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^-SUBGROUPS OF THE REAL HYPERBOLIC GROUPS 

THOMAS J. O'MALLEY 

1. I n t r o d u c t i o n . If H is a closed subgroup of a locally compact group G, 
with G/H having finite G-invariant measure, then, as observed by Atle Selberg 
[8], for any neighborhood U of the identi ty in G and any element g in G, there 
is an integer n > 0 such t ha t gn is in U-H- U. A subgroup satisfying this la t ter 
condition is said to be an S-sub group, or satisfies property (S). If G is a solvable 
Lie group, then the converse of Selberg's result has been proved by S. P. W a n g 
[10]: If H is a closed ^-subgroup of G, then G/H is compact . Proper ty (S) has 
been used by A. Borel in the impor tan t "densi ty theorem" (see Section 2 or 
[1]). The main result of this paper is 

T H E O R E M 1. A discrete subgroup H of Gn = SO(n + 1, 1)/(=L / ) is an 
S-subgroup if and only if it is a group of the first kind in the sense of Fuchsian and 
Kleinian groups (see Definition 3.1 below). 

A discrete subgroup for which G/H has finite measure is commonly called a 
lattice. G\ and G2 are respectively isomorphic to PSL(2, R ) and PSL(2, C ) , 
and a discrete subgroup of Gi (resp., G2) is a Fuchsian (resp., Kleinian) group. 
So for discrete (finitely generated) subgroups of Gi, latt ice and 5-subgroup 
mean the same thing. But in G2 this is false; there are finitely generated discrete 
subgroups of the first kind in G2 having fundamental domain of infinite volume. 
Theorem 1 was first proved for G\ and G2 in [7]. 

In Section 2, proper ty (S) is further described and related to Dirichlet 's 
theorem in number theory. In Section 3, the groups Gn, and the notion ' 'group 
of the first k ind" are described. T h e "only if" pa r t of Theorem 1 is proved in 
Section 4, and the "if" pa r t in Section 5. In Section 6, the main result is reform
ulated for non-discrete subgroups. 

2. Property (S) a n d Dir i ch le t ' s t h e o r e m . Because the s tudy of Fuchsian 
groups often involves working with sequences, I will use the following version 
of proper ty (5) , which is equivalent if G is a connected Lie group, since the 
countabil i ty axioms are then satisfied. 

Definition 2 .1. H is said to be an S-sub group of G if, given any g in G, there 
exists a sequence h fin H and sequences ut and vt in G tending to the identi ty, 
e, as i —» oo , and a sequence of positive integers nu such t h a t gni = ut • ht • vt. 
Moreover, we can require t h a t the ni be strictly increasing, if G has a countable 
neighborhood base a t e. When such equat ions hold, we say t h a t g satisfies the 
S-condition for H. 

Received July 17, 1978. 

246 

https://doi.org/10.4153/CJM-1980-019-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-019-6


REAL HYPERBOLIC GROUPS 247 

An important result depending on property (S) is 

2.2. DENSITY THEOREM (Borel [1]). Let G be a connected semisimple Lie 
group without compact factor, and H an S-sub group of G. For any linear represen
tation f : G —» GL(n, R), the Zariski closure off(H) in GL(n, R) contains f (G). 

Remarks 1. As a corollary to (2.2), if G is a simple Lie group, then H is either 
discrete or dense in G. So in looking for closed S-subgroups of such G, we need 
only consider discrete subgroups. 

