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Abstract

Plane wave solutions to the cubic nonlinear Schrödinger equation on a torus have recently been
shown to behave orbitally stable. Under generic perturbations of the initial data that are small in a
high-order Sobolev norm, plane waves are stable over long times that extend to arbitrary negative
powers of the smallness parameter. The present paper studies the question as to whether numerical
discretizations by the split-step Fourier method inherit such a generic long-time stability property.
This can indeed be shown under a condition of linear stability and a nonresonance condition. They
can both be verified in the case of a spatially constant plane wave if the time step-size is restricted
by a Courant–Friedrichs–Lewy condition (CFL condition). The proof first uses a Hamiltonian
reduction and transformation and then modulated Fourier expansions in time. It provides detailed
insight into the structure of the numerical solution.
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1. Introduction

We consider the cubic nonlinear Schrödinger equation

i
∂

∂t
u = −∆u + λ|u|2u, u = u(x, t), (1)

in the defocusing (λ = +1) or focusing (λ = −1) case. We impose periodic
boundary conditions in arbitrary spatial dimension d > 1: the spatial variable x
belongs to the d-dimensional torus Td

= Rd/(2πZ)d .
This nonlinear Schrödinger equation has a class of simple solutions, the plane

wave solutions

u(x, t) = ρ ei(`·x−ωt) (2)

for ρ > 0, ` ∈ Zd , and ω = |`|2 + λρ2, where ` · x = `1x1 + · · · + `d xd and
|`|2 = ` · `. A natural question is whether these plane wave solutions (2) are
stable under small perturbations of the initial value. In this context it is common
knowledge that a linear stability analysis, where one examines the eigenvalues
of the linearization of the nonlinear Schrödinger equation (1) around a plane
wave, leads to the condition 1 + 2λρ2 > 0 for (linear) stability; see for instance
[1, Section 5.1.1]. Since nonlinear effects are ignored, the validity of such a linear
stability analysis is inherently restricted to a short time interval. Stability and
instability on long time intervals of plane waves in the exact solution are discussed
in the recent papers [8, 18], respectively. Of particular importance for the present
paper is [8], where orbital stability over long times is shown for perturbations in
high-order Sobolev spaces. Orbital stability means that the solution stays close to
the orbit (2).

From the viewpoint of numerical analysis, it is of interest whether (and if so
why) a numerical method shares the stability or instability of the exact solution
near plane waves. This is the topic of the present paper.

This problem can be traced back to the seminal paper [25] by Weideman and
Herbst, from 1986. In that paper, conditions on the discretization parameters for
various numerical methods are derived that ensure that the numerical solution
shares the linear stability of the exact solution. This is done by examining the
eigenvalues of the linearization around a plane wave of a numerical method
applied to (1). Such a linear stability analysis has recently been extended to
different numerical methods [4, 6, 21, 22].

In the present paper, we take up this line of research. In contrast to previous
work [4, 6, 21, 22, 25], however, we are interested in the long-time behaviour of
a numerical method near plane waves, and hence a linear stability analysis is of
limited use. We pursue the question as to whether the remarkably stable behaviour
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on long time intervals of the exact solution near plane waves [8] is shared
by one of the most popular numerical methods for the nonlinear Schrödinger
equation, the split-step Fourier method [19]. This method combines a Fourier
collocation in space with a Strang splitting in time; see Section 2.1. It integrates
plane wave solutions (2) exactly. Our main result states that the long-time orbital
stability of the exact solution near plane waves transfers to the numerical solution;
see Section 2.2 for a precise statement. In the case of a spatially constant plane
wave (`= 0 in (2)), the case considered by Weideman and Herbst [25], it is further
shown that the assumptions of this main result essentially hold under a Courant–
Friedrichs–Lewy condition (CFL condition) on the discretization parameters; see
Section 2.3.

The long-time stability result of the present paper deals with the completely
resonant equation (1): the eigenvalues (frequencies) of the linear part of the
equation are | j |2, j ∈ Zd , whose integer linear combinations may vanish
identically. This is in marked contrast to previous long-time stability results for
numerical discretizations of nonlinear Hamiltonian partial differential equations
that consider nonresonant situations. See [9–11, 13] for the split-step Fourier
method applied to the nonlinear Schrödinger equation, where (1) is considered
with an additional (generic but artificial) convolution term V ? u in order to have
nonresonant frequencies. Another feature of the result in the present paper is
that it covers a much larger class of initial values that are not small than the
aforementioned previous stability results that all deal with small initial values.

The proof of our stability result is given in Sections 3–5. We first eliminate,
in Section 3, the principal Fourier mode from the numerical scheme with a
sequence of transformations and reductions. The resulting system of equations
has small initial values. This enables us to use the technique of modulated Fourier
expansions for its long-time analysis; see Section 4. It is likely that normal form
techniques in the spirit of [9, 10] would lead to similar conclusions, but we have
not worked out the details. In order to obtain results that are valid on long time
intervals, the frequencies have to satisfy a certain nonresonance condition. In fact,
the completely resonant frequencies of the nonlinear Schrödinger equation are
modified during the transformations of Section 3, and we are able to verify a
nonresonance condition for the new frequencies in the final section, Section 5.

2. Numerical method and statement of the main results

2.1. The split-step Fourier method. We discretize the nonlinear Schrödinger
equation (1) with the split-step Fourier method as introduced in [19, 24, 25]. In
this method, the equation is discretized in space by a spectral collocation method
and in time by a splitting integrator.
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Discretization in space. For the discretization in space, we make the ansatz

uK (x, t) =
∑
j∈K

u j(t)ei( j ·x) with K := {−K , . . . , K − 1}d

with the spatial discretization parameter K . For fixed t , uK (·, t) is a trigonometric
polynomial which is uniquely determined by its values in the collocation points
x j = π j/K , j ∈K. Requiring that the ansatz uK fulfills the nonlinear Schrödinger
equation (1) in the collocation points leads to the equation

i
∂

∂t
uK = −∆uK + λQ(|uK |

2uK ), uK (·, 0) = Q(u(·, 0)), (3)

where the trigonometric interpolation Q(u) (with respect to the spatial variable x)
of a function u(x) =

∑
k∈Zd ukei(k·x) is the uniquely determined trigonometric

polynomial that interpolates u in the collocation points. This trigonometric
interpolation is given by

Q(u) =
∑
j∈K

ũ j ei( j ·x) with ũ j =
∑

k∈Zd :k≡ j mod 2K

uk,

where the congruence modulo 2K has to be understood entrywise.

Discretization in time. Equation (3) is then discretized in time by a splitting
integrator with time step-size h. For this purpose, we split (3) into its linear part
and its nonlinear part,

i
∂

∂t
uK = −∆uK and i

∂

∂t
uK = λQ(|uK |

2uK ).

Denoting by Φh
linear and Φh

nonlinear the flows over a time h of these equations, we
compute approximations un

K to uK (·, tn) at discrete times tn = nh by

un+1
K = Φh

linear ◦Φ
h
nonlinear(u

n
K ). (4a)

The initial value u0
K is chosen as

u0
K = uK (·, 0) = Q(u(·, 0)). (4b)

Equations (4) provide a fully discrete scheme for the numerical solution of
the nonlinear Schrödinger equation (1), the split-step Fourier method. Since its
introduction in [19], it has become a widely used and well-analyzed method; see
for example [1, 7, 11, 20, 24, 25] and the references therein.
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Computational aspects. In (4), both flows Φh
linear and Φh

nonlinear can be computed
exactly in an efficient way. The flow of the linear equation is given in terms of the
Fourier coefficients u j of a trigonometric polynomial u(x) =

∑
j∈K u j ei( j ·x) by

Φh
linear(u) =

∑
j∈K

e−i | j |2hu j ei( j ·x). (5)

Thus, it can be computed easily in terms of these Fourier coefficients. On the other
hand, the flow of the nonlinear equation is given by

Φh
nonlinear(u) = Q(e−iλ|u|2hu); (6)

that is, Φh
nonlinear(u)(x j) = e−iλ|u(x j )|

2hu(x j) for all j ∈ K. This is easy to compute
in terms of the function values in the collocation points. Note that the fast Fourier
transform provides an efficient tool to switch from Fourier coefficients to function
values in the collocation points, and vice versa. The computational cost per time
step is thus of order K d log K d .
Plane waves in the split-step Fourier method. The split-step Fourier method (4)
has plane wave solutions

un
K (x) = ρei(`·x−ωtn) for u0

K (x) = ρei(`·x) (7)

with ω = |`|2+λρ2 and ` ∈ K. In other words, the plane wave solutions ρei(`·x−ωt)

(2) of the nonlinear Schrödinger equation (1) are integrated exactly by the split-
step Fourier method if ` ∈ K. It is the stability of these plane wave solutions (7)
under perturbations of the initial value that we are interested in.

2.2. Long-time orbital stability. For the study of the stability of plane wave
solutions (7), with fixed vector ` ∈K, we impose the following assumptions (with
constants that do not depend on the discretization parameters h and K ).

ASSUMPTION 1. We assume that the time step-size h and the spatial discretiza-
tion parameter K fulfill together with ρ > 0 (which will be chosen later as the
L2-norm of the initial value)(

cos(n( j)h)− hλρ2 sin(n( j)h)
)2

6 1− c1h2 for all j ∈ Z := K \ {0} (8)

with a positive constant c1, where

n( j) = 1
2 |`+ j mod 2K |2 + 1

2 |`− j mod 2K |2 − |`|2. (9)

By ` + j mod 2K , we denote the element of K that is entrywise congruent
modulo 2K to `+ j , and similarly for `− j mod 2K .
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Assumption 1 ensures that the frequencies

ω j =
1
2 |`+ j mod 2K |2 − 1

2 |`− j mod 2K |2

+
arccos

(
cos(n( j)h)− hλρ2 sin(n( j)h)

)
hsgn

(
sin(n( j)h)+ hλρ2 cos(n( j)h)

) (10)

are well defined for all j ∈ Z . These frequencies show up after a linearization
of the split-step Fourier method around a plane wave. This linearization has
eigenvalues e−iω j h; see Section 3.

As a second assumption, we need a nonresonance condition. Ideally we would
like to impose this condition directly on the frequencies ω j . For the verification
of the nonresonance condition, however, it turns out to be appropriate to consider
modifications of these frequencies.

ASSUMPTION 2. We assume that the time step-size h, the spatial discretization
parameter K , and ρ > 0 are chosen such that there exist modified frequencies$ j ,
j ∈ Z , with the following properties for some N > 2.

(i) The modified frequencies are close to the frequencies ω j (10),

|$ j − ω j | 6 ε̂ for all j ∈ Z

with a small parameter ε̂.

(ii) There exist positive constants c2, δ2, and s2 such that the following holds for
all vectors (k j) j∈Z ∈ ZZ of integers with 0 <

∑
j∈Z |k j | 6 N + 1 and with

k j 6= 0 only if kl = 0 for all indices l 6= j with $l = $ j : if

δ :=

∣∣∣∣ei(
∑

j∈Z k j$ j)h − 1
h

∣∣∣∣ 6 δ2,

then, for all l ∈ Z satisfying kl 6= 0,

|l|4∏
j∈Z | j |2|k j |

6 c2δ
N/s2 .

