 

A(x) = f(XR)gR(t, r) exp[-i(klXl + k2Xt}] 
(14.27) 

Here X = Xl-XR == (t,r) and the (radially symmetric) propagation solution 
to the Klein-Gordon equation for the resonance is 

(14.28) 

According to the mass assumption above we have the following relation 
between the (complex) momentum kR and the energy WR of the decaying 
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resonance: 

k1 = (1)1- (m - ir /2)2 

The t-integral yields energy conservation, 

(14.29) 

(14.30) 

and the angular integral over dO., in the space differential d3r = r2drdo., 
will yield for the decay-product plane waves 

J do.exp[-i(k1 +k2)· r] = J dcpd8sin8exp(-ilkl +k2Ircos8) 

Ikl :nk2lr sin(lk l + k2lr) (14.31) 

Finally the integral over r, now combined with Eq. (14.31), will be pro­
portional to 

(1)1- (m - ir /2)2 - (k1 + k2)2 
1 

Mr2 - (m - ir /2)2 
(14.32) 

This is the well-known Breit-Wigner form factor, which relates the squared 
mass of the final two-particle state, Mr2 = (kl + k2)2, to the complex mass 
of the decaying resonance. We have used the relations in Eqs. (14.29) and 
(14.30) in the last two lines and have left out a set of constant factors 
along the way, together with the remaining production amplitude factor 
!(XR) exp[-i(k1 + k2)XR]. 

There is evidently a close relationship between the Breit-Wigner dis­
tribution and the Feynman propagator in energy-momentum space. This 
means that the distribution in mass for the final-state particles will be 
proportional to IMI2 and thus to 

1 
(14.33) 

(Mr2 - m2 + r2/4)2 + m2r2 

When we consider the correlation between a pion stemming from this 
kind of decay and one stemming from direct production it is necessary 
to symmetrise the wave functions etc. Bowler, [35], has done this for us 
and for the details we refer to his treatment of both this and a number of 
other final-state corrections to the RBT effect. 

The result of such considerations is that if we have a 'spectator state' 
from the resonance decay, which with Bowler's notation we will call 3, 
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together with two interfering bosons 1 and 2 then if the width of the 
resonance r in the formula above fulfils 

r < IM13 - M231 (14.34) 

the interference effects will vanish. There is consequently no HBT enhance­
ment effect for the decay products from sufficiently long-lived resonances. 
The question is then what we mean by 'long-lived'. To ascertain this, we 
investigated three different situations in [22], where the original Lund 
interpretation occurs. 

1 Only charged or neutral pions are produced within the Lund model 
scenario. This is evidently not in accordance with the experimental 
observations for e+ e- annihilation reactions but it does actually 
provide a reasonably good description of many features of the final 
states. 

2 There is the usual mixture in the Lund model of stable and un­
stable particles, including strange particles and baryons. The matrix 
elements are in each case evaluated for the stable final particles, 
ignoring the fact that some of them come from resonances. 

3 The decay products of a resonance with four-vector energy­
momentum k, mass m and width r are allowed to contribute to 
the HBT effect only if kq ~ mr. Here q is the the four-momentum 
difference vector. 

In [22] we compared the data from the TPC collaboration at SLAC-PEP 
to three different cases obtained by a Monte Carlo simulation of the Lund 
model predictions, with a weighting of each event by the factor 1 + .Yf in 
Eq. (14.19). It was found, firstly, that cases 1 and 2 above coincided with 
each other from all practical points of view and also with the data. It 
turns out that the results are essentially only sensitive to the numerator in 
.Yf, i.e. there is a quick falloff in the cosine function for K :::::::: 0.2-0.3 GeV2, 
which we have been using in the Lund model. The hyperbolic cosine in 
the denominator only takes over after the cosine function has gone down 
to zero. The reason for this is that the b-parameter in the Lund model is 
essentially smaller than the scale provided by K. 

Case 3 is, however, very far from the data and the predicted HBT effect 
is very small. There are, according to the Particle Data Group tables, a 
set of long-lived resonances which may affect the results. Bowler, [34], 
has shown that the major problem is actually the rate of produced 1'/'­
mesons in the Lund model. Remember that in Chapter 12 we have already 
presented some problems related to the rate of the 1'/'-particles in the Lund 
model. 
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Bowler found that around 40% of the like-sign pion pairs which come 
out with Q-values (Q2 = _q2) below 0.2 GeV stem from 11' -decays. Further, 
the pions from other decays of long-lived resonances do not in general 
populate this region at all. This means that at the q-value range, where 
it matters, the long-lived 11' -decay products really playa very large role. 
Bowler then questions the Lund rate of 11' -production and as we mentioned 
in Chapter 12 the model predictions may well be wrong. Bowler finds that 
if there were a strong suppression of 11' -particles in the production process 
and if instead the observed pions were directly produced then almost the 
same HBT effect as for the cases 1, 2 above is also predicted in case 3. 