2. Theorem 1 provides an easy counterexample to the converse of (2.2) in 
the case Gi = PSL{2, R) by letting H be the Fuchsian group generated by 

(J ?) a n d ( J ?)• H is a subgroup of infinite index in T(3), the principal 

congruence subgroup of level 3 in PSL(2, Z), and thus is not a lattice and so 
not of the first kind. By Theorem 1, H cannot be an 5-subgroup. Nor can the 
subgroup H' in SL(2, R) generated by the same two matrices be an 5-subgroup, 
else property (S) would project down to G\. But Hr is Zariski dense in SL(2, R) 

since the one-parameter subgroups < I I > and < I I > generate 
SL(2,R). {X /} [V /} 

If G is the additive group of real numbers with the usual topology, and H is 
the subgroup of integers, then Selberg's observation is simply Dirichlet's 
theorem on Diophantine approximation: 

THEOREM 2.3 (Hardy and Wright [6, p. 156]). Given a real number x and any 
e > 0, there are integers m, n such that \mx — n\ ^ e. Moreover, if x > 0, m and 
n may both be taken as arbitrarily large positive integers. 

This will be a key tool in the proofs of Section 5, as will its generalization to 
higher dimensions: 

THEOREM 2.4 ([6, p. 170]). Given real numbers Xi, x2, . . . , xk and any e > 0, 
there are integers m, ni, n<i, . . . , nk such that \mXj — n3\ < e, j = 1, . . . , k, and 
m and the rij are arbitrarily large if the Xj > 0. 

While Dirichlet's theorem concerns approximating integers by multiples of 
a number x, Kronecker's theorem deals with approximating non-integral 
numbers by multiples of a number x. Stated in the higher-dimensional form 
needed for Section 5: 

THEOREM 2.5 ([6, p. 382]). Given real numbers ai,a2, . . . , akandxi, x2, . . . , xk 

such that Xi, x2, . . . , xk, and 1 are linearly independent over the field of rational 
numbers (e.g., if k = 1, X\ is irrational), then for any e > 0, there is a positive 
integer M, depending only on e and the xj} and integers m, n\, n2, . . . ,nk so that 
\mXj — rij — dj\ < e, j = 1,2, . . . , k, and 0 ^ m ^ M. 
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In other words, multiples of the %j, modulo 1, taken as a &-tuple, are dense 
in the uni t &-cube. If there are linear relations in the xj} then the multiples are 
dense in the hyperplanes of the uni t &-cube defined by those relations: 

T H E O R E M 2.6 (Cassels [2, pp. 53-59]) . Given real numbers a1} . . . , ak and 
Xi, . . . , xk such that for all sets of k integers u\, ih, . . . , uk, 

nidi + . . . + ukak = integer, 

whenever 

U\X\ + . . . + ukxk = integer, 

then for any e > 0, there is a positive integer M, depending only on e and the xj} 

and integers m, ri\, . . . , nk so that \rnxj — tij — a^\ < e, j = 1, 2, . . . , fe, and 
0 ^ m S M. 

3. T h e hyperbo l i c g r o u p s a n d g r o u p s of t h e first k i n d . T o describe the 
real hyperbolic groups [3, 4, 5] , begin with Moebius w-space which is the one-
point compactification of euclidean n-space Rn, denoted by R" = R n U oo. 
The Moebius group, Mn, is the continuous group of t ransformations of Rw 

generated by reflections in (n — 1)-spheres and planes of Rw. Embedding Rw 

in Rw+1, we see t ha t the action of Mn extends to Rw+1 by reflections in n-spheres 
and planes meeting Rw orthogonally. This action leaves the two components 
of Rw+1 — Rw invariant . Denote one of these components by Hn+1, the "upper 
half-space." Let t ing Hn+l = Hn+1UW, Bn = the open unit ball in Rn, 
S^1 = the boundary of Bn, and W = Bn U Sn~\ it is well known tha t Hn+\ 
Rw, and Hn+1 can be identified with Bn+1, Sn, and Bn+1, respectively. As is well 
known, there is a Riemannian metric in Hn+l (or Bn+l) making Hn+1 into 
(n + 1)-dimensional hyperbolic space, with Mn its group of isometries. 