(iii) Complete resonances among the modified frequencies, that is,
h
∑

j∈Z k j$ j ∈ 2πZ for a vector (k j) j∈Z of integers with
∑

j∈Z |k j |6 N+1,
can only occur if ∑

j∈Z
n( j)=m

k j = 0 for all m ∈ Z.
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Under these assumptions, we will prove the following main result. Here, for a
trigonometric polynomial u(x) =

∑
j∈K u j ei( j ·x), we denote by

‖u‖2
s = |u0|

2
+

∑
j∈K

| j |2s
|u j |

2

its Sobolev H s-norm. We further denote by

F¬`(u) = Q(e−i(`·x)u − u`) =
∑

0 6= j∈K

u j+` mod 2K ei( j ·x)

the same function with the `th Fourier coefficient set to zero, followed by a shift of
Fourier coefficients by ` and a trigonometric interpolation. Note that ‖F¬`(u)‖s

measures the size of those Fourier coefficients whose subscript differs from `

modulo 2K .

THEOREM 1. Fix an index ` ∈ K, an integer N > 2, and positive numbers c1, c2,
s2, δ2, and ρ1. There exist s0 and C such that for every s > s0 there exists ε0 > 0
such that the following holds. If the time step-size h, the spatial discretization
parameter K , and ρ 6 ρ1 fulfill Assumptions 1 and 2 with some ε̂ 6 ε0 (and with
the prescribed constants c1, c2, s2, δ2), then, for every initial value u0

K with∥∥u0
K

∥∥
0 = ρ and

∥∥F¬`(u0
K )
∥∥

s 6 ε 6 ε0,

we have the long-time stability estimate∥∥F¬`(un
K )
∥∥

s 6 Cε for 0 6 tn = nh 6 max(ε, ε̂)−N/2.

The proof of this theorem will be given in Sections 3–4. Theorem 1 states that,
under suitable assumptions, initial values that are close to a plane wave lead to
numerical solutions that remain close to a plane wave for a long time; that is, the
numerical solution is concentrated in a single Fourier mode over long times. The
closeness is measured by the Sobolev H s-norm of F¬`(u). This implies long-time
orbital stability in H s ; that is, the numerical solution stays close to the orbit (7);
see [8, Section 3.4].

The bounds s0, C , and ε0 are independent of the discretization parameters h and
K subject to Assumptions 1 and 2 and of the small parameters ε and ε̂. In more
detail, the proof of Theorem 1 shows that s0 depends only on d and s2; C depends
only on c1 and ρ1; and ε0 depends on c1, c2, d , `, N , s, s2, δ2, and ρ1.

REMARK 2. The conclusion of Theorem 1 equally holds if the (Lie–Trotter)
splitting (4a) is replaced by its symmetric version, the Strang splitting

un+1
K = Φ

h/2
linear ◦Φ

h
nonlinear ◦Φ

h/2
linear(u

n
K ).
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In fact, both numerical schemes differ only by half a time step with the linear flow
at the beginning and at the end of the interval of integration. This does not affect
the long-time stability. The same remark applies to the other version of the Strang
splitting,

un+1
K = Φ

h/2
nonlinear ◦Φ

h
linear ◦Φ

h/2
nonlinear(u

n
K ).

2.3. Discussion of the assumptions. Assumptions 1 and 2 for Theorem 1
exclude two different types of (potential) instabilities that show up on different
time scales. Assumption 1, which is derived in [25, Section 5] and [22] with a
slightly different meaning of ρ, ensures that (numerical) plane wave solutions
(7) are linearly stable. This means that all eigenvalues of the linearization of the
numerical scheme (4) around a plane wave (7) are of modulus one. Eigenvalues
of modulus larger than one would lead to an instability right from the start.
In contrast, the nonresonance condition of Assumption 2 on the frequencies is
crucial for the proof of our long-time result. Indeed, the longer the time interval
under consideration is, the more the nonlinear interaction becomes relevant,
possibly leading to resonance phenomena if the frequencies are resonant or close
to resonant.

A nonresonance condition as stated in Assumption 2 is typically required
in a long-time analysis of Hamiltonian partial differential equations and their
numerical discretizations; see for example [5, 9–11, 13] for uses and discussions
of similar conditions. Note, however, that we do not (and cannot) impose this
nonresonance condition on the completely resonant frequencies of the nonlinear
Schrödinger equation (1) and its discretization by the split-step Fourier method,
but only on the frequencies ω j of (10) for the linearization around a plane wave.

In Section 5, we will prove the following theorem on a sufficient (though not
necessary) condition under which Assumptions 1 and 2 hold in the case of a
constant plane wave (` = 0) for many values of ρ = ‖u0

K‖0 and h.

THEOREM 3. Let ` = 0, and fix ρ0 > 0 with

1+ 2λρ2
0 > 0, (11)

h0 > 0, and N > 2. Then we have the following result.
For every γ > 0 there exists a subset P(γ ) of [0, ρ0] × [0, h0] of Lebesgue

measure |P(γ )| > ρ0h0 − γ such that Assumptions 1 and 2 hold for all
(ρ, h) ∈ P(γ ) and all K that satisfy the restriction

dhK 2
+ 2hρ2

0 6
π

N + 1
(12)

with small parameter ε̂ = C2h2 and constants c1 = c1(ρ0), C2 = C2(ρ0), c2 =

c2(h0, N , γ, ρ0), δ2 = 1, and s2 = 54 N 5.
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Theorem 1 together with Theorem 3 is the discrete counterpart of [8, Theo-
rem 1.1]: for ` = 0, the long-time orbital stability of plane waves proven there for
the exact solution transfers to the numerical discretization provided that the step-
size restriction (12) is fulfilled and that ρ = ‖u0

K‖0 and h belong to a large set. In
comparison with the result [8, Theorem 1.1] for the exact solution, our discrete
counterpart is valid on a time interval of length max(ε, h2)−N/2 instead of ε−N/2,
and the value of N is restricted by the step-size restriction (12). These changes are
due to the nonresonance condition that is much more involved for the numerical
frequencies than for the analytical frequencies.

Let us finally comment on condition (11) in Theorem 3. This condition
ensures linear stability of (analytical) plane wave solutions (2) to the nonlinear
Schrödinger equation (1); that is, that all eigenvalues of the linearization of the
nonlinear Schrödinger equation around a plane wave (2) are real valued [1, 8,
25]. Theorem 3 states in particular that this implies linear stability of (numerical)
plane wave solutions ((8) in Assumption 1) under the step-size restriction (12).
Actually, weaker step-size restrictions that yield linear stability are discussed in
detail in [25, Section 5], but (12) is sufficient for our long-time result because it
allows us to verify Assumption 2. On the other hand, (8) reduces to (11) (with
ρ0 = ρ) in the limit h → 0 for fixed K .

For nonzero but small `, the condition of linear stability in Assumption 1 can
still be expected to hold under a step-size restriction similar to (12). In this case,
the frequencies ω j differ from those for ` = 0 only for large j (we have n( j) =
| j |2 and |`+ j mod 2K | = |`− j mod 2K | for all j that are not large, and we have
c| j |2 6 n( j) 6 C | j |2 for large j). This property can also be used to argue that the
nonresonance condition of Assumption 2 can be expected to hold for nonzero but
small `; see Remark 23 in Section 5. In one dimension (d = 1), the linear stability
of the split-step Fourier method for ` 6= 0 has been recently analyzed in detail by
Lakoba [22].

2.4. Numerical experiments. We present numerical experiments which
illustrate Theorem 1 in situations that are not covered by Theorem 3. They
show in particular that the conditions of Theorem 3 are not necessary for the
assumptions and conclusions of Theorem 1 to hold.

Throughout, we let λ = −1 and ρ2
= 0.4 such that 1 + 2λρ2 > 0, and hence

we have linear stability of plane waves in the exact solution. We consider the
nonlinear Schrödinger equation in dimension one (d = 1) with an initial value
that is chosen randomly such that, for ` = 0, s = 5, and ε = 0.01,

‖u0
K‖0 = ρ and ‖F¬`(u0

K )‖s = ε;

that is, the initial value is, in the H 5-norm, up to 0.01 close to the constant plane
wave ρ.
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Figure 1. Evolution of the absolute values of the Fourier coefficients for h = 0.04.

For the numerical discretization with the split-step Fourier method we use
25 points for the Fourier collocation in space (K = 24), and we consider three
different step-sizes for the discretization in time: the step-size h = 0.04 that does
not fulfill the step-size restriction (12) of Theorem 3, and the slightly larger step-
sizes h = 0.042 and h = 0.044.

We have checked numerically for h = 0.04 and h = 0.044 that Assumptions 1
and 2 of Theorem 1 are fulfilled for N 6 5 with c1 = 0.2, ε̂ = 0, c2 = 8, δ2 = 0.1,
and s2 = 5N for h = 0.04 and s2 = 8N/5 for h = 0.044. Note, however, that the
step-size restriction (12) of Theorem 3 is not fulfilled. For the evolution shown in
Figure 1, we computed with step-size h = 0.04 on a long time interval t 6 106

and plotted the absolute values of the Fourier coefficients on two subintervals of
length 200. The same was done for Figure 2 with the step-size h = 0.044. As
stated in Theorem 1, we observe in both cases that the solution stays concentrated
in the `th Fourier mode over long times.

For the intermediate step size h = 0.042, however, Assumption 1 of Theorem 1
is not fulfilled. In Figure 3 we again plotted the absolute values of the Fourier
coefficients of the numerical solution, and we clearly observe an instability.

3. Reductions and transformations

From now on we omit the index K of the numerical solution un
K , n = 0,

1, 2, . . . . Instead, we denote by un
j the j th Fourier coefficient of un

: un(x) =∑
j∈K un

j e
i( j ·x). We work with the numerical scheme (4a) in terms of these Fourier

coefficients, which takes the form (see (5) and (6))
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Figure 2. Evolution of the absolute values of the Fourier coefficients for h = 0.044.
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Figure 3. Evolution of the absolute values of the Fourier coefficients for h = 0.042.

un+1
j = e−i | j |2h

∞∑
m=0

(−ihλ)m

m!

∑
k1+···+km+1

−l1−···−lm≡ j mod 2K

un
k1 · · · un

km+1 un
l1 · · · un

lm . (13)

The goal of this section is to eliminate the `th Fourier mode, which is not small,
from un . To this end we apply similar reductions and transformations to those for
the exact solution in [8, Section 2], which can be summarized as follows.

(1) Transformation u↔ v with u = (u j) j∈K, v = (v j) j∈K: shift to the case `= 0;
see Section 3.1.

(2) Transformation v ↔ (a, θ, w) with a, θ ∈ R and w = (w j) j∈K\{0}:
introduction of polar coordinates (a, θ) for v0 and rotations w j of v j ;
see Section 3.2.
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(3) Reduction (a, θ, w)↔ w: elimination of a and θ using conservation of mass
and gauge invariance; see Section 3.2.

(4) Transformation w ↔ ξ with ξ = (ξ j) j∈K\{0}: diagonalization of the linear
part; see Sections 3.3–3.4.

These transformations and reductions are applied directly to the numerical
scheme in the form (13). In Section 3.5, we consider them from a different
perspective, namely from the perspective of the differential equations that form
the two steps of the splitting integrator (4a). Both perspectives will be important
in the following section, Section 4.

3.1. Shift to the case ` = 0. We introduce new variables

v j = u`+ j mod 2K for j ∈ K.

The numerical scheme (13) in the new variables vn becomes

vn+1
j = e−i |`+ j mod 2K |2h

∞∑
m=0

(−ihλ)m

m!

∑
k1+···+km+1

−l1−···−lm≡ j mod 2K

vn
k1 · · · v

n
km+1v

n
l1 · · · v

n
lm . (14)

3.2. Elimination of the zero mode. We introduce polar coordinates (a, θ)
for v0,

v0 = aeiθ with a = |v0|,

and new variables w j , 0 6= j ∈ K, by

v j = w j eiθ for j ∈ Z = K \ {0}. (15)

In these new variables (a, θ, w) with w = (w j) j∈Z , the numerical scheme (14)
becomes

wn+1
j = e−i |`+ j mod 2K |2hei(θn

−θn+1)

∞∑
m=0

(−ihλ)m

m!

