On Spheroidal Harmonics,

By Epwarp BraDrs.

(Read 12th February 1915. Received 23rd February 1915).

1. Introductory.

Ellipsoidal harmonics are defined to be those solutions of
Laplace’s equation
eV v Y
ox? +8y“’ +8z2 =0
(where =z, y, z are rectangular coordinates) which are useful in
problems relating to ellipsoids. If the equation ~

&£y z
7+t—b’+t—_c2=l ......................... (1)

represents a family of confocal quadrics, it is known that the
ellipsoidal harmonics belonging to the family are products of

the form
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where [,,1, ... are constants: one term is to be picked out of the
square brackets as a multiplier of the other factors. Now if we
consider the case in which two of the principal axes of the ellipsoids
are equal, the latter become spheroids. If then we put =0 in (1)
the family of confocal spheroids has the equation
F+yr 2
¢ : tiz ¢
and belonging to this family there will be spheroidal harmonies of
the form given by (2) with b zero.
It is to be noted, however, that all the harmonics of the
spheroid cannot be included in this formula. Certain of them are

=1
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found to be anomalous. When = is even, for example, there are
solutions of Laplace’s equation of the form
r=in 2 2
7= z L o 30 -2k ) 3)
and, in particular, for n=2, 1 is a root of the equation
1 1 1
—_—t l—l—:'b—.z" + Z'Ij = 0,
and with 4 tending to zero, ¢ remaining finite, one of the spheroidal
harmonics becomes of the form
V=2a—¢3
the other value of ! providing for the normal type of harmeonic.
Similarly for n odd equal to 3 (say), { is a root of the equation
3¢ 41 o
L-8 L-c
(b tending to zero): hence we obtain the spheroidal harmonic
V'=const x z («* — 3y°),
which again does not conform to the type got from

n—-1

2 2 2 2
e (24 Y _z———1> ..................
4 "’,,.l(z,J'z,-bﬂ*z,'-cﬂ (34)

Thus we have the interesting fact that although (3) and (3a) are
of the form

{1 ; - xyz}( Z” ig-l)(",;:”ﬂl zzcc -1) ....... (A)

2 xy -

there are spheroidal harmonics got from them which are not of this
form.
If we transform Laplace’s equation to spheroidal coordinates
(r, 6, ¢) defined by the equations
z=c~ 7 +1 sinfcos ¢

Y=cN rF+18in0sin | eeirnereernnniannnn, 4)
z=crcos b
and try to find a solution of the form
V=ROP

where £, O, and ® are respectively functions of + alone, § alone,
and ¢ alone, we find that the solution is
V=P (ri) Pr(cos 0) cosm ¢
or V=Pr(ri)Pr(cosb)sinme .cuuvov............ (5)

https://doi.org/10.1017/50013091500002364 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500002364

67

where P7(z) is defined by the equation Pp(z)=(1- 22)7%(-&,
P, () is the Legendre function of the first kind, and i= /1.

2. A general formula for spheroidal harmonics.

The general solution of Laplace’s equation is*

'r'f(xcost+ysint+l'z, tat........ eererereees (6)
0

where f is any arbitrary function of the two arguments,
xzcost+ysint+1z and &

The purpose of the present note is to find what form the
JSunction f must have in order that the solution may be a sphevoidal
harmonie.

Taking the Addition Theorem (Legendre—Hist. Acad. Sc.,
Paris, 1789, éd. an IL, p. 432) of Laplace’s Coefficient

P, {cos 6 cos 8 +sin 8 sin & cos (¢ ~ ¢)'} = P,(cosf) P, (cos &)

3 (n-m)!

+Hmw (n+m)!

Pr{cos 0') Py(cos f) cosm (¢~ ¢') .. (7)

and multiplying each side by coss¢’ and integrating between the
limits 0 and 2x, we have

rtP,,{cose cos® +sin@siné cos(p — ¢') }cossd’'d ¢’
0
2
= J. i P,(cos) P,(cos)cossd’ d ¢’
0

+2 i (n-m)! J Pp(cost) Pr(cosf) cosm(p — ¢') cossdp'd ¢’

m=1 (”+m) !

= (n m)! Pr(cos@) Pr(cosB) {cos(m +8 - m ¢')

2 nrm)to

+cos(mp-s+me')}dg’
= ,,.2:"1%::_;-!! "-:' Pr(cos@') Pr(cosf){cosmep coss — me’

-sinm¢sing —m¢’' +cos(mdp-s+me)}d .

* Whittaker, Mathematische Annalen 57 (1903), pp. 333-3565.
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Now each integral (except the first one for m =3s) on the right
hand side vanishes as m changes from 1 to m, and it becomes
form=s

(n-38)!

{(n+s)!
and if for cos§’ we write ri we get the first of the set of harmonics
given in (5). Again, the left hand side

rw P, {cost cos# +sinfsinb cos(¢p — ¢')} cossp’ d ¢’
0

7 Pi(cos@') Pi(cosf) cosse,

can be written
2 e _—
I y P {~r*+1sinficospcosd’ + Jr+1siné sin¢ sing’ 4 17 cos 6}
0
x coss¢’'d @',

that is J—"Pﬂ (xcos4> *+ ycsmcﬁ ha zz) cossd' de ... (8)
0

where z, y, and z are defined in (4), and this is the same form as
the general solution given in (6).

If instead of multiplying both sides of the relation (7) by
coss¢’ we multiply by sins¢’ and proceed as above, we obtain the
corresponding result,

-8)! - . r N
21r§::+:; ; Pi(ri) Pi(cost) sinsg = IO I,.(

xcosd’ +ysing' + 'iz)
c
xsins¢p'd¢’............ 9)
which is again a case of (6).

It may be added that the integrals of (8) and (9) furnish
respectively the (n+1) and n harmonics in question, each of
degree n, where s is an integer not greater than =.

Thus we obtain the general result that all spheroidal harmonics
may be represented in the form

2% reost+ysini+4+iz)\ sin
J- P,,( Y )cos mtdt
° ¢

where P, denotes the Legendre polynomial, (x,y,z) are rectangular
coordinates, and ¢ s the constant which defines the family of
spheroids.
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