Also, if 0(n + 1, 1) denotes the orthogonal (or Lorentz) group of (n + 2) 
by (n + 2) real matrices leaving invar iant the quadra t ic form 

Xo - j - X\" -\- . . . -\- Xn #w+l i 

then Mn is isomorphic to 0(n + 1, l ) / ( d b / ) . Let Gn be the ident i ty compo
nent of Mn. For all n, Gn is isomorphic to SO+(n + 1, 1) (the sugbroup which 
preserves each half xn+i > 0 and xn+i < 0 of the cone x0

2 + Xi2 + . . . + xn
2 — 

W < o). 
An element of Gn is generated by orientation preserving orthogonal maps , 
stretchings, and translat ions. Moreover, Gn sends ^-spheres to ^-spheres in 
TF+~\ 

Gi is isomorphic to PSL(2, R ) and acts on H2 (identified with the extended 
complex upper half-plane) by linear fractional t ransformations, being the 
group of all directly conformai automorphisms. 
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A discrete subgroup H of Gn acts discontinuously on Hn+l, bu t not in general 
on Rw. The limit set, L(H), of H consists of those points x in Rn (limit points) 
for which there is a z in Hn+1 with H(z) accumulating a t x (actually, for each x, 
z may be any point in Hn+1 with the possible exception of x and one other po in t ) . 

Definition 3.1. A discrete subgroup H of Gn is said to be of the first kind if its 
limit set, L(H), is all of Kn; otherwise, it is of the second kind. 

T h e elements of Gn belong to three kinds of conjugacy classes according to 
their fixed points in Hn+1 ([3], [4]). An element g in Gn having a fixed point in 
Hn+1 is called elliptic, and its matr ix form is conjugate to an element in the 
orthogonal group SO(n + 1). If g has exactly two fixed points, x and y, both 
in Rw, g is called loxodromic, and can be writ ten uniquely as g • g = g • g where 
I is a stretching (or hyperbolic element) of constant factor along circular arcs 
in Hn+1 joining x and y, and g is an elliptic element leaving pointwise fixed the 
geodesic (semicircle) AQ in Hn+l orthogonal to Rw with x and y as its endpoints. 
A g is called the axis of g. One of these two fixed points, say x, is called the 
attracting fixed point of g since, for any z in Hn+l except z = y, gn(z) —> x, as 
n —> + oo. And the other, y, is called the repelling fixed point of g 
since g~n(z) —> y as n —> -{- co , z ^ x. Transforming x to oo and y to the origin 
0 in Kn, g has the conjugate form g • g, where g(z) = r • z, r > 1, and g is in 
SO(n + 1). The number r (resp., r~l) is called the attraction, or stretching, 
factor of g (resp., g~l). 

If g has exactly one fixed point, which is in Rw, g is called parabolic, and 
moving the fixed point to oo, g is seen to be conjugate to a rigid euclidean 
motion of Rw which may be assumed to be in the form g • g — g • g, where g 
is a pure translation in the xw-direction (in fact, g : zn—> zw + 1), and g is an 
orthogonal transformation. 

We call the corresponding fixed points elliptic, loxodromic, or parabolic, also. 

4. Property (S) i m p l i e s group of t h e first k i n d . The "only if" pa r t of 
the main result is easily proved: 

PROPOSITION 4.1. / / a discrete subgroup H of Gn satisfies property (S), then H 
is of the first kind. 

Proof. Let x be a point in Rw. We must show tha t x is a limit point of H. Let 
g be any hyperbolic element (stretching) of Gn with fixed points x (at t ract ing) 
and y (9^ x). Select an ^-sphere C in Rw+1 centered a t x (resp., a t y, if x = 00 ), 
so t h a t y is exterior to C (resp., x = 00 is exterior to C), and select a point z in 
both the interior (resp., exterior) of C and in Hn+1. 

