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PSEUDOUMBILICAL 2-TYPE SURFACES
IN SPHERES

BY
OSCAR J. GARAY

ABSTRACT. It is proved that a pseudoumbilical 2-type surface in a
sphere has constant mean curvature. Moreover, the dimension of the sphere
is greater than four.

0. Introduction. Let M be an n-dimensional manifold immersed in an (m + 1)-
dimensional Euclidean space, E™!. Denote by H the mean curvature vector of that
immersion. If there exists a function A on M such that (H,o(X,Y)) = A(X,Y ), where
o is the second fundamental form, and ( , ) is the scalar product in E™! then M is
called a pseudoumbilical submanifold of E™. Note that X is the square of the mean
curvature.

On the other hand, for an isometric immersion x : M — E™1 of a compact
Riemannian manifold M into E™*!, we can get a spectral decomposition of the position
vector x in the following way: x = xo + ) _,.,X;, Where xo is the center of mass of M
and x,’s are (m + 1)-valued eigenfunctions of A, the Laplacian of M : Ax, = Ax,. If
there are exactly k£ nonzero x,’s in the decomposition of x, we say that (M,x) is of
k-type (see [3]).

Pseudoumbilical submanifolds in the Euclidean space with the mean curvature vec-
tor parallel in the normal bundle are precisely those submanifolds which are minimal
in hyperspheres [5], so that, by Takahashi’s theorem [9], this gives also a charac-
terization of 1-type Euclidean submanifolds. We know also that a 2-type spherical
Chen surface whose center of mass coincides with the center of the sphere in which
it is immersed is either pseudoumbilical or flat [7]. Moreover, we constructed in that
work examples of pseudoumbilical 2-type surfaces immersed in spheres. In this note,
we want to gain more information about the relationship between pseudoumbilical
submanifolds and 2-type immersions in the Euclidean space. More specifically, we
get:

THEOREM. Let x : M — SZ'(1) C E™! be a pseudoumbilical 2-type immersion of
a compact Riemannian surface M in the m-dimensional unit sphere centered in the
origin of E™!, then the immersion has constant mean curvature and m 2 5.
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1. Preliminaries. Take x : M?> — S () C E™! an isometric immersion of a
closed surface in the m-sphere, which without loss of generality we suppose it is the
unit sphere centered in the origin of E™1. As x(M?) is included in Sg'(1) we say
that the immersion is spherical. We denote by H the mean curvature vector of M? in
E™! and by H' the mean curvature vector of M? in S{'(1). Then H = H' — x and
so a® = 1+ (c/)* where « and o are the mean curvatures of M2 in E™! and S{'(1)
respectively. Choose £ as a unit normal vector parallel to H', H' = £, and denote by
A,D, and o the Weingarten map, the normal connection, and the second fundmental
form of M? in E™!, and A’, D', ¢’ the same geometric elements of M? in Sg'(1). If
one computes the Laplacian of H in terms of this kind of elements, one gets, [3],

(1) AH = (AH)" + AP H' + {|A¢]* + 2}H' — 20%x

where (AH)" is the tangent component of AH and A"’ represents the Laplacian asso-
ciated to D’. The tangent component (AH Y', can be written [2], [4],

) (AH)YT = 2Tr Apy + V(a)?

with Tr Apyr = 37, Ap1 wEi, {E1, E2} being an orthonormal basis in the tangent
bundle TM?; and V()2 is the gradient of o?.

At this point we assume that the immersion (M2, x) is of 2-type. This means that
its position vector has the form x = xo + x, + x,, with x, and x, (m + 1)-valuated
eigenfunctions of A, the Laplacian of M2, corresponding to the eigenvalues ), and Ay
respectively, and xq is a constant given by the center of mass of M?2. If x, coincides
with the center of the sphere in which M 2 is included, we say that (M 2 x) is of
mass-symmetric in S§'(1). Using the well-known formula Ax = —2H one obtains:

(3) AH = bH +c(x —x0); b= X, + Ags ¢ = 100,
From formulas (1) and (3) we get
) (x0,x) = 1/c{n* + ¢ — b}

On the other hand, if X is a tangent vector field in M?, one uses again (1) and (3)
and now (X,xo) = (X, (AH)"). Therefore (2) and (4) give:

5 Tr Apr = (—1/20)2 + )V(a)?

Hence:
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LemMA. Let x : M? — SZ'(1) a 2-type spherical immersion of a closed surface in
S¢'(1). Then it has constant mean curvature, if and only if, Tr Apg = 0.

Now, we choose a system of isothermal coordinates {x;,x,} covering M?. The
induced metric tensor g has the form g = E(dx} +dx3). We put X; = 9/dX;, i = 1,2,
then by using Codazzi’s equation one has

(6) Dy,0'(X1,X1) — Dy, 0' (X2, X)) = (X2E)H'
Dy,d'(X1,X2) — Dy,0'(X2,X,) = —(X,E)H'

As usual, we denote by dz = %(Xl —iX»), 0% = %(Xl +1X,), and then from (6), we
obtain

@) 0Z(LnE)d’(0z,0%) = D).’ (dz,02) — D}, 0’ (92, 9%)
9z(LnE)o’(9z,02) = D), 0'(9z,9z) — D},0’(3z, 92)

In this coordinate system, the mean curvature is H' =2E"14 (dz, d2). Differentiat-
ing this formula and taking into account (7), we get

®) 0z(H'") = 2E7'D).d' (92, 92)
0z(H') = 2E7'D} 0'(3z, 92)

Next, we want to compute Tr Ap/ys in terms of isothermal coordinates. Since
{E; = X;/v/E}, i = 1,2, is a local orthonormal basis
2 2
Tr AD’H’ = ZAD;;‘[HIE" = E (ADSZH/E)Z +AD32H182)
i=1

= 4/E*{((d(02,02), D} H') + (0/(3z,07), D}.H'))oz
+(0'(9z,0z), D4, H') + (0’ (3z,9z), D). H'"))0z

Hence, using (8), we finally obtain:
) Tr Apgr = 4E72((_)z:<H'7 0'(9z,0%))0z + 02(H', 0’ (3z, 02))9Z)

This formula holds for any spherical surface M? immersed in SJ'. (Compare with
lemma 1 of [8].)

2. Proof of the theorem. Suppose M? is pseudoumbilical. In this case
(H',0'(0z,02)) = (H',0'(3z,02)) = 0

Thus, using (9), Tr Apyr = 0. Therefore, from lemma 1, « and consequently o are
constant.
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For the second part, we only need to know that a pseudoumbilical submanifold of
dimension # in $™? is either minimal in $"*2 or a minimal hypersurface in a small
(n+ 1)-sphere of $™*2, [6]. But this kind of submanifolds are of 1-type by Takahashi’s

theorem. Then m = 5.

ReMARk. In [1] authors proved that there exist no 2-type mass-symmetric immer-
sions of surfaces in S*. As a consequence of our result, there exist no pseudoumbilical

2-type surfaces in S*.
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