PSEUDOUMBILICAL 2-TYPE SURFACES IN SPHERES

BY OSCAR J. GARAY

ABSTRACT. It is proved that a pseudoumbilical 2-type surface in a sphere has constant mean curvature. Moreover, the dimension of the sphere is greater than four.

0. **Introduction.** Let M be an n-dimensional manifold immersed in an (m+1)-dimensional Euclidean space, E^{m+1} . Denote by H the mean curvature vector of that immersion. If there exists a function λ on M such that $\langle H, \sigma(X,Y) \rangle = \lambda \langle X,Y \rangle$, where σ is the second fundamental form, and \langle , \rangle is the scalar product in E^{m+1} , then M is called a pseudoumbilical submanifold of E^m . Note that λ is the square of the mean curvature.

On the other hand, for an isometric immersion $x: M \to E^{m+1}$ of a compact Riemannian manifold M into E^{m+1} , we can get a spectral decomposition of the position vector x in the following way: $x = x_0 + \sum_{t>0} x_t$, where x_0 is the center of mass of M and x_t 's are (m+1)-valued eigenfunctions of Δ , the Laplacian of $M: \Delta x_t = \lambda_t x_t$. If there are exactly k nonzero x_t 's in the decomposition of x, we say that (M, x) is of k-type (see [3]).

Pseudoumbilical submanifolds in the Euclidean space with the mean curvature vector parallel in the normal bundle are precisely those submanifolds which are minimal in hyperspheres [5], so that, by Takahashi's theorem [9], this gives also a characterization of 1-type Euclidean submanifolds. We know also that a 2-type spherical Chen surface whose center of mass coincides with the center of the sphere in which it is immersed is either pseudoumbilical or flat [7]. Moreover, we constructed in that work examples of pseudoumbilical 2-type surfaces immersed in spheres. In this note, we want to gain more information about the relationship between pseudoumbilical submanifolds and 2-type immersions in the Euclidean space. More specifically, we get:

THEOREM. Let $x: M \to S_0^m(1) \subset E^{m+1}$ be a pseudoumbilical 2-type immersion of a compact Riemannian surface M in the m-dimensional unit sphere centered in the origin of E^{m+1} , then the immersion has constant mean curvature and $m \ge 5$.

Received by the editors May 4, 1988 and, in revised form, November 30, 1988.

Research partially supported by a CAICYT Grant PR84-1242-C02-02 and by a grant of Junta de Andalucía. Spain.

¹⁹⁸⁰ Mathematics Subject Classification: 53C40.

[©] Canadian Mathematical Society 1988.

This work was done while the author was visiting Michigan State Univ. in Fall 1987. I would like to thank my colleagues there for their kindness. I am especially grateful to Prof. B-Y Chen for many valuable commentaries.

1. **Preliminaries.** Take $x: M^2 \to S_0^m(1) \subset E^{m+1}$ an isometric immersion of a closed surface in the *m*-sphere, which without loss of generality we suppose it is the unit sphere centered in the origin of E^{m+1} . As $x(M^2)$ is included in $S_0^m(1)$ we say that the immersion is spherical. We denote by H the mean curvature vector of M^2 in E^{m+1} and by H' the mean curvature vector of M^2 in $S_0^m(1)$. Then H = H' - x and so $\alpha^2 = 1 + (\alpha')^2$ where α and α' are the mean curvatures of M^2 in E^{m+1} and $S_0^m(1)$ respectively. Choose ξ as a unit normal vector parallel to $H', H' = \alpha' \xi$, and denote by A, D, and σ the Weingarten map, the normal connection, and the second fundamental form of M^2 in E^{m+1} , and A', D', σ' the same geometric elements of M^2 in $S_0^m(1)$. If one computes the Laplacian of H in terms of this kind of elements, one gets, [3],

(1)
$$\Delta H = (\Delta H)^T + \Delta^{D'} H' + \{|A_{\varepsilon}|^2 + 2\} H' - 2\alpha^2 x$$

where $(\Delta H)^T$ is the tangent component of ΔH and $\Delta^{D'}$ represents the Laplacian associated to D'. The tangent component $(\Delta H)^T$, can be written [2], [4],

(2)
$$(\Delta H)^T = 2 \operatorname{Tr} A_{D'H'} + \nabla(\alpha)^2$$

with Tr $A_{D'H'} = \sum_{i=1}^{2} A_{D'_{E_i}H'} E_i$, $\{E_1, E_2\}$ being an orthonormal basis in the tangent bundle TM^2 ; and $\nabla(\alpha)^2$ is the gradient of α^2 .

At this point we assume that the immersion (M^2, x) is of 2-type. This means that its position vector has the form $x = x_0 + x_p + x_q$, with x_p and $x_q (m + 1)$ -valuated eigenfunctions of Δ , the Laplacian of M^2 , corresponding to the eigenvalues λ_p and λ_q respectively, and x_0 is a constant given by the center of mass of M^2 . If x_0 coincides with the center of the sphere in which M^2 is included, we say that (M^2, x) is of mass-symmetric in $S_0^m(1)$. Using the well-known formula $\Delta x = -2H$ one obtains:

(3)
$$\Delta H = bH + c(x - x_0); \ b = \lambda_p + \lambda_q; \ c = \frac{1}{2}\lambda_p\lambda_q.$$

From formulas (1) and (3) we get

$$\langle x_0, x \rangle = 1/c\{n^2 + c - b\}$$

On the other hand, if X is a tangent vector field in M^2 , one uses again (1) and (3) and now $\langle X, x_0 \rangle = \langle X, (\Delta H)^T \rangle$. Therefore (2) and (4) give:

(5)
$$\operatorname{Tr} A_{D'H'} = (-1/2c)(2+c)\nabla(\alpha)^2$$

Hence:

LEMMA. Let $x: M^2 \to S_0^m(1)$ a 2-type spherical immersion of a closed surface in $S_0^m(1)$. Then it has constant mean curvature, if and only if, $\operatorname{Tr} A_{D'H'} = 0$.