Positive integral powers of g move C and its interior (resp., exterior) arbi
trarily close to x (e.g., within any predetermined (n + l)-ball centered a t x) . 
Since H is an 5-subgroup, by Definition (2.1) we have equations 

fi = Uf . hi 'VU 
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where uu vt-^ em Gn, h t is in H} and nt —> + oo . Then vfl —» e, and for large i, 
Z T U 2 ) is m t n e interior (resp., exterior) of C. Hence, gni • v~l(z) —> x, as 
i —> oo. But g7** • ̂ r 1 = Wj • ht, and so M^ • ht(z) —> x. Since Gn acts continu
ously on Hn+1, and since w f 1 —> e, we have ^r" 1 * ut • /^(z) = hi(z) —> x. T h a t 
is, x is a limit point of 77, so H is a group of the first kind. 

5. G r o u p of t h e first k i n d i m p l i e s property (5) . In order t h a t a discrete 
subgroup H of the first kind in Gn be an S-subgroup, each element g in Gn mus t 
satisfy the 5-condition for H. Observe t h a t g m a y be assumed to be in a n y 
convenient conjugate form. For if g = T • g • T~l, with T in Gn, then 
T • H - T~l is a group of the first kind, because if x is a limit point of H in Rw, 
T(x) is a limit point of T - H • T"1, and T(RW) = Rw, and, moreover, if we 
obtain equations gni = u{ - hi - vu with /^ = T • ht • T~l, then 

with the elements in parentheses approaching e, since wf, vt —» e. 
The "if" par t of the main result is proved below in Proposit ions (5.1), (5.3) 

and (5.4). 

PROPOSITION 5.1. If g is an elliptic element in Gn, then g satisfies the S-condition 
for any subgroup H of Gn. 

Proof. The elliptic element g has its matr ix form conjugate to an element in 
SO(n + 1), and so is further conjugate to a matr ix in block-diagonal form with 
each of k blocks, A$, being in 5 0 ( 2 , R ) : 

A _ I c o s 2*0J s m ^ndj 
3 \ — sin 2 T6J cos 2 irdj 

where k = (n + l ) / 2 if n is odd, and k = n/2 (and A(n+2)/2 = 1) if « is even. 
Then the blocks of gn are A/1 for a positive integer n, and, calling the 6j the 
angular parts of g (the numbers exp ( ± il-wQ f) are the eigenvalues of g), we 
know tha t the angular par t s of gw are the numbers ndj, modulo 1. Applying 
Dirichlet 's theorem (2.4) in k variables, we see t h a t the ndj can be simultane
ously made as close to integers as desired, making each block A/1 as close to 
the two-by-two identi ty matr ix as desired. Hence, there is a sequence of 
positive integers n ^ - ^ o o , such t h a t gn%—> ey and so g trivially satisfies the 
S-condition for any H. 

In order to obtain the 5-condition for loxodromic and parabolic elements g, 
we need the known result t h a t the loxodromic fixed points of a group of the 
first kind are "pairwise dense" : 

PROPOSITION 5.2 ([4, Proposition 12], [7, pp. 13, 14, 29], [9, Proposition 

1.4]). If H is a discrete subgroup of the first kind in Gny and if x and y are (not 
necessarily distinct) points in Rw, then there is a sequence of loxodromic elements 

Q^es< 1. 
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hi in H, so that ht has attracting fixed^point x7- and repelling fixed point yu with 
Xi --> x and y t —* y. 

PROPOSITION 5.3. / / H is a discrete subgroup of the first kind and g is a loxo-
dromic element in Gn, then g satisfies the S-condition for H. 

Proof. Take g to be in the conjugate form g = g • g ~ g • g with fixed points 
oo (at t ract ing) and 0, so t ha t g(z) = r • z, r > 1, and g is orthogonal with k 
angular par t s ah as in Proposition (5.1) above. By (5.2) there are loxodromic 
elements hi in H with fixed points x?: (at t ract ing) and yt in Rn, so t ha t xt —> oo 
and yt —> 0. The ht are conjugate to elements ht = ut • ht • u{~1 having fixed 
points oo (a t t ract ing) and 0, with ut —> e in Gn. The ut may be constructed by 
first let t ing dt be a translation in Rw fixing GO and moving y t to 0, then let t ing 
f i be a similar parabolic element fixing 0 and moving di(xt) to oo , and finally 
sett ing ut = ft • dt. 