×

∑
k1+···+km+1

−l1−···−lm≡ j mod 2K

wn
k1 · · ·w

n
km+1w

n
l1 · · ·w

n
lm , (16)

where we use the convention wn
0 = w

n
0 = an .

Now, we eliminate a and θ from (16). For the elimination of a we observe that
the split-step Fourier method (13) conserves mass,
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∥∥

0 =
∑
j∈K

|un+1
j |

2
=

∑
j∈K

|un
j |

2
=
∥∥un

∥∥
0,

a fact that can be easily derived from the representations (5) and (6) of the flows
composing the numerical scheme and the discrete Parseval identity

∑
j∈K |u

n
j |

2
=

(2K )−d ∑
k∈K |u

n(xk)|
2. The conservation of mass allows us to express an in terms

of wn
j , j ∈ Z , and ρ = ‖u0

‖0:

an
=

(
ρ2
−

∑
j∈Z

|wn
j |

2

)1/2

. (17)

Also, the factor ei(θn
−θn+1) in (16) can be expressed in terms of w j using (16) for

j = 0:

ei(θn
−θn+1)

=
ei |`|2h

wn+1
0

∞∑
m=0

(ihλ)m

m!

∑
k1+···+km+1

−l1−···−lm≡0 mod 2K

wn
k1 · · ·w

n
km+1w

n
l1 · · ·w

n
lm . (18)

Hence, a = w0 = w0 and eiθ are determined by w j , j ∈ Z . The numerical
scheme (16) is therefore completely described by the reduced set of variables
w = (w j) j∈Z .

Now, we can replacewn
0 = an in (16) and (18) by (17). Furthermore, we can use

(17) with n + 1 instead of n and |wn+1
j |

2 replaced by (16) to replace wn+1
0 in (18).

For sufficiently small w this leads, after a Taylor expansion of (ρ2
− · · · )±1/2, to

an equation for wn+1 of the following form (with right-hand side depending only
on wn):

wn+1
j = e−i(|`+ j mod 2K |2−|`|2)h

(
(1− ihλρ2)wn

j − ihλρ2wn
− j

+

∞∑
m+m′=2

∑
k1+···+km

−l1−···−lm′ ≡ j mod 2K

hQ̃ j,k,lw
n
k1 · · ·w

n
kmw

n
l1 · · ·w

n
lm′

)
. (19)

The subscripts here and in the following all belong to the reduced set Z .

3.3. Linear stability and numerical frequencies. The linear part in Equation
(19) couples w j to w− j . This leads us to consider the equation for w j together
with the one for w− j ,(

wn+1
j

wn+1
− j

)
= e−i(|`+ j mod 2K |2/2−|`− j mod 2K |2/2)h A j

(
wn

j
wn
− j

)
+ higher-order terms
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with the matrix

A j =

(
α j β j

β j α j

)
,

where

α j = (1− ihλρ2)e−i(|`+ j mod 2K |2/2+|`− j mod 2K |2/2−|`|2)h,

β j = −ihλρ2e−i(|`+ j mod 2K |2/2+|`− j mod 2K |2/2−|`|2)h.

This matrix has |α j |
2
− |β j |

2
= 1, and its eigenvalues are

λ±j = Re(α j)± isgn(Im(α j))

√
1− Re(α j)2.

The reason for including the sign sgn(Im(α j)) in the definition of the eigenvalues
λ±j will become clear in the following section, Section 3.4.

Assumption 1 ensures that Re(α j)
2 6 1, and hence the eigenvalues λ±j of A are

of modulus one. We have

e−i(|`+ j mod 2K |2/2−|`− j mod 2K |2/2)hλ±j = e∓iω j h

with the numerical frequencies ω j from (10),

ω j =
1
2 |`+ j mod 2K |2 − 1

2 |`− j mod 2K |2 +
arccos(Re(α j))

−hsgn(Im(α j))
,

where the branch of arccos with values in [0, π] is used. Note that eigenvalues
of A j of modulus greater than one would lead to a growth of the corresponding
modes in the linearization of (19). Assumption 1 excludes this scenario and thus
ensures linear stability of the split-step Fourier method.

3.4. Diagonalization of the linear part. We introduce new variables ξ j that
diagonalize the linear part of (19):(

ξ j

ξ− j

)
= S j

(
w j

w− j

)
,

where, with the notation of the previous subsection,

S−1
j =

1√
|β j |

2 − |λ+j − α j |
2

(
β j λ−j − α j

λ+j − α j β j

)
(20)

such that

e−i(|`+ j mod 2K |2/2−|`− j mod 2K |2/2)h S j A j S−1
j =

(
e−iω j h 0

0 eiω j h

)
.
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Note that

|β j |
2
− |λ+j − α j |

2
= 2

√
1− Re(α j)2

(
|Im(α j)| −

√
1− Re(α j)2

)
> 0, (21)

and hence this change of variables, which defines ξ j and ξ j , is well defined
because of the structure of S j (this is the reason for including the sign of Im(α j)

in the definition of the numerical frequencies). Moreover, it is symplectic, since
det(S j) = 1. With this change of variables, (19) is transformed to

ξ n+1
j = e−iω j hξ n

j +

∞∑
m+m′=2

∑
k1+···+km

−l1−···−lm′ ≡ j mod 2K

hQ j,k,lξ
n
k1 · · · ξ

n
kmξ

n
l1 · · · ξ

n
lm′ . (22)

3.5. The splitting structure of the numerical scheme in the new variables.
Recall that, in the original variables u,

un+1
= Φh

linear ◦Φ
h
nonlinear(u

n);

see Equation (4a). Here, Φh
linear = Φ

h
H̆0

is the flow at time h of the Hamiltonian

differential equation with Hamiltonian function H̆0,

i u̇ j = | j |2u j =
∂ H̆0

∂u j
(u, u) with H̆0(u, u) =

∑
j

| j |2u j u j .

Correspondingly, Φh
nonlinear = Φh

P̆
is the flow at time h of the Hamiltonian

differential equation with Hamiltonian function P̆ ,

i u̇ j =
∂ P̆
∂u j

(u, u) with P̆(u, u) =
λ

2

∑
j1+ j2− j3− j4≡0 mod 2K

u j1 u j2 u j3 u j4 .

Now, we consider the transformations u ↔ v ↔ (a, θ, w) ↔ w ↔ ξ from the
previous subsections on the level of these differential equations (instead of their
flows, as we have done in the previous subsections).

Shift u↔ v. After the change of variables u↔ v described in Section 3.1 (leading
to the numerical scheme (14)), the splitting scheme becomes

vn+1
= Φh

Ȟ0
◦Φh

P̌
(vn),

with the Hamiltonian functions

Ȟ0(v, v) =
∑

j

|`+ j mod 2K |2v jv j
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and
P̌(v, v) =

λ

2

∑
j1+ j2− j3− j4≡0 mod 2K

v j1v j2v j3v j4 .

Transformation v ↔ (a, θ, w). In the variables (a, θ, w) introduced at the
beginning of Section 3.2 (leading to the numerical scheme (16)), the flow of
the Hamiltonian differential equation with Hamiltonian function Ȟ0 has to be
replaced by the flow of

iẇ j = θ̇w j + |`+ j mod 2K |2w j . (23)

The corresponding equation for a = w0 becomes, after taking the real part,

0 = θ̇a + |`|2a. (24)

Correspondingly, the flow of the Hamiltonian differential equation with
Hamiltonian function P̌ has to be replaced by the flow of

iẇ j = θ̇w j +
∂ P̂
∂w j

(a, θ, w,w) with P̂(a, θ, w,w) = P̌(v, v). (25)

Note that the function P̂ is actually independent of θ (gauge invariance). The
equation for a = w0 becomes, after taking the real part,

0 = θ̇a +
1
2
∂ P̂
∂a
(a, θ, w,w). (26)

Reduction (a, θ, w) ↔ w. Solving (24) for θ̇ and inserting this into Equations
(23) for j 6= 0 shows that (23) becomes, in the reduced set of variables w from
Section 3.2 (with the numerical scheme (19)),

iẇ j =
∂ H̃0

∂w j
(w,w) with H̃0(w,w) =

∑
j

(
|`+ j mod 2K |2 − |`|2

)
w jw j .

Solving (26) for θ̇ and inserting this into Equations (25) for j 6= 0 yields

iẇ j =
∂ P̂
∂w j

(a, θ, w,w)+
−w j

2a
∂ P̂
∂a
(a, θ, w,w).

Using
∂a
∂w j

(w,w) =
−w j

2a

with a given by (17), we see that Equation (25) becomes, in the reduced set of
variables w from Section 3.2 (with the numerical scheme (19)),
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iẇ j =
∂ P̃
∂w j

(w,w) with P̃(w,w) = P̂(a, θ, w,w),

which surprisingly is again of Hamiltonian form. We hence have

wn+1
= Φh

H̃0
◦Φh

P̃(w
n).

The splitting integrator in the reduced set of variables w is still a Hamiltonian
splitting, a splitting into two Hamiltonian equations.

Transformation w ↔ ξ . Concerning the final change of variables w ↔ ξ of
Section 3.4 (leading to the numerical scheme (22)), we note first that the matrix
S j was chosen in such a way that it is symplectic. We therefore end up with

ξ n+1
= Φh

H0
◦Φh

P(ξ
n), (27a)

with

H0(ξ, ξ) = H̃0(w,w) and P(ξ, ξ) = P̃(w,w). (27b)

While it is an obvious observation that the numerical scheme in the new
variables ξ is still a splitting scheme, it is highly remarkable that the split
equations retain their Hamiltonian structure.

By virtue of the expansion (22), we have a concrete expression for the flow
Φh

P(ξ
n) =

(
Φh

H0

)−1
(ξ n+1),

Φh
P(ξ

n) = S j

(
ei(|`+ j mod 2K |2−|`|2)h 0

0 e−i(|`+ j mod 2K |2−|`|2)h

)
S−1

j

(
ξ n+1

j

ξ
n+1
− j

)
. (28)

For later purposes we also introduce an expansion

P(ξ, ξ) =
∞∑

m+m′=2

∑
k∈Zm , l∈Zm′

Pk,lξk1 · · · ξkmξ l1 · · · ξ lm′ (29)

of the Hamiltonian function P .

3.6. Estimates for the transformation and for the transformed equation.
We derive some bounds for the change of variables u ↔ ξ described in
Sections 3.1–3.4. We assume throughout that Assumption 1 is fulfilled.

Note that |w j | = |u`+ j mod 2K | for j ∈ Z , and hence we first consider the last
transformation w↔ ξ of Section 3.4 described by the matrices S j (20).

LEMMA 4. The absolute values of the entries of the matrices S j and S−1
j are

bounded by
√

1+ ρ2/(2
√

c1), independently of j and h.
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Proof. With the notation of Section 3.3, we have, by (21),∣∣∣∣ β j√
|β j |

2 − |λ+j − α j |
2

∣∣∣∣2 = |Im(α j)| +
√

1− Re(α j)2

2
√

1− Re(α j)2
,

∣∣∣∣ λ+j − α j√
|β j |

2 − |λ+j − α j |
2

∣∣∣∣2 = |Im(α j)| −
√

1− Re(α j)2

2
√

1− Re(α j)2
.

This proves the statement of the lemma, since |Im(α j)| 6
√

1− Re(α j)2 + hρ2,
and since

√
1− Re(α j)2 >

√
c1h, by Assumption 1.