14.3 The polarisation effects in the Lund model 

1 The dynamical idea 

We will start with a semi-classical explanation for the existence of a large 
polarisation effect in the Lund model. We consider the production of a 
qq-pair at a vertex and assume that the particles each have mass m and 
are tunnelling out with compensating transverse momenta ±kt . 

In order to conserve the energy they will appear on the mass shell at the 

relative distance 21 = 2mt/K, where mt = Jm2 + k;, as we have discussed 
several times before. In this way both the energy and the momentum are 
conserved. But the angular momentum is not conserved. 

From Fig. 14.2 we immediately conclude that the orbital angular mo­
mentum of the pair state is equal to 

L = 2ktl = 2ktmt (14.35) 
K 

in the direction along a unit vector determined by the vector product 
1 x k t ; the direction of the force field, I, is then defined to go from the 
produced q to the q, q having the transverse momentum k t . 

The size of L can by the usual tunnelling formulas be estimated from 
Eq. (14.35) to be very close to unity for an average transverse momentum 
size. Therefore the effect cannot be small for this average situation. It 
is also reasonable to assume that the force field, unless there are local 
excitations, should contain no angular momentum. So, the only way in 
which this increase in the orbital angular momentum can be compensated 
is if the combined spin of the produced pair S equals 1 (they are spin 1/2 
particles) and if the transverse component of S is oppositely directed to 
the vector L. 

This means in spectroscopical notation that such pairs are produced 
in a state with the assignment 3 Po, meaning that a triplet spin state 
S = 1 combines with an orbital angular momentum state L = 1 to give 
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Fig. 14.2. A qq-pair is produced with oppositely directed transverse momenta at 
a typical distance for a force field with finite energy density K. The vector L points 
transversely outwards while the compensating spin vectors s[, S2 point inwards. 

a state with total angular momentum J = O. It turns out that owing to 
the intrinsic parity of the qq-pair (which results in pseudoscalar spin 0 
mesons) this state exactly corresponds to the quantum numbers of the 
vacuum (L = 1 states have negative parity). 

The model also contains, however, predictions for the relative spin 
direction from a knowledge of the force field direction and the transverse 
momentum of the q or q with respect to the field. We will later show the 
consequences in connection with A-polarisation in a baryon fragmentation 
regIOn. 

2 The corresponding situation in QED 

It is of some interest to note that there will be a very different result for 
the production of an e+ e- -pair in an external electric field. 

To see this we assume that we have exactly the same production situation 
in QED as the one described above; let us also for the sake of argument 
assume that the pair will be polarised in the same way as above. Then in 
QED this polarisation will not be conserved. 

The reason is that when the charges separate in the external field with 
momenta transverse to the field direction, see Fig. 14.3, then each of the 
charged particles will be accelerated along the electric field. But they will 
also cross the electric field lines, which means basically that there will 
be a torque working on the spin of the particles. Therefore the field will 
quickly take back the possible spin and kill the polarisation effects. 

In order to discuss this effect in detail we consider the equation of 
motion for a spin vector in the particle's rest frame. In this frame the 
field, which was a constant electric field in the frame where the particle 
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-e~ 

Fig. 14.3. The motions of an oppositely charged ±e pair in an external field if. 

was produced, is not purely electric. (The following discussion partly uses 
arguments from Jackson's book.) 

The effect was noticeable for the fields we exhibited in a moving frame 
in connection with the method of virtual quanta in Chapter 2. There we 
found that a magnetic field was induced: 

f!lJ = -v x tK (14.36) 

and this is true in general ignoring correction terms of order v2. Here also 
in the rest frame of the electron there is an induced magnetic field of this 
size. 

A particle with spin s also has a magnetic moment I' proportional to 
the spin vector: 

ge 
1'= -s 

2m 
(14.37) 

with the g-factor (as normal for a Dirac particle) equal to 2. (We will in 
the next section find the Thomas-precession correction to this result.) 