The element ht is a product of a hyperbolic element ht of the form 
ht(z) = r i • z, r f > 1, and an elliptic element ^ fixing 0 and oo , whose matr ix 
representation has k angular par ts 0^-, j = 1, . . . , &. 

For each fixed i, by Dirichlet 's theorem in 2k + 1 variables, there exist 
integers ra*, nt > 0 and £?i-, qjt, j = 1, . . . , &, such tha t (logarithms are to 
base r, the a t t rac t ion factor of g): 

nti log (rt) — nt = au 

mfia — pji = &.n, J = 1, • • • , k, and 

ra, log (r<) • a,- - <?JZ- = cjh j = 1, . . . , fe, 

with a*, &jf, and c^ —•> 0, as i —> oo. 
Defining hyperbolic elements vt in Gw by vt(z) = r~ai • 0, we see tha t 

gni = i). . ^/"*, with Vi —> e. Also, the angular par ts of &/"* are m$ n (modulo 1) 
which get closer to 0 or 1, so ht1 —* e. Similarly, the angular par t s of gni are 

= Çji + Cji — a$Lj (modulo 1), 

( £ < - ' " - g n < ) , 
with the element in parentheses approaching e, and so g satisfies the .S-condi-
tion for H. This completes the proof of (5.3). 

For parabolic g, except when dealing with elliptic par ts , Dirichlet 's theorem 
is not needed (and indeed is very awkward) since, for example, the powers of 
the translation zn —» zn + 1 are zn —* zn -{- nt, which, for an appropr ia te 
integer nu can approximate the action of a nearby loxodromic element along 
the xw-axis to within one unit. 

PROPOSITION 5.4. / / H is a discrete subgroup of the first kind, and g is a para
bolic element in Gn, then g satisfies the S-condition for H. 

nidj = mt log (r-) • QLJ — a^j 

and so gni —> e. Finally, we obtain 

gni = Vi • himi • gni = Vi • h{li • 
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Proof. Assume g is in the conjugate form g = ts = st, with t the t ranslat ion, 
zn —> %n + 1, in the ^ -d i rec t ion , and s, orthogonal. Then g has GO as its only 
fixed point. As Lemma (5.5) will show, there are loxodromic elements hi in H 
which, after conjugation by elements ut in Gn approaching e, have fixed points 
%i (a t t ract ing) and yi} both on the x^-axis with xz- —> + ° ° , and yt—> — oo , 
and with ji/Xi—>0 (identifying these points with their xn-coordinates). T h e 
conjugated elements will be denoted again as ht. 

Case (i). First suppose 5 = e, so t h a t g = t. Express the ht as products of 
their hyperbolic and elliptic par ts , ht = hi* hi. We can th ink of hi and / as 
being in Gi = PSL(2, R ) which acts on the extended upper half-plane defined 
by the x^-axis and the positive xn + i-axis in Hn+l. If hi has an a t t rac t ion factor 
ri2 (ri > 1), then it is conjugate in G\ to 

\0 rr1)' 

and so has the form 

x* — ;y* \rz- — \/fi —JiTi + xz-/r* / 

Replace each hi by a sufficiently high power of itself in order to have rt —> oo 
(the a t t rac t ion factor of /&/71 is r̂ 2™) and ht —> e (Dirichlet 's theorem) . 

To have t~ni • ht be close to the two-by-two ident i ty matr ix , examine 

where 

At = Xifi - yjri - rtiifi - l/rt), 

Bi = - x ^ , - ( r ? ; - l/r?-) - tiii-jifi + Xi/fi), 

Ci = fi — l/ru and 

Di = —yfi + Xi/fi. 