Now, we consider the norm

‖ξ‖s =

(∑
j∈Z

| j |2s
|ξ j |

2

)1/2

;

that is, ‖ξ‖s is the Sobolev H s-norm of the function
∑

j∈Z ξ j ei( j ·x) as introduced
in Section 2.2. The previous lemma, Lemma 4, implies the following result.

LEMMA 5. For the change of variables u ↔ ξ , there exist positive constants ĉ
and Ĉ depending only on c1 and an upper bound of ρ such that

ĉ ‖ξ‖s 6 ‖F¬`(u)‖s 6 Ĉ ‖ξ‖s .

In particular, the previous lemma shows that the condition ‖F¬`(u0)‖s 6 ε of
Theorem 1 becomes, in the new variables ξ ,

‖ξ 0
‖s 6 ĉ −1ε. (30)

We finally collect some estimates for the nonlinearity in the numerical scheme
written in the new variables ξ as given by (22).

LEMMA 6. The nonlinearity given by the coefficients Q j,k,l in (22) satisfies, for
s > d/2,(∑

j∈Z

| j |2s

( ∑
k1+···+km

−l1−···−lm′ ≡ j mod 2K

∣∣∣∣Q j,k,lη
1
k1 · · · η

m
kmη

m+1
l1 · · · η

m+m′

lm′

∣∣∣∣)2)1/2

6 Cm,m′,s‖η
1
‖s · · · ‖η

m+m′
‖s

for vectors η1, . . . , ηm+m′
∈ CZ . The constants Cm,m′,s depend only on m, m ′, s,

c1, and ρ, and satisfy
∞∑

m+m′=2

Cm,m′,srm+m′ 6 C

for some positive constants r and C depending only on c1, s, and ρ.
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Proof. (a) By carefully going through the construction of the coefficients Q j,k,l

in Sections 3.2 and 3.4, one shows for the coefficients Q j,k,l that there exists a
constant C depending on c1 and ρ such that

|Q j,k,l | 6 Cm+m′ (31)

for all j ∈ Z , all k ∈ Zm , and all l ∈ Zm′ .
(b) The first estimate of the lemma follows by applying (31) and the Cauchy–

Schwarz inequality, and by using

∑
k1+···+km

−l1−···−lm′ ≡ j mod 2K

(
| j |

|k1| · · · |km ||l1| · · · |lm′ |

)2s

6 cm+m′

with a constant c depending only on s > d/2. The second estimate of the lemma
then follows also from (31).

4. Modulated Fourier expansions

In this section, we will prove Theorem 1 using modulated Fourier expansions
originally introduced in [15]; see also [17]. Throughout, we will work with the
numerical scheme in the new variables ξ introduced in Section 3; see (22).

There are two main steps.

(1) Construction of a short-time approximation of ξ n from (22) by a modulated
Fourier expansion in Sections 4.1–4.5.

(2) Almost-invariants of the modulated Fourier expansion that allow us to prove
a result on a long time interval in Sections 4.6–4.9.

For the first main step, it is convenient to work with the numerical scheme
as given by the composition of flows (22), whereas for the derivation of the
almost-invariants it is necessary to switch to the level of the differential equations
whose flows compose the numerical scheme (27). We ultimately show that ‖ξ n

‖s

stays of order ε for initial values ξ 0 of order ε. This preservation of smallness
and regularity of ξ n is the main ingredient for the final proof of Theorem 1 in
Section 4.10.

The proof via modulated Fourier expansions given here uses and combines
ideas from several previous proofs using such expansions. The aforementioned
idea of switching between the flows and the differential equations is loosely
based on [11, 13], the construction of the modulated Fourier expansion with
an asymptotic expansion is based on [14, 16], the idea of using modified
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frequencies $ j instead of the original (numerical) frequencies ω j of (10) for the
modulated Fourier expansion is also used in [12], the nonresonance condition in
Assumption 2 is used in a similar way to [5], and the use of almost-invariants
of the modulated Fourier expansion to prove long-time almost-conservation
properties can be traced back to [15].

In the following analysis, the (generic) constants C , s0, and δ0 are all
independent of the small parameters ε from (30) and ε̂ from Assumption 2.
The constants C and δ0 will depend on the constants c1, c2, s2, δ2, and N of
Assumptions 1 and 2, on s from (30), on an upper bound of ρ = ‖u0

‖0, on the
index ` ∈ K from (7), and on the dimension d . The constant s0 will depend only
on d and s2.

4.1. Resonant modulated Fourier expansion. In order to motivate the
modulated Fourier expansion we consider here, let us first have a look at (22) in
the linear case (all Q j,k,l = 0). In this case, the evolution of the j th mode is given
by the multiplication with e−iω j t . In the presence of the nonlinearity, we seek for
an expansion, the modulated Fourier expansion, in terms of products of these
exponentials that are multiplied (modulated) by slowly varying coefficients.

There are two pitfalls in the present situation that have to be handled with care.
First, it turns out that the frequencies ω j of (10) are inconvenient when it comes to
resonance issues. Therefore we use the modified frequencies$ j of Assumption 2
instead, and consider products of the exponentials e−i$ j t :

e−i(k·$ )t with k ·$ =
∑
j∈Z

k j$ j

for vectors of integers k= (k j) j∈Z ∈ ZZ and the vector$ = ($ j) j∈Z of modified
frequencies.

Second, the modified frequencies$ j of Assumption 2 are by definition exactly
resonant; for instance, $ j = $l for | j | = |l| in the case ` = 0. Hence, we cannot
distinguish all products e−i(k·$ )t , and we therefore introduce the resonance module

M =
{

k ∈ ZZ
: k ·$ = 0, j (k) = 0

}
,

where
j (k) =

∑
l∈Z

kll mod 2K .

The restriction j (k) = 0 in the definition of the resonance module comes from
the fact that the products e−i(k·$ )t are attached to some specific mode ξ j , namely
the one with j = j (k), as we will see in the following.
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With these preliminaries, we introduce the resonant modulated Fourier
expansion

ξ j(t) =
∑
[k]

z[k]j (δt)e
−i(k·$ )t . (32)

Here,

δ = max(ε, ε̂)1/2 (33)

is a small parameter, and the sum is over all residue classes [k] ∈ ZZ/M. The
coefficients of the modulated Fourier expansion, the modulation functions z[k]j , are
required to be polynomials on a slow time scale τ = δt with δ from (33) that have
all derivatives bounded independently of the small parameters. By a slight abuse
of notation, we write in the following zk

j instead of z[k]j and
∑

k instead of
∑
[k].

We also use the notation
‖k‖ =

∑
j∈Z

|k j |.

4.2. Modulation equations. Requiring ξ j(tn) = ξ
n
j for n > 1 with ξ n

j given by
(22) yields, after a comparison of the coefficients of ei(k·$ )t , modulation equations
for the modulation functions zk

j :

zk
j (τ + δh)e

−i(k·$ )h
= e−iω j hzk

j (τ )+

∞∑
m+m′=2

∑
k1+···+km

−l1−···−lm′ ∈[k]

×

∑
k∈Zm , l∈Zm′

hQ j,k,l zk1

k1 (τ ) · · · zkm

km (τ )zl1
l1(τ ) · · · zlm′

lm′ (τ ).

(34a)

The condition ξ j(0) = ξ 0
j yields∑

k

zk
j (0) = ξ

0
j . (34b)

For the approximate solution of the modulation equations (34), it is useful to
expand the modulation functions in powers of ε and δ,

zk
j (τ ) =

∞∑
p=0

εδ pzk
j,p(τ ), (35)

https://doi.org/10.1017/fms.2014.4 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.4


E. Faou, L. Gauckler, Ch. Lubich 22

with polynomials zk
j,p in τ = δt . We call the functions zk

j,p modulation coefficient
functions, and set zk

j,p = 0 for p < 0. After dividing by δhe−i(k·$ )h , expanding
zk

j (τ + δh) around τ , and (formally) comparing the coefficients of εδ p, the
modulation equations (34a) become

1− e−i(ω j−k·$ )h

δh
zk

j,p + żk
j,p = −

∞∑
r=2

hr−1

r !
dr

dτ r
zk

j,p+1−r +

∞∑
m+m′=2

×

∑
p1+···+pm

+q1+···+qm′ =p+3−2(m+m′)

εm+m′−1

δ2m+2m′−2

∑
k1+···+km

−l1−···−lm′ ∈[k]

×

∑
k∈Zm , l∈Zm′

ei(k·$ )h Q j,k,l zk1

k1,p1
· · · zkm

km ,pm
zl1

l1,q1

· · · zlm′

lm′ ,qm′
. (36a)

Condition (34b) yields

z〈 j〉j,p(0) = −
∑
k 6=〈 j〉

zk
j,p(0)+

{
ε−1ξ 0

j , p = 0,
0, p > 0,

(36b)

where 〈 j〉 denotes the j th unit vector in ZZ .

4.3. Construction of modulation functions. We construct modulation
functions zk

j that solve the modulation equations (34) up to a small defect.
We work with the asymptotic expansion (35) and consider Equations (36). The
crucial observation is that the right-hand side of (36a) depends only on modulation
coefficient functions zl

k,q with q < p. This allows us to solve Equations (36) up
to a small defect by the following simple recursion.

Fix p > 0, and assume that we have computed all modulation coefficient
functions zk

j,q with q < p (this is true for p = 0). Equation (36a) is then of
the form

αzk
j,p + żk

j,p = P

with a polynomial P . The unique polynomial solution of this equation is given
for α 6= 0 by

zk
j,p(τ ) =

deg(P)∑
m=0

(−1)mα−m−1 dm

dτm
P(τ ). (37)

We therefore compute zk
j,p for all j and all k as follows.
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(i) For indices ( j,k) with j 6= j (k) or ‖̃k‖ > p for all k̃ ∈ [k], we set

zk
j,p = 0. (38a)

This is consistent with (36a), since the right-hand side of this equation
vanishes for these indices by induction (recall that Q j,k,l = 0 if j 6≡ k1

+

· · · + km
− l1
− · · · − lm′ mod 2K ).

(ii) For indices ( j,k) with |1 − e−i(ω j−k·$ )h
| > δh/2 that are not covered by (i),

we

compute zk
j,p from (36a) and (37). (38b)

Indeed, the factor in front of zk
j,p in (36a) is bounded for these indices away

from zero, and the comparison of coefficients used to derive (36a) thus makes
sense.

(iii) For indices ( j,k) 6= ( j, 〈 j〉) that are neither covered by (i) nor covered by
(ii), we set

zk
j,p = 0. (38c)

Of course, this introduces a defect which, however, can be controlled using
the nonresonance condition of Assumption 2, as we shall see in Section 4.5.
For the considered indices ( j,k), we have |1−e−i(ω j−k·$ )h

| < δh/2, and they
are in this sense close to a resonance. We therefore call them near-resonant
indices in the following.

(iv) Having computed zk
j,p for all j and all k 6= 〈 j〉 in (i)–(iii), we can

compute z〈 j〉j,p(0) from (36b). (38d)

Moreover, since the factor in front of zk
j,p in (36a) vanishes for k = 〈 j〉, we

can

compute ż〈 j〉j,p from (36a). (38e)

This allows us to compute the diagonal modulation coefficient functions z〈 j〉j,p.

We stop the above construction (38) of modulation coefficient function zk
j,p

after p = N ,

zk
j,p = 0 for p > N . (38f )

It is clear that the construction leads to modulation coefficient functions zk
j,p

that are polynomials in τ , of degree bounded by p. Moreover, we have

zk
j,0 = 0 for k 6= 〈 j〉, (39)

because the right-hand side of (36a) vanishes for p = 0.
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4.4. Size of the modulation functions. We estimate the modulation coefficient
functions constructed in (38). For fixed index p, we collect them in the vectors

zp = (zk
j,p) j∈Z,k∈ZZ .