Therefore there is an equation of motion for the spin 

ds 
dt = -I' x f!lJ (14.38) 

which corresponds to an extra term in the hamiltonian 

H' = -I' . f!lJ = I' . (v x tK) (14.39) 

This means that in order to minimise the energy, the magnetic moment 
and therefore also the spin should be directed oppositely to v x tK. 

This is exactly the opposite result to that obtained from the simple model 
described above. There we required that the spin should be oppositely 
directed to the 'produced' orbital angular momentum, which is directed 
along the direction I x k oc tK x v. 
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(a) (b) 

Fig. 14.4. The motion of a particle attached to a string (a) before and (b) after 
a boost to the rest system of the string piece adjoining the endpoint. 

In the Lund model, however, there will be no such effect in a confined 
string situation. If we go back to the (admittedly classical) picture of the 
transverse motion of a particle attached to a string in Chapter 12 then we 
may utilise a frame in which the adjoining string piece is at rest, see Fig. 
14.4. 

This means that we are boosting in the transverse direction of the string 
piece, along the angle n/4 in Fig. 14.4(a), with velocity v = cos(n/4) = 

1/ -Ii. In this frame we will find that the endpoint particle is simply 
moving outwards along a straight string, i.e. there is always only a color 
electric field acting on the particle. Therefore in a confined scenario of the 
Lund model type we do not have the torque on the spin discussed above. 

This is actually the reason why we did not present calculations of how 
spin 1/2 particles would tunnel out of a confining force field. For particles 
with spin it is not sufficient to choose a potential that describes a purely 
electrostatic external field if we want to account for the relation between 
the force field and the particle in a confining situation. It is necessary to 
define a more general potential in such a way that in the rest frame of the 
particle the field is electrostatic. 

3 The Thomas-precession effect and a different model 

The result in Eq. (14.39) is actually identical to the so-called spin-orbit 
coupling in spectroscopy. For that case we write the following formula for 
the electric field in an atom as 

rdV 
e$=--­

r dr 
(14.40) 

in terms of a spherically symmetric potential V(r). This means that the 
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spin-dependent term in the hamiltonian is 

--.Ls . (r x mY)! dV = --.Ls . L (! dV) 
2m2 r dr 2m2 r dr 

(14.41 ) 

The only problem is that the g-factor according to all experimental ob­
servations should equal 1 and not 2 as suggested by Uhlenbeck and 
Goudsmit. The puzzle was solved by Thomas, who pointed out that there 
is a subtle relativistic effect when a spinning particle is accelerated. The 
effect comes very nicely out of the relativistically covariant description of 
a spinning particle in the Dirac equation. 

We will not derive the Thomas effect in detail because we would then 
need an extensive formalism for (3 + l)-dimensional Lorentz transforma­
tions. It is done in Jackson's book and we refer readers interested in the 
details to this. It is, however, a purely kinematical effect. The spinning 
particle may, in its own rest frame, have any spin vector direction. For the 
observer who is accelerated with respect to this rest frame there will be a 
bias in the direction of the coordinate system in the rest frame relative to 
that in the observer's frame. 

Suppose that the observer adjusts his coordinate axes to coincide with 
those in the particle's rest frame at a time, t, when the particle has a 
certain velocity v(t). Then after a moment dt the particle will have the 
velocity v(t + dt) = v(t) + dv. 

Therefore when the observer compares the axes after the time increment 
dt he will have to make a Lorentz boost along the new direction. As we 
have said in Chapter 2, Lorentz boosts in different directions do not 
commute. In other words L(v)L(dv) =1= L(v + dv), where L is the boost 
operator, unless v and dv are parallel. 

Consequently, the coordinate axis, and also the spin direction in the rest 
frame, will seem for the external observer to be rotating at a rate given 
by the Thomas angular velocity: 

y2 dv 
QT = --- X v 

1 + y dt 
(14.42) 

In the nonrelativistic approximation y = 1, which is relevant for an 
electron in an atom (an atomic electron moves with an average velocity 
equal to ('J. c:::: 1/137 ~ 1) the acceleration will be given by the force in Eq. 
(14.40) and therefore the angular velocity will be 

Q T = -1 L (! dV) (14.43) 
2m2 r dr 

which will give an effective hamiltonian term equal to 

HT = QT' S = -1 s. L (! dV) 
2m2 r dr 

(14.44) 
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This is of the same type as the spin-orbit coupling and together they will 
change the effective g-factor to g - 1, i.e. to the observed value. 