For the lower right ent ry of (1) to be close to 1, we should have Xj = —rtyi. 
And if we had x7- = — ^iy^u with a f - > 1, the upper r ight en t ry of (1) would be 

~ T"T &&&* — 1) + ni(ri + a *)) -

For this to be close to zero, we should have 

(2) nt = -yMn - l)/(rt + at) = ^ ± 1 1 . ( ( r < _ 1 ) } . 
ẑ + «z 

As Lemma (5.6) will show, if we select a{ —> 1 so t h a t (2) is an integer 
(call it nt), then there are elements wt —> e in Gi leaving yt fixed and moving 
xt to —Tiyidi by which &/ = Wi - hi • w~l is as desired. T h a t is, replacing ht 

https://doi.org/10.4153/CJM-1980-019-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-019-6


REAL HYPERBOLIC GROUPS 253 

by hi in (1), the lower right entry becomes (rt + a/)/ (rtai + 1) —> 1. The 
upper right entry becomes 0, with nt — (2). Hence, the upper left ent ry is 
(fiCii + l)/(rt + (if) —» 1, and the lower left entry is (rt — l/ri)/( — riyiai 

- y , ) - o . 
Thus , we have t~ni - h/ —> e. So in Gn, for some vt —» e, 

~ o 

tni = h/ - vt = Wi- ht • wr1 • Vi = wt • hi • O r 1 • « T 1 • *>*)> 

where the elements in parentheses approach e. And / satisfies the S-condition 
for H. 

Case (ii). Now suppose tha t s, the orthogonal par t of g, is not the identi ty, e. 
Then gni = tni • sni, and we will force sni —•> e, thus obtaining the 5-condition 
for g. By changing «^ slightly in (2) above, wre will show tha t nt can be re
placed by a nearby integer nt + mt = w*(l + nti/n/) where mjni —> 0, so 
t ha t / still satisfies the 5-condition, and sw*'+™*" —> £. 

Suppose 5 has fe angular par ts 0,. The angular par ts of s~ni (nt is as obtained 
from case (i) ignoring s) are the numbers — nfij (modulo l),j = 1, . . . , k. The 
numbers Oj and 1 are linearly independent over the field of rational numbers if 
and only if the numbers —nfij and 1 are (for fixed i). So applying Kronecker 's 
theorem, as in (2.5) or (2.6), we see that , given et = 1/i, there is some positive 
integer Mt (depending only on M\ and the dj} and not on nf) and integers ra7-, 
Pu, p2û • • • , Pku such tha t 

\™>fiû - Pji + niej\ < €<» J = 1, . . • , fe, 
with 0 ^ Wj ^ Mt. In other words, the angular par ts of slli+mi are within 1/i 
of 0 or 1. Therefore, sni+mi —> e. 

In order to have mf/Wj-^O, first note tha t by expression (2) above, 
nt = —ji{ri — 1). Then, when deriving the 5-condition for the translation 
par t of g, namely t, using case (i), replace ht by a sufficiently high power of 

o 

itself in order to have —Jiiji — 1) > i • Mu in addition to having ht —> e. Wi th 
this, let tti be chosen as in case (i) so t ha t nt ^ —yi(j% — 1). Then in (2), 
modify at (and consequently wt of Lemma 5.6) so t ha t nt is replaced by an 
appropriate nt + mu 0 S wit ^ Mu with 5*1+™» —> e. Note tha t 

m f /wi ^ Mji • Mi—>0, 

so we still have at —> 1. 
Finally, we have 

with îof) ^i, and sni —• e, and this completes the proof of (5.4). 

LEMMA 5.5. In the proof of Proposition (5.4) above, hu xu y u and ut can be 
chosen so that ut —» e, ut • ht - ut~

l has fixed points xt (attracting) and yt both 
on the xn-axis with xt —» + oo , and yt—^ — co , and yjxi —> 0. 