We also consider their rescalings

(Γ s−̂szp)
k
j :=

(
Γ k)s−̂s

· zk
j,p with Γ k

:= min
k̃∈[k]

(
2‖̃k‖

∏
l∈Z

|l||̃kl |

)
(40)

and with s > ŝ := (d + 1)/2 such that Lemma 6 is applicable for s and ŝ.
For vectors v = (vk

j ) j∈Z,k∈ZZ of polynomials vk
j = v

k
j (τ ) in τ , we use the norm

|||v|||s,τ =
∥∥∥∥(∑

k

|vk
j |τ

)
j∈Z

∥∥∥∥
s

=

(∑
j∈Z

| j |2s

(∑
k

|vk
j |τ

)2)1/2

,

where

|v|τ =

∞∑
m=0

1
m!

∣∣∣∣ dm

dτm
v(τ)

∣∣∣∣.
LEMMA 7. The modulation coefficient functions (38) satisfy, on 0 6 τ 6 1, for
δ 6 δ0 and s > ŝ,

|||zp|||s,τ 6 C and |||Γ s−̂szp|||̂s,τ 6 C

for all p with constants C and δ0.

Proof. This follows from the recursive construction (38). The property

|vw|τ 6 |v|τ |w|τ

together with Lemma 6 yields inductively an estimate of the nonlinearity on the
right-hand side of (36a) in the norm |‖ · ‖|s,τ (note that terms in the nonlinearity
with 2(m+m ′) > p+3 vanish, and hence the sum over m and m ′ is finite). Then,
the property |v̇|τ 6 deg(v)|v|τ allows us to estimate the norm |‖ · ‖|s,τ for the
vector consisting of modulation coefficient functions constructed with (38b). For
the remaining nonzero modulation coefficient functions constructed with (38d)–
(38e), the estimate in the norm |‖ · ‖|s,τ then follows using the smallness of the
initial value (30) and the property |v|τ 6 |v(0)| + sup06τ̃6τ |v̇|τ̃ .

For the estimate of the rescaling Γ s−̂szp in the norm |‖ · ‖|̂s,τ , we can use
essentially the same argument. We just have to take into account that

Γ k1
+k2

6 Γ k1
Γ k2

(41)

https://doi.org/10.1017/fms.2014.4 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.4


Plane wave stability of the split-step Fourier method 25

and that Γ 〈 j〉 = 2| j |. The latter follows from

| j | = | j (̃k)| 6
∑
l∈Z

|̃kl ||l| 6 ‖̃k‖
∏
l∈Z

|l||̃kl |

for k̃ ∈ [〈 j〉] and j ∈ Z .

4.5. Defect and error. The modulation functions constructed in (38) via their
modulation coefficient functions (35) are supposed to fulfill the modulation
system (34). However, there are two sources of error in their construction. First,
we stopped the construction of modulation coefficient functions zk

j,p after p = N
(38f). Second, the modulation functions for near-resonant indices ( j,k) were set
to zero (38c). In other words, the constructed modulation functions satisfy the
equations of motion (34a) of the modulation system only up to a defect,

dk
j + ek

j = −zk
j (· + δh)e

−i(k·$ )h
+ e−iω j hzk

j +

∞∑
m+m′=2

∑
k1+···+km

−l1−···−lm′ =[k]

×

∑
k∈Zm , l∈Zm′

hQ j,k,l zk1

k1 · · · zkm

km zl1
l1 · · · zlm′

lm′ , (42)

whereas the initial condition (34b) is met exactly. Here, d = (dk
j ) j∈Z,k∈ZZ denotes

the defect from the cut-off (38f); that is,

dk
j =

∞∑
p=N+1

εδ phFk
j,pe−i(k·$ )h, (43)

where Fk
j,p is the right-hand side of (36a). The defect in near-resonant indices that

is not yet covered by d is denoted by e = (ek
j ) j∈Z,k∈ZZ ; that is, ek

j is different from
zero only for near-resonant indices, and in this case

ek
j =

N∑
p=1

εδ phFk
j,pe−i(k·$ )h. (44)

(Recall that Fk
j,p = 0 for p = 0.) Both defects are estimated in the following

lemma.

LEMMA 8. The defects (42)–(44) satisfy, on 0 6 τ 6 1, for δ 6 δ0 and s > s0,

|||d|||s,τ 6 CεδN+1h, |||e|||s,τ 6 CεδN+1h,
|||Γ s−̂sd|||̂s,τ 6 CεδN+1h, |||Γ s−̂se|||̂s,τ 6 Cεδh

with constants C, s0 and δ0.
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Proof. (a) For the bound of d, we note that, by Lemmas 6 and 7,

|||d|||s,τ 6 CεδN+1h + εh
∞∑

m+m′=2

Cm,m′,sCm+m′
∞∑

p=max(N+1,2(m+m′)−3)

δ p,

where C/(N + 1) denotes the constant of Lemma 7. Splitting the sum over m
and m ′ in a part with m + m ′ 6 N + 3 and another part with m + m ′ > N + 4
proves the claimed estimate of d using the second part of Lemma 6 for the sum
with m +m ′ > N + 4 and sufficiently small δ. The estimates of Γ s−̂sd and Γ s−̂se
follow similarly.

(b) Concerning the defect e in near-resonant indices, we note that, for those
indices ( j,k),∣∣e−i($ j−k·$ )h

− 1
∣∣ 6 ∣∣e−i$ j h

− e−iω j h
∣∣+ ∣∣e−i(ω j−k·$ )h

− 1
∣∣

< 2
∣∣ sin(($ j − ω j)h/2)

∣∣+ δh
2

6 ε̂h +
δh
2

6 δh,

by Assumption 2 and for 2δ 6 1. The nonresonance condition of Assumption 2
(used with k− 〈 j〉 in place of k) thus implies that

| j |s−̂s 6 c(s−̂s)/2
2 δN

(
Γ k)s−̂s

for s − ŝ > 2s2. This shows that

|||e|||s,τ 6 c(s−̂s)/2
2 δN

|||Γ s−̂se|||̂s,τ ,

and the claimed estimate of e follows from Lemma 7.

Now, we study the difference ξ n
−ξ(tn) of the numerical solution ξ n of (22) and

its modulated Fourier expansion ξ(t) of (32). In this modulated Fourier expansion
ξ(t) of (32) we use the modulation functions constructed in (38) at discrete times
tn = nh.

PROPOSITION 9. We have, for δ 6 δ0 and s > s0,

‖ξ n
− ξ(tn)‖s 6 CεδN for 0 6 tn = nh 6 δ−1

with constants C, s0, and δ0.

Proof. (a) From Lemma 7, we know for the modulated Fourier expansion the
estimate

‖ξ(tn)‖s 6 Cε for 0 6 tn 6 δ−1.
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(b) A corresponding estimate holds, for sufficiently small ε, also for the
numerical solution:

‖ξ n
‖s 6 2̂c−1ε for 0 6 tn 6 ε−1/2

with ĉ from (30), since, by Lemma 6 and induction,

‖ξ n+1
‖s 6 ‖ξ

0
‖s + h

n∑
n′=0

∞∑
m+m′=2

Cm,m′,s‖ξ
n′
‖

m+m′
s 6 ĉ−1ε +

4C
ĉ2r 2

nhε2

for 2ε 6 r ĉ with C and r from Lemma 6. We may assume without loss of
generality that the constant C from (a) is larger than 2/̂c.

(c) The modulated Fourier expansion satisfies, by (42),

ξ j(tn+1) = e−iω j hξ j(tn)−
∑

k

(
dk

j (δtn)+ ek
j (δtn)

)
e−i(k·$ )t

+

∞∑
m+m′=2

∑
k∈Zm , l∈Zm′

hQ j,k,lξk1(tn) · · · ξkm (tn)ξ l1(tn) · · · ξ lm′ (tn).

Subtracting the numerical solution ξ n+1 of (22), and using (a), (b), and Lemmas
6, 8 shows that, for 0 6 tn 6 δ−1, and for sufficiently small ε,

‖ξ n+1
− ξ(tn+1)‖s 6 ‖ξ

n
− ξ(tn)‖s + CεδN+1h + Cεh‖ξ n

− ξ(tn)‖s .

The claimed estimate follows inductively.

4.6. The splitting structure of the modulated Fourier expansion. In the
previous subsections, a modulated Fourier expansion was constructed and
analyzed based on the representation (22) ofthe numerical scheme, that is, based
on flows of differential equations. Recall that we have derived in Section 3.5
differential equations (and Hamiltonian functions) that underlie the flows that
compose the numerical scheme. In this subsection, we will derive corresponding
differential equations for the modulated Fourier expansion.

Motivated by (27), we denote by Φh
H0

the flow at time h of the Hamiltonian
differential equation

i żk
j =

∂H0

∂zk
j

(z, z)

with Hamiltonian function

H0(z, z) =
∑

k

∑
j∈Z

(
|`+ j mod 2K |2 − |`|2

)
|wk

j |
2,

(
wk

j

w−k
− j

)
= S−1

j

(
zk

j

z−k
− j

)
.
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Correspondingly, we denote by Φh
P the flow at time h of the Hamiltonian

differential equation with Hamiltonian function

P(z, z) =
∞∑

m+m′=0

∑
k1+···+km

−l1−···−lm′ ∈M

∑
k∈Zm , l∈Zm′

Pk,l zk1

k1 · · · zkm

km zl1
l1 · · · zlm′

lm′ ;

compare (29).
The splitting structure of the modulation system for the modulation functions

z is revealed in the following lemma: advancing the modulation functions by δh
corresponds, up to a small defect, to solving Hamiltonian differential equations
with Hamiltonian functions H0 and P one after another.

LEMMA 10. We have

Φh
H0
◦Φh

P(z(δtn)) = z̃(δtn+1)+ d(δtn)+ e(δtn)

with the defects d and e of (42)–(44), and where z̃k
j (δtn+1) = zk

j (δtn+1)e−i(k·$ )h .

Proof. Let

(
Φh

P(ξ)
)

j =

∞∑
m+m′=0

∑
k∈Zm , l∈Zm′

Pj,k,lξk1 · · · ξkmξ l1 · · · ξ lm′

be the expansion of the flow Φh
P given by (28). Then one verifies that the flow Φh

P
is given by the same coefficients Pj,k,l ,(

Φh
P(z)

)k
j =

∞∑
m+m′=0

∑
k∈Zm , l∈Zm′

∑
k1+···+km

−l1−···−lm′ ∈[k]

Pj,k,l zk1

k1 · · · zkm

km zl1
l1 · · · zlm′

lm′ .

This implies that also the coefficients of the expansions ofΦh
H0
◦Φh

P(ξ) andΦh
H0
◦

Φh
P(z) coincide. The coefficients in the expansion of Φh

H0
◦ Φh

P(ξ) are given by
(22), and they also appear in the expansion (42) of z̃(δtn+1)+d(δtn)+ e(δtn). The
statement of the lemma follows.

4.7. Discrete almost-invariants. An essential property of modulated Fourier
expansions is the existence of formal invariants. These invariants will finally allow
us to consider long time intervals by patching together many of the short time
intervals considered so far. They take the form

Im(z) =
∑

k

∑
j∈Z

∑
l∈Z

n(l)=m

kl |zk
j |

2 for m ∈ N :=
{

n( j) : j ∈ Z
}
. (45)
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This is well defined (recall that the
∑

k stands for the sum over the equivalence
classes [k] ∈ ZZ/M), since

∑
l:n(l)=m kl = 0 for k ∈ M by part (iii) of

Assumption 2.

LEMMA 11. We have

Im
(
Φh

H0
◦Φh

P(z(δtn))
)
= Im(z(δtn)) for m ∈ N .