In this way it is possible to obtain a spin effect that stems from the 
acceleration of the particle in a direction not parallel to its momentum 
vector k. Thus if we imagine that after it has been produced the particle is 
accelerated along the force field direction I then there should be a Thomas 
precession effect with an effective hamiltonian 

H~ = hs . (l x k) (14.45) 

Here h is a positive-definite coupling constant equal to the force. 
Now we do have a favorable situation for the particle to choose its spin 

in the direction opposite to the vector I x k = I X kt, which is exactly in 
accordance with the prediction of the simple Lund polarisation model. 
In this case it would be the final-state interaction, i.e. the acceleration of 
the particle into the the final hadronic state, which would produce the 
polarisation effect, rather than the pair production mechanism, as in the 
Lund model explanation. 

It may seem like magic, because there is really no force on the spin 
itself. It is instead an observational bias that produces the effect. It has 
nevertheless been suggested as a possible model to explain polarisation 
effects in hadronic production processes, [50]. 

4 The observable consequences 

It is possible to make a large number of predictions from the simple model 
we discussed in subsection 1. We will be content, however, to discuss the 
results for A-particle polarisation in a baryon fragmentation region. The 
A-particle is, in some sense, one of the very few unqualified gifts which 
Nature has bestowed upon high-energy physicists, at least those interested 
in polarisation physics. Almost every other tool for observation contains 
very many complications. The reasons why the A is so nice are two-fold. 

Firstly the A-particle decays via weak interactions to a nucleon and 
a pion. Weak interactions do not conserve parity. Consequently the A, 
through its decay, exhibits an asymmetry in the distribution of the angle 
between the nucleon and the pion which is directly related to its spin 
direction. And this asymmetry is large! 

Secondly, the structure of a A-particle is rather simple. It can be de­
scribed essentially as a state composed of a diquark (ud)o, the index ° 
denoting that the pair has spin and isospin equal to 0, and an s-quark. 
From this structure we conclude that it is the spin of the s-quark which 
determines the spin of the A-particle. 

Thus the observation of A-polarisation reveals the direction of the s­
quark's polarisation. If a A-particle is observed with a large fractional 
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energy-momentum in the fragmentation region of a proton then it is most 
probably composed of a (ud)o diquark stemming from the original proton 
and a produced s-quark. If we imagine that the s-quark has been pro­
duced according to the Lund model prescription backwards along a string 
adjoining the (ud)o diquark (cf. the discussion of baryon fragmentation 
in Chapter 20) then the model of subsection 1 can be applied. It is only 
necessary to relate the transverse momentum of the produced s-quark to 
the transverse momentum of the observed A. 

In the original paper, [9], we made two assumptions. The first was that 
the polarisation f!}J of the produced s-quark will increase with the orbital 
angular momentum L of the ss-pair and we chose the simple relation 

f!}J = _L_ 
L+f3 

(14.46) 

with the parameter f3 ,...", 1-2. We further assumed that both the original 
diquark (ud)o and the produced s-quark had gaussian distributions of 
their transverse momenta, with widths {lqq and {lq, respectively. For the 
s-quark this can be justified from the tunnelling mechanism and for the 
diquark from the Fermi motion in the original baryon state. 

This assumption means that the correlation between the momentum of 
the final-state A-particle, Pt, and that of the s-quark, kt, will be 

( Pt ) {l~ 
kt . -I 1 = 2 + 2 Ipt 1 Pt {lq {lqq 

(14.47) 

The resulting polarisation for the A-particle then agrees very well with the 
results of the ISR-data, see [9] and [58]. 

There must be corrections to the results for smaller values of the 
fragmentation variable z, i.e. the fraction of the original baryon energy­
momentum carried by the A-particle. There are a set of possible channels 
that produce a A-particle in a baryon fragmentation region, according to 
the Lund model, cf. Chapter 20. It is then possible to predict the behaviour 
of the polarisation also for smaller values of the ratio z (or the Feynman 
variable XF) in the fragmentation region of the proton and also to use the 
same mechanism for other hyperons, i.e. strange baryons. 

The resulting predictions have been repeatedly confirmed. It is interest­
ing that the polarisation effects are also found in states of a diffractive 
nature, [106]. Whether the dynamical mechanism for producing polarisa­
tion is the one proposed in the Lund model, i.e. the produced states come 
out with polarisation, or whether it is an effect of final-state Thomas 
precession is a question that we must leave open until more data on 
resonance hyperon polarisation become available. 
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