Now, we choose a system of isothermal coordinates $\{x_1, x_2\}$ covering M^2 . The induced metric tensor g has the form $g = E(dx_1^2 + dx_2^2)$. We put $X_i = \partial/\partial X_i$, i = 1, 2, then by using Codazzi's equation one has

(6)
$$D'_{X_2}\sigma'(X_1, X_1) - D'_{X_1}\sigma'(X_2, X_1) = (X_2E)H'$$
$$D'_{X_2}\sigma'(X_1, X_2) - D'_{X_2}\sigma'(X_2, X_2) = -(X_1E)H'$$

As usual, we denote by $\partial z = \frac{1}{2}(X_1 - iX_2)$, $\partial \bar{z} = \frac{1}{2}(X_1 + iX_2)$, and then from (6), we obtain

In this coordinate system, the mean curvature is $\dot{H}' = 2E^{-1}\sigma'(\partial z, \partial \bar{z})$. Differentiating this formula and taking into account (7), we get

(8)
$$\partial z(H') = 2E^{-1}D'_{\partial\bar{z}}\sigma'(\partial z, \partial z)$$
$$\partial \bar{z}(H') = 2E^{-1}D'_{\partial z}\sigma'(\partial\bar{z}, \partial\bar{z})$$

Next, we want to compute Tr $A_{D'H'}$ in terms of isothermal coordinates. Since $\{E_i = X_i/\sqrt{E}\}, i = 1, 2$, is a local orthonormal basis

$$\operatorname{Tr} A_{D'H'} = \sum_{i=1}^{2} A_{D'_{E_{i}}H'} E_{i} = \frac{2}{E} \left(A_{D'_{\partial \bar{z}}H'} \partial \bar{z} + A_{D'_{\partial \bar{z}}H'} \partial z \right)$$

$$= 4 / E^{2} \left\{ \left(\left\langle \sigma'(\partial \bar{z}, \partial \bar{z}), D'_{\partial z}H' \right\rangle + \left\langle \sigma'(\partial z, \partial \bar{z}), D'_{\partial \bar{z}}H' \right\rangle \right) \partial z \right\}$$

$$+ \left\langle \sigma'(\partial \bar{z}, \partial z), D'_{\partial z}H' \right\rangle + \left\langle \sigma'(\partial z, \partial z), D'_{\partial z}H' \right\rangle \partial \bar{z}$$

Hence, using (8), we finally obtain:

(9)
$$\operatorname{Tr} A_{D'H'} = 4E^{-2} (\partial z \langle H', \sigma'(\partial \bar{z}, \partial \bar{z}) \rangle \partial z + \partial \bar{z} \langle H', \sigma'(\partial z, \partial z) \rangle \partial \bar{z})$$

This formula holds for any spherical surface M^2 immersed in S_0^m . (Compare with lemma 1 of [8].)

2. **Proof of the theorem.** Suppose M^2 is pseudoumbilical. In this case

$$\langle H', \sigma'(\partial \bar{z}, \partial \bar{z}) \rangle = \langle H', \sigma'(\partial z, \partial z) \rangle = 0$$

Thus, using (9), Tr $A_{D'H'} = 0$. Therefore, from lemma 1, α and consequently α' are constant.

68 O. J. GARAY

For the second part, we only need to know that a pseudoumbilical submanifold of dimension n in S^{n+2} is either minimal in S^{n+2} or a minimal hypersurface in a small (n+1)-sphere of S^{n+2} , [6]. But this kind of submanifolds are of 1-type by Takahashi's theorem. Then $m \ge 5$.

REMARK. In [1] authors proved that there exist no 2-type mass-symmetric immersions of surfaces in S^4 . As a consequence of our result, there exist no pseudoumbilical 2-type surfaces in S^4 .

REFERENCES

- 1. M. Barros, B-Y Chen, Stationary 2-type surfaces in a hypersphere. J. Math. Soc. Japan 39 (1987), pp. 627–648.
 - 2. M. Barros, O. J. Garay, 2-type surfaces in S³, Geometriae Dedicata 24 (1987), pp. 329-336.
 - 3. B-Y Chen, Total mean curvature and submanifolds of finite type, World Scientific (1984).
 - 4. ——, 2-type submanifolds and their applications, Chinese J. Math. 14 (1986), pp. 1–14.
- 5. B-Y Chen and K. Yano, *Minimal submanifolds of higher dimensional sphere*, Tensor N.S. **22** (1971), pp. 369–373.
- 6. ——, Pseudoumbilical submanifolds in a Riemannian manifold of constant curvature, Differential Geometry in Honnor of K. Yano (1972), pp. 61–71.
- 7. O. J. Garay, Spherical Chen surfaces which are of 2-type and mass-symmetric, J. of Geometry, 33 (1988), pp. 39–52.
 - 8. M. A. Kotani, Decomposition theorem of bi-order immersions. Preprint.
- 9. T. Takahashi, Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan, 18 (1966), pp. 380–385.

Departamento de Geometría y Topología Facultad de Ciencias Universidad de Granada Granada, Spain