Proof. Let S(θ) be defined by

(S(θ)z)kj = eiθ
∑

l:n(l)=m kl zk
j

for m ∈ N . The Hamiltonian function P from the previous subsection is
invariant under the transformations S(θ), and this leads to conserved quantities by
Noether’s theorem. Along a solution z = Φ t

P(z0) of the Hamiltonian differential
equation with Hamiltonian function P, we have

0 =
d

dθ

∣∣∣∣
θ=0

P
(
S(θ)z,S(θ)z

)
= −i

∑
k

∑
j∈Z

∑
l∈Z

n(l)=m

kl

(
zk

j
∂P
∂zk

j

(z, z)− zk
j
∂P
∂zk

j
(z, z)

)

=

∑
k

∑
j∈Z

∑
l∈Z

n(l)=m

kl
d
dt
|zk

j |
2
=

d
dt

Im(z).

This implies conservation of Im along the flow of P,

Im(Φ
h
P(z(δtn))) = Im(z(δtn)).

In the same way, one shows conservation of Im along the flow of H0, and the
statement of the lemma follows.

In the end, we are interested more in z(δtn+1) than in Φh
H0
◦ Φh

P(z(δtn)). The
following proposition shows that Im is an almost-invariant along the modulation
functions z.

PROPOSITION 12. We have, for δ 6 δ0 and s > s0,∑
m∈N

max(1,m)s
∣∣Im(z(δtn))− Im(z(0))

∣∣ 6 Cε2δN for 0 6 tn = nh 6 δ−1

with constants C, s0, and δ0.
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Proof. Throughout the proof, we work with the representative k of [k] for which
the minimum in the definition (41) of Γ k is attained.

(a) By Lemmas 10 and 11, we have∣∣Im(z(δtn+1))− Im(z(δtn))
∣∣ 6 2

∑
k

∑
j∈Z

∑
l∈Z

n(l)=m

|kl |
(
|zk

j ||d
k
j | + |d

k
j |

2
+ |ek

j |
2),

since zk
j = 0 if ek

j 6= 0. Here, the modulation functions zk
j on the right-hand side

are evaluated at time τ = δtn+1 and the defects dk
j and ek

j at time τ = δtn .
(b) Let k 6= 0 and j = j (k) =

∑
l∈Z kll mod 2M ∈ Z , and let l̄ ∈ Z be the

index of largest norm | · | with kl̄ 6= 0. Then we have

|l̄|2 6 | j | · Γ k.

Indeed, if |l̄|2 > Γ k, then necessarily |kl̄ | = 1 and ‖k‖ · |l| 6 |l̄| for all l 6= l̄ with
kl 6= 0, and hence

|l̄| 6
∣∣∣∣ j −

∑
l̄ 6=l∈Z

kll
∣∣∣∣ 6 | j | + ‖k‖ − 1

‖k‖
|l̄|;

that is, |l̄| 6 ‖k‖ · | j |. This implies for s > 2̂s that∑
l∈Z

|kl ||l|2s 6 ‖k‖ · |l̄|2s 6 | j |2̂s(Γ k)2(s−̂s).

The last estimate is improved for near-resonant indices (for which ek
j 6= 0) by the

nonresonance condition in Assumption 2 to∑
l∈Z

|kl ||l|2s 6 cs−2̂s
2 | j |2̂s(Γ k)2(s−̂s)δN

if s − 2̂s > s2.
(c) By (a), (b), the Cauchy–Schwarz inequality, and Lemma 13 below, we have∑

m∈N

max(1,m)s
∣∣Im(z(δtn+1))− Im(z(δtn))

∣∣
6 C |||Γ s−̂sz|||̂s |||Γ s−̂sd|||̂s + C |||Γ s−̂sd|||2ŝ + Ccs−2̂s

2 δN
|||Γ s−̂se|||2ŝ .

The statement of the proposition thus follows from Lemmas 7 and 8 by summing
up.
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LEMMA 13. We have

1
C
| j |2 6 max

(
1, |n( j)|

)
6 C | j |2 for all j ∈ Z

with a positive constant C depending only on `.

Proof. We have −|`|2 6 n( j) 6 | j |2, since |`± j mod 2K | 6 |`± j |, and hence
|n( j)| 6 C | j |2. To get a lower bound for |n( j)|, we note that |`1± j1 mod 2K | >
min(|`1 + j1|, |`1 − j1|), and hence

1
2 |`1 + j1 mod 2K |2 + 1

2 |`1 − j1 mod 2K |2 − `2
1 > j 2

1 − 2| j1| · |`1|.

This holds not only for the first component, and by summing up all components
we get

n( j) > | j |2 − 2|`| · | j |.

We therefore get n( j) > 1
2 | j |

2 for 4|`| < | j |. For 4|`| > | j |, we have
max(1, |n( j)|) > 1 > 1

C | j |
2.

Next, we show that the almost-invariants Im of (45) are close to the super-
actions

Im(ξ) =
∑
l∈Z

n(l)=m

|ξl |
2, m ∈ N , (46)

that collect those actions |ξl |
2 with the same value n(l).

PROPOSITION 14. We have, for δ 6 δ0 and s > s0,∑
m∈N

max(1,m)s
∣∣Im(z(δtn))− Im(ξ

n)
∣∣ 6 Cε2δ for 0 6 tn = nh 6 δ−1

with constants C, s0, and δ0.

Proof. We omit the argument δtn of the modulation functions. We have, by (38a),

Im(z)−
∑
l∈Z:

n(l)=m

|z〈l〉l |
2
=

∑
l∈Z:

n(l)=m

∑
k6=〈l〉

kl |zk
j (k)|

2,

and part (b) of the proof of Proposition 12 together with Lemma 7, Lemma 13,
and (39) implies that∑

m∈N

max(1,m)s
∣∣∣∣Im(z)−

∑
l∈Z:

n(l)=m

|z〈l〉l |
2

∣∣∣∣ 6 Cε2δ2.
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On the other hand, we have, for the modulated Fourier expansions ξ(t) (32),∣∣∣∣Im(ξ(tn))−
∑
l∈Z:

n(l)=m

|z〈l〉l |
2

∣∣∣∣ 6 2
∑
l∈Z:

n(l)=m

(∑
k 6=〈l〉

|zk
l |

)(∑
k

|zk
l |

)
,

and hence, by the Cauchy–Schwarz inequality together with Lemma 7,
Lemma 13, and (39),∑

m∈N

max(1,m)s
∣∣∣∣Im(ξ(tn))−

∑
l∈Z:

n(l)=m

|z〈l〉l |
2

∣∣∣∣ 6 Cε2δ.

Finally, we have, by Proposition 9 and Lemma 13, for the numerical solution ξ n ,∑
m∈N

max(1,m)s
∣∣Im(ξ(tn))− Im(ξ

n)
∣∣ 6 Cε2δN ,

where we have used that ||ξ j(tn)|
2
−|ξ n

j |
2
| 6 |ξ j(tn)− ξ

n
j |(|ξ j(tn)|+ |ξ

n
j |). Putting

all this together proves the statement of the proposition.

4.8. Modulated Fourier expansion on another time interval. All estimates
of the previous subsections are valid on the time interval 0 6 tn = nh 6 δ−1. We
assume without loss of generality that

δ−1
= ñh (47)

for some ñ ∈ N. In this subsection, we consider consecutive short time intervals

νδ−1 6 tn = nh 6 (ν + 1)δ−1 for ν = 0, 1, 2, . . . .

In principle, we can repeat the construction of a modulated Fourier expansion
described in Sections 4.2–4.3 on these time intervals, taking ξ νñ as initial value
instead of ξ 0. This gives us modulation functions zν on the νth time interval
constructed in such a way that

ξ n
j ≈ ξ

ν
j (tn) =

∑
k

zk,ν
j (δtn)e−i(k·$ )tn for νδ−1 6 tn 6 (ν + 1)δ−1.

The estimates of Sections 4.4–4.7 remain valid provided that ξ νñ satisfies the
smallness condition (up to a constant) as ξ 0 in (30). In the following lemma,
we bound the difference of the modulated Fourier expansions zν and zν−1 at the
interface δtνñ of their intervals of validity.
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LEMMA 15. Assume that, for ν > 1,

‖ξ (ν−1)̃n
‖s 6 2̂c −1ε and ‖ξ νñ

‖s 6 2̂c−1ε.

Then we have, for δ 6 δ0 and s > s0,

|||Γ s−̂szν(δtνñ)− Γ
s−̂szν−1(δtνñ)|||̂s 6 CεδN

with constants C, s0, and δ0.

Proof. Let n = νñ.
(a) We first show by induction on q = 0, . . . , N that

Mν
q (z) :=

∣∣∣∣∣∣∣∣∣∣∣∣ q∑
p=0

εδ p(zνp(δtn)− zν−1
p (δtn))

∣∣∣∣∣∣∣∣∣∣∣∣
s

6 Cεδq, (48)

where zνp = (z
k,ν
j,p) j∈Z,k∈ZZ . For this purpose, we split the modulation functions,

zp = ap + bp with a〈 j〉j,p = z〈 j〉j,p and bk
j,p = zk

j,p for k 6= 〈 j〉.
We consider the nonlinearities Fk,ν

j,p and Fk,ν−1
j,p on the right-hand sides of (36a).

By Lemmas 6 and 7, we have

Mν
q (F) 6 Cεδ−1 Mν

q−1(z),

and hence, by construction (38b) and (38e),

Mν
q (b) 6 CδMν

q−1(z) and Mν
q (ȧ) 6 CδMν

q−1(z). (49)

In order to complete the inductive proof of (48), we need a similar estimate also
for Mν

q (a). Note that, by construction (38d) of zν ,

∑
k

q∑
p=0

εδ pzk,ν
j,p(δtn)e−i(k·$ )tn =

∑
k

q∑
p=0

εδ pzk,ν−1
j,p (δtn)e−i(k·$ )tn + r n

j

with ‖r n
‖s 6 Cεδq by Proposition 9 (applied on the (ν − 1)th interval with

modulation functions zk,ν−1
j truncated after p = q instead of p = N as in (38f)).

This shows that(∑
j∈Z

| j |2s

∣∣∣∣ q∑
p=0

εδ p
(
a〈 j〉,νj,p (δtn)− a〈 j〉,ν−1

j,p (δtn)
)∣∣∣∣2)1/2

6 Mν
q (b)+ Cεδq, (50)

and hence, by (49),
Mν

q (a) 6 CδMν
q−1(z)+ Cεδq .
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This completes the proof of (48).
(b) In order to prove the statement of the lemma, we have to consider

M̂ν
q (z) :=

∣∣∣∣∣∣∣∣∣∣∣∣ q∑
p=0

εδ pΓ s−̂s(zνp(δtn)− zν−1
p (δtn)

)∣∣∣∣∣∣∣∣∣∣∣∣̂
s

instead of Mν
q (z). Note that M̂ν

q (a) = Mν
q (a), and that the estimates (49) transfer

to M̂ν
q by (41). This finishes the proof of the lemma.

The following proposition bounds, in the situation of the above lemma, the
difference of the almost-invariants Im (45) at the interface of two time intervals.

PROPOSITION 16. Assume that, for ν > 1,

‖ξ (ν−1)̃n
‖s 6 2̂c−1ε and ‖ξ νñ

‖s 6 2̂c−1ε.

Then we have, for δ 6 δ0 and s > s0,∑
m∈N

max(1,m)s
∣∣Im(zν(δtνñ))− Im(zν−1(δtνñ))

∣∣ 6 Cε2δN

with constants C, s0, and δ0.

Proof. This follows using part (b) of the proof of Proposition 12, the Cauchy–
Schwarz inequality, and the estimates of Lemmas 7, 13, and 15.

4.9. Long-time near-conservation of super-actions. We put the results of all
previous subsections together to show near-conservation of the super-actions (46)
on long time intervals of length δ−N .

THEOREM 17. The super-actions are nearly conserved for δ 6 δ0 and s > s0:∑
m∈N

max(1,m)s
∣∣Im(ξ

n)− Im(ξ
0)
∣∣ 6 Cε2δ for 0 6 tn = nh 6 δ−N

with constants C, s0 and δ0.

Proof. Let C/5 be the maximum of the constant of Proposition 16 and the
constants that appear in Propositions 12 and 14 if ĉ−1 in (30) is replaced by 2̂c−1.

With this constant C , we prove the theorem for νδ−1 6 tn 6 (ν + 1)δ−1 and
ν = 0, 1, 2, . . . by induction on ν. The main observation is that, for νδ−1 6 tn 6
(ν + 1)δ−1, and with ñ = 1/(δh) as in (47),∣∣Im(ξ

n)− Im(ξ
0)
∣∣ 6 ∣∣Im(ξ

n)− Im(zν(δtn))
∣∣+ ∣∣Im(zν(δtn))− Im(zν(δtνñ))

∣∣
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+

ν∑
ν̃=1

∣∣Im(z̃ν(δt̃νñ))− Im(z̃ν−1(δt̃νñ))
∣∣

+

ν∑
ν̃=1

∣∣Im(z̃ν−1(δt̃νñ))− Im(z̃ν−1(δt(̃ν−1)̃n))
∣∣

+
∣∣Im(z0(0))− Im(ξ

0)
∣∣. (51)

After multiplying by max(1,m)s and summing over m ∈ N , we can apply
Propositions 12, 14, and 16 to the different terms in (51), since, when ν > 1,
the induction hypothesis implies that, for 0 6 n 6 νñ,

‖ξ n
‖

2
s 6 ‖ξ 0

‖
2
s + C s

1

∑
m∈N

max(1,m)s
∣∣Im(ξ

n)− Im(ξ
0)
∣∣

6 ĉ−2ε2
+ C s

1Cε2δ 6 2̂c−2ε2

provided that δ 6 1/(C s
1Cĉ2) with the constant C1 of Lemma 13. This gives∑

m∈N

max(1,m)s
∣∣Im(ξ

n)− Im(ξ
0)
∣∣ 6 2

5 Cε2δ + 1
5 C(2ν + 1)ε2δN .

The statement of the theorem follows for ν 6 δ−N+1, that is, for tn 6 δ−N .

4.10. Proof of Theorem 1. In order to complete the proof of Theorem 1, we go
in a final step back from the new variables ξ introduced in Section 3 to the original
variables u, in which the split-step Fourier method (4) is formulated. Under the
conditions, and with the constant C of Theorem 17, we have, for 0 6 tn = nh 6
δ−N and δ 6 1/(C s

1,Cĉ2)

‖ξ n
‖

2
s 6 ‖ξ

0
‖

2
s + C s

1

∑
m∈N

max(1,m)s
∣∣Im(ξ

n)− Im(ξ
0)
∣∣ 6 2̂c−2ε2

with the constant C1 of Lemma 13. By Lemma 5, this transfers to a statement in
the original variables,

‖F¬`(um)‖s 6 Ĉ‖ξ n
‖s 6
√

2Ĉ ĉ−1ε for 0 6 tn = nh 6 δ−N ,

as claimed in Theorem 1.

5. On the nonresonance condition

In this section, we give the proof of Theorem 3 on a sufficient condition under
which Assumptions 1 and 2 in Theorem 1 hold. The first subsection deals with
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the (numerical) linear stability of Assumption 1, while the remaining main part of
this section is devoted to the nonresonance condition of Assumption 2.

From now on, we let ` = 0. In this case, we have n( j) = | j |2, and the
frequencies (10) become

ω j =
arccos

(
cos(| j |2h)− hλρ2 sin(| j |2h)

)
hsgn

(
sin(| j |2h)+ hλρ2 cos(| j |2h)

) (52)

for j ∈ Z . We introduce the set of possible values of n( j):

N =
{

n( j) : j ∈ Z
}
=
{
| j |2 : j ∈ Z

}
.

5.1. Linear stability. We show that Assumption 1 is fulfilled, for ` = 0, under
the conditions (11) and (12) of Theorem 3.

LEMMA 18. Under the step-size restriction (12), condition (11) of analytical
linear stability implies condition (8) of numerical linear stability for 0 6 ρ 6 ρ0

with c1 = c1(ρ0). Moreover,

1− h2ρ4
+

2λρ2

µn
> min

(
1
2
, 1+ 2λρ2

0

)
> 0 for all n ∈ N (53)

with

µn =
sin(nh)

h cos(nh)
=

tan(nh)
h

. (54)

Proof. We note that, for all n ∈ N ,

0 6
1

tan(nh)
6

1
tan(h)

6
1
h
−

h
3

by the step-size restriction (12). This yields, for λ = +1,

1− h2ρ4
+

2λρ2

µn
> 1− h2ρ4,

and, for λ = −1,

1− h2ρ4
+

2λρ2

µn
> 1− h2ρ4

− 2hρ2

(
1
h
−

h
3

)
> (1− 2ρ2)

(
1+

h2ρ2

2

)
.

We hence get (53) for 0 6 ρ 6 ρ0 from (11) and (12).
The estimate (53) together with (12) implies that there exists c1 = c1(ρ0) such

that

c1h2 6 sin(nh)2
(

1− h2ρ4
+

2λρ2

µn

)
= 1−

(
cos(nh)− hλρ2 sin(nh)

)2

for all n ∈ N , and hence (8) holds.
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5.2. Modified frequencies. Now, we turn to Assumption 2, again for ` = 0. We
begin by constructing the modified frequencies. The reason that we use modified
frequencies in the theory developed in the present paper is that it seems to be very
hard to verify the nonresonance condition in part (ii) of Assumption 2 directly for
the frequencies ω j of (52). For the frequencies that show up after the linearization
of the nonlinear Schrödinger equation itself around a plane wave, however, a
suitable nonresonance condition can be established; see [8, Lemma 2.2]. These
frequencies are

√
| j |4 + 2λρ2| j |2, and we therefore seek modified frequencies of

a similar form.
We fix ρ0 > 0 with (11) and h and K with (12) for some N > 2, as in

Theorem 3. The frequencies ω j of (52) are considered henceforth as functions
of σ = ρ2 with 0 6 σ 6 σ0 := ρ

2
0 :

ω j = ω j(σ ) =
arccos

(
cos(| j |2h)− hλσ sin(| j |2h)

)
h

. (55)

(Note that the step-size restriction (12) together with (53) ensures that the sign of
ω j in (52) is positive.)

The derivative of the frequencies ω j with respect to σ is given by

dω j(σ )

dσ
=

λ√
1− h2σ 2 +

2λσ
µ
| j |2

with µ| j |2 from (54), which is positive for j ∈ Z , by (12). This motivates the
definition

$ j = $ j(σ ) = | j |2 − µ| j |2 +
√
µ2
| j |2 + 2λσµ| j |2, j ∈ Z, (56)

of the modified frequencies, since we then have

d$ j(σ )

dσ
=

λ√
1+ 2λσ

µ
| j |2

and $ j(0) = ω j(0).

This implies that

d(ω j −$ j)(σ )

dσ
=

λh2σ 2

2(1− ξ + 2λσ
µ
| j |2
)3/2

for all j ∈ Z and some 0 6 ξ = ξ j 6 h2σ 2, and hence

|ω j −$ j | 6 C2h2 for all j ∈ K (57)

with C2 = C2(σ0), by (53). The modified frequencies $ j are hence close to the
original frequencies ω j , as required in part (i) of Assumption 2.
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5.3. Bambusi’s nonresonance condition for the modified frequencies. We
study resonances among the modified frequencies $ j of (56) derived in the
previous subsection. As $ j = $l for | j |2 = |l|2, we introduce

Ωn = Ωn(σ ) = $ j(σ ) for n ∈ N , j ∈ Z with n = | j |2. (58)

We verify for these modified frequencies a nonresonance condition that has been
introduced by Bambusi and is widely used in the long-time analysis of infinite-
dimensional Hamiltonian systems. The verification is an adaptation of [3, Section
5.1] to the present situation, along with some simplifications.

We proceed roughly as follows. The aim is to show that there are a lot of ‘good’
values of σ for which linear combinations of frequencies do not become small.
More precisely, a value of σ is considered as ‘good’ if, for all vectors k ∈ ZN and
l ∈ ZN with ‖k‖ =

∑
n∈N |kn| 6 N and ‖l‖ 6 2, the linear combinations

k ·Ω + l ·Ω =
∑
n∈N

knΩn +
∑
n∈N

lnΩn

are bounded away from zero by a negative power of argmax(k), where we denote
by argmax(k) the largest index n ∈ N with kn 6= 0 (and set argmax(k) = 1 for
k = 0). The first step is to observe that it suffices to consider

k ·Ω + m

with integers m instead of k ·Ω + l ·Ω , the reason being that l ·Ω = ±Ωn ±Ωn′

is either close to an integer by the asymptotic behaviour Ωn ∼ n + λσ of the
frequencies (see Lemma 19 below) or may be absorbed into k · Ω . This is done
in Proposition 22 below. Furthermore, if one excludes some values of σ , a bound
of k ·Ω + m can be obtained from a bound of some derivative

dk(k ·Ω + m)
dσ k

of k ·Ω +m (Lemma 21). Therefore we study in Lemma 20 a matrix made up of
derivatives of the frequencies Ωn . This matrix is such that its inverse multiplied
with the vector containing the first derivatives of k ·Ω is just the vector containing
the nonzero entries of k. Bounding its inverse (see Lemma 20) thus helps to study
the derivatives of k ·Ω + m.

As in the previous subsection, we fix ρ0 > 0 with (11) and h and K with (12)
for some N > 2. Let us emphasize, however, that again all constants will be
independent of the discretization parameters h and K . We will make extensive
use of the asymptotic behaviour of µn from (54) and of the modified frequencies
described in the following lemma.

https://doi.org/10.1017/fms.2014.4 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.4


Plane wave stability of the split-step Fourier method 39

LEMMA 19. We have, for 0 6 ρ 6 ρ0,

n 6 µn 6 Cn and −
C
n

6 Ωn − n − λσ 6 0 for n ∈ N

with a constant C = C(σ0).

Proof. The estimates of µn follow from nh 6 tan(nh) 6 Cnh, by (12). For the
estimates of Ωn , we note that

Ωn − n − λσ =
√(
µn + λσ

)2
− σ 2 −

(
µn + λσ

)
.

This shows that

0 > Ωn − n − λσ >
−σ 2

0

2µn

√
1+ 2λσ

µn

.

Estimate (53) of Lemma 18 and µn > n thus lead to the claimed lower bound of
Ωn − n − λσ .

Now, we begin with the investigation of (integer) linear combinations k ·Ω =∑
n∈N knΩn of modified frequencies (58). The following lemma will help us to

control derivatives of these linear combinations with respect to σ , which in turn
will allow us to control the linear combinations themselves.

LEMMA 20. Let 1 6 n1 < n2 < · · · < nM , and let A = (akl)
M
k,l=1 be the matrix

with entries

akl =
dkΩnl (σ )

dσ k
.

Then, for all k, l = 1, . . . ,M and all 0 6 σ 6 σ0,

|akl | 6 Cn−k+1
l and ‖A−1

‖∞ 6 Cn2M
M

with a constant C = C(M, σ0).

Proof. We have

akl =
dkΩnl (σ )

dσ k
= dkel x k−1

l (59)

with d1 = λ and dk+1 = −λ(2k − 1)dk for k > 1, el = 1/
√

1+ 2λσ/µnl , and
xl = e2

l /µnl . Note that, for all k, l = 1, . . . ,M ,

c′ 6 |dk | 6 C ′, c′ 6 el 6 C ′ and
c′

nl
6 xl 6

C ′

nl
(60)
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with positive constants c′ = c′(σ0) and C ′ = C ′(M, σ0), by Lemmas 18 and
19. Hence, the bound on the entry akl as stated in the lemma follows from
representation (59).

Moreover, this representation shows that

A = DVE

with diagonal matrices D = diag(dk)
M
k=1 and E = diag(el)

M
l=1 and Vandermonde

matrix V = (x k−1
l )M

k,l=1. In order to examine the inverse of A, we first invert V . Its
inverse is given by

V−1
=

(
vi j

wi

)M

i, j=1

with

vi j =
∑

16l1<···<lM− j 6M
l1,...,lM− j 6=i

(−1) j xl1 · · · xlM− j and wi =
∏

16l6M
l 6=i

(xi − xl);

see, for example, [23, Section 2.8.1]. Since

|xi − xl | = xi xl |µnl − µni | = xi xl
|nl − ni |

cos2(ξh)

with min(ni , nl) 6 ξ 6 max(ni , nl), the bounds (60) and the step-size restriction
(12) imply that

‖V−1
‖∞ 6 Cn2M

M , ‖D−1
‖∞ 6 C and ‖E−1

‖∞ 6 C

with C = C(M, σ0). The estimate of ‖A−1
‖∞ stated in the lemma follows.

Now, we consider sets of values of σ for which linear combinations of modified
frequencies are small. For vectors k ∈ ZN and l ∈ ZN , and integers m, we define
the sets

Qk,l,m(γ, α) =

{
σ ∈ [0, σ0] :

∣∣(k+ l) ·Ω(σ )+ m
∣∣ < γ

argmax(k)α

}
. (61)

We first estimate the Lebesgue measure | · | of these sets in the case when l = 0.

LEMMA 21. There exists a constant C = C(N , α, σ0) such that, for all 0 < γ 6
1, all ‖k‖ 6 N, and all m ∈ Z with ‖k‖ + |m| 6= 0,

|Qk,0,m(γ, α)| 6
Cγ 1/M

argmax(k)α/M−4M
,

where M denotes the number of nonzero entries of k.

https://doi.org/10.1017/fms.2014.4 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.4


Plane wave stability of the split-step Fourier method 41

Proof. We fix a vector k with ‖k‖ 6 N . We may assume that k 6= 0, because the
statement is trivial for k = 0, since γ 6 1.

(a) Lemma 20 shows that there exists a constant C = C(N , σ0) such that for
any 0 6 σ 6 σ0 there exists 1 6 k 6 M with∣∣∣∣dk(k ·Ω)(σ )

dσ k

∣∣∣∣ > C argmax(k)−2M . (62)

(b) The function g : [0, σ0] → R, σ 7→ k ·Ω(σ)+m is infinitely differentiable,
and its first M + 1 derivatives are uniformly bounded on [0, σ0] by a constant
depending only on σ0 and N (Lemma 20). Property (62) then enables us to
apply [2, Lemma 8.4], which yields the statement of the lemma.

Setting

Q(γ, α) =
⋃

k:‖k‖6N
l:‖l‖62
k+l6=0

Qk,l,0(γ, α) (63)

with Qk,l,0(γ, α) from (61), we can now prove the following nonresonance result
in the spirit of Bambusi’s nonresonance condition; see [3, Lemma 5.7].

PROPOSITION 22. Let α > (5N )4. Then there exists a constant C = C(N , α, σ0)

such that, for all 0 < γ 6 1,

|Q(γ, α)| 6 Cγ 1/(2
√
α(N+2)).

Proof. We consider the sets Qk,l,0(γ, α) for vectors l with ‖l‖ 6 2. Throughout
this discussion, we fix 0 < γ 6 1 and k with ‖k‖ 6 N .

(a) For the vector l = 0, the measure of the set Qk,l,0(γ, α) can be estimated
with Lemma 21.

(b) For l = ±〈n〉, let c′ > 1 be a constant such that | ± Ωn + k · Ω| > 1 if
n > c′argmax(k). This constant exists, by Lemma 19, and it depends on σ0 and
N . Then, for n 6 c′argmax(k),

Qk,l,0(γ, α) ⊆ Qk+l,0,0
(
(c′)αγ, α

)
,

whereas Qk,l,0(γ, α) = ∅ for n > c′argmax(k).
(c) For l = ±(〈n〉 + 〈n′〉), let similarly c′′ = c′′(N , σ0) > 1 be a constant

such that | ± (Ωn + Ωn′) + k · Ω| > 1 if n + n′ > c′′argmax(k). Then, for
n + n′ 6 c′′argmax(k),
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Qk,l,0(γ, α) ⊆ Qk+l,0,0
(
(c′′)αγ, α

)
,

whereas Qk,l,0(γ, α) = ∅ for n + n′ > c′′argmax(k).
(d) For l = ±(〈n〉 − 〈n′〉), where without loss of generality n < n′, note that,

with the constant C of Lemma 19,

|l ·Ω − m| 6
2C
n

for m = ±(n ± n′).

Then, for n > Cargmax(k)
√
α/γ 1/(2

√
α),

Qk,l,0(γ, α) ⊆ Qk,0,m
(
3γ 1/(2

√
α),
√
α
)
,

and this set is empty for |m| > c′′′argmax(k) with a constant c′′′ = c′′′(N , σ0), by
Lemma 19. On the other hand, we have, for n < Cargmax(k)

√
α/γ 1/(2

√
α),

Qk,l,0(γ, α) ⊆ Qk±〈n〉,∓〈n′〉,0(C
√
α√γ ,

√
α),

a situation that is covered by (b).
Results (a)–(d) show that there exists a constant c = c(N , α, σ0) such that

Q(γ, α) ⊆
⋃

k:‖k‖6N+2
m∈Z:|m|<c′′′argmax(k)

‖k‖+|m|6=0

Qk,0,m
(
cγ 1/(2

√
α),
√
α
)
.

Since the number of vectors k with ‖k‖ 6 N + 2 and argmax(k) = L is at most
(N + 3)L N+2, we have, by Lemma 21,

|Q(γ, α)| 6 Cγ 1/(2
√
α(N+2))

∞∑
L=1

L5N+11−
√
α/(N+2)

with a constant C = C(N , α, σ0). The choice of α ensures that
√
α > (N + 2)

(5N+13), and hence the latter sum converges, and the proposition is proven.

REMARK 23 (Case ` 6= 0). For ` 6= 0 but small, the frequencies ω j from (10) are
different from those for ` = 0 only for large j . For these large j , we have to deal
with two differences.

First, the frequencies of (10) (and also the modified frequencies) contain an
additional summand 1

2 |` + j mod 2K |2 − 1
2 |` − j mod 2K |2. This is an integer,

and it does not affect the proof of Lemmas 20 and 21, where also the integer
summand | j |2 − µ| j |2 in the modified frequencies (56) does not pose a problem.
Nor does it pose a problem in the proof of Proposition 22, since it is of order one
for small ` (for part (b) and (c) of the proof) and is an integer (for part (d) of the
proof).
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Second, the quantity n( j) appearing in the frequencies of (10) can be different
from | j |2. But, for small `, these two quantities are of the same order; see
Lemma 13. We therefore expect the statements of Lemmas 20 and 21 and of
Proposition 22 to transfer to this situation with constants depending on `.

5.4. Proof of Theorem 3. We have already verified in Lemma 18 that
Assumption 1 is satisfied under conditions (11) and (12) of Theorem 3. We
have also verified in (57) that the modified frequencies (56) are close to the
original frequencies, as required in part (i) of Assumption 2. We will now prove
that they satisfy the nonresonance condition in part (ii) of Assumption 2 for
many values of h and ρ. Note that, in the considered case ` = 0, part (iii)
of Assumption 2 follows from part (ii), since $ j = $l for all j, l ∈ Z with
n( j) = | j |2 = |l|2 = n(l).

Fix ρ0 > 0 with (11), h0 > 0, and N . In contrast to the previous subsection,
we do not fix the time step-size h anymore. We consider, for all 0 < h 6 h0,
the corresponding sets (63) for σ0 = ρ

2
0 , which we denote now by Qh(γ, α) to

emphasize the dependence (of the modified frequencies, and hence the sets) on h.
We set, for 0 < γ 6 1,

P(γ ) =
{
(h, ρ) ∈ [0, h0] × [0, ρ0] : ρ

2 /∈ Qh(γ, α)
}

with α = (5N )4. As mentioned above, all (h, ρ) ∈ P(γ ) satisfy Assumption 1
with constant c1 = c1(ρ0) and part (i) of Assumption 2 with ε̂ = C2h2 and constant
C2 = C2(ρ0), provided that K satisfies (12).

We still have to show that, for all (h, ρ) ∈ P(γ ), the modified frequencies
Ωn = Ωn(ρ

2) satisfy the nonresonance condition in part (ii) of Assumption 2
provided that (12) holds. For this purpose, let k ∈ ZN with ‖k‖ 6 N + 1. Then,
we have

2
π
|k ·Ω| 6

∣∣∣∣ei(k·Ω)h
− 1

h

∣∣∣∣ =: δ, (64)

since the (strong) step-size restriction (12) ensures, together with Lemma 19, that
|k ·Ω|h 6 π . We remark that this is the first and only place where we need that
the right-hand side of (12) is π/(N + 1) and not only π/3, say. Now, we write

k ·Ω = ±ΩnM ±ΩnM−1 ± · · · ±Ωn1

with nM > nM−1 > · · · > n1 in such a way that there is no pairwise cancellation
(M = ‖k‖). For δ 6 1, we have, by (64) and by Lemma 19, that nM 6 cnM−1

with c = c(Nρ0). Moreover, the choice of the set Qh(γ, α) yields

|k ·Ω| > γ

(
n2

M

c nM nM−1 · · · n1

)α
.
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Combining this with (64), we get(
n2

M∏
n∈N

n|kn |

)α
6

cαπ
2γ

δ.

The nonresonance condition of Assumption 2 thus holds for c2 = c2(N , γ, ρ0),
δ2 = 1, and s2 = αN .

We finally have to estimate the Lebesgue measure of P(γ ). By Fubini’s
theorem and Proposition 22, we have

|P(γ )| = ρ0h0 −

∫ h0

0
Qh(γ, α) dh > ρ0h0 − Ch0γ

1/(2
√
α(N+2)),

because the constant in this proposition is independent of h. The proof of
Theorem 3 is thus complete, if we redefine γ .
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[4] B. Cano and A. González-Pachón, Plane waves numerical stability of some explicit

exponential methods for cubic Schrödinger equation, Preprint, 2013. http://hermite.mac.cie
.uva.es/bego/cgp3.pdf.

[5] D. Cohen, E. Hairer and Ch. Lubich, ‘Long-time analysis of nonlinearly perturbed wave
equations via modulated Fourier expansions’, Arch. Ration. Mech. Anal. 187 (2008),
341–368.

[6] M. Dahlby and B. Owren, ‘Plane wave stability of some conservative schemes for the cubic
Schrödinger equation’, M2AN Math. Model. Numer. Anal. 43 (2009), 677–687.

[7] E. Faou, Geometric Numerical Integration and Schrödinger Equations, Zurich Lectures in
Advanced Mathematics (European Mathematical Society (EMS), Zürich, 2012).
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