Proof. Let It and J 2 be closed balls in Kn of radii 1/i (euclidean distance) , 
and centered a t the numbers i2 and —i, respectively, along the xw-axis. By 
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Proposition (5.2) above, there are loxodromic elements ht in H with a t t r ac t ing 

fixed point x / in It and repelling fixed point y/ in J{. 
Let flfbea planar rotat ion (elliptic element) in Gn leaving x / and oo fixed 

and taking y ( to at(y/) in Jt P (xw-axis). If necessary, we may assume t h a t 
y I is sufficiently close to the center of Jt so t h a t such a rotat ion from x / does 
result in (ii(y/) being in Jf. If z is any point in Hn+l not in the extended plane 
defined by x/, y/, and a^y/) (which can be assumed non-collinear), then at 

moves z by its orthogonal projection in this plane. 
Transforming x / to the origin 0 in Kn, at becomes a rotat ion, fu abou t the 

origin of angular measure 6i} and so at has the form 

at(z) = ft(z — x/) + x / 
= fi(z) + x( - fi(x/). 

Along a circle centered a t the origin with radius | | x / | | , ft moves x / an arc 
length of \6i\ • | | x / | | = | | x / — fi(x/)\\. Now, by the construction of au |0 f | is 
approximately (l/i)/(i + i2), or less. Hence, 

\\x/ -ft(x/)\\ = | ^ . | - | | x / | | = l/i, 

or less, and so x / — fi(x/) —> 0, the origin. And since dt —> 0, f i{z) —> z, and 
so a? —> e in Gn. 

Similarly, let ô ^ b e a rotat ion leaving a^yî) and GQ fixed and taking x / to 
bi(xi) in / i Pi (xre-axis). As with aiy it is clear t h a t bf—^e. Let t ing ut = bf • au 

we see t ha t iit • hi • uf1 has fixed points xf = bi(x/) (a t t ract ing) and 
y% = cti(y/) both on the xn-axis with xt == i2, and 3/* = —i, and the Lemma 
follows. 

In the proof of Proposition (5.4) the following Lemma is used with 

*i = -ySifii. 

LEMMA 5.6. Given points xu yu and zt in R, all approaching ± &3 with yjxi 
and yi/zi —> 0, there are elements wt in PSL(2, R ) (acting as linear fractional 
transformations) fixing 0 and yt and moving xtto zt such that wt —> e, the identity. 

Proof. Since Wi(0) = 0, wt has the form 

(at 0 \ 
w = \ _ i l . 

\Ci at / 

Since 

Wtiyt) = afyi/iciiCiyi + 1) = yu and 

Wi(Xi) = ai
2xi/{aicixi + 1) = zu 

solving simultaneously, one obta ins 

a-2 = (1 — yi/Xi)/(l — y-t/zi) —> 1, and 

Ci = (at
2 — l)/aiyi —> 0. 

Hence, wt -^ e, and the Lemma follows. 
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6. R e f o r m u l a t i o n for n o n - d i s c r e t e subgroups . If H is a non-discrete 
subgroup of Gn, the notion of "group of the first k ind" is not part icularly 
relevant and will be replaced by the notion of "pairwise densi ty" of loxodromic 
fixed points as in Proposition (5.2). 

Definition 6.1. A subgroup H of Gn is said to be pairwise of the first kind if 
the set 

P{H) = {(x(h),y(h)) : h is a loxodromic element in / / w i t h x(h) and y (h) 
being the a t t rac t ing and repelling fixed points of h} 

is dense in Rw X Rw with the usual product topology. 

The main result can now be stated as 

T H E O R E M 6.2. If H is any subgroup of Gn, then H is an S-subgroup if and only 
if it is pairwise of the first kind. 

Proof. If H is pairwise of the first kind, then H must be an 5-subgroup as 
proved in Section 5, since the proofs there make direct use of the parwise 
density of loxodromic fixed points and not of discreteness. 

Now suppose H is an 5-subgroup. Let x and y be points in Kn. Consider two 
cases according as x and y are distinct, or not: 

Case (i). Suppose x and y are distinct (for convenience, assume x, y ^ co , 
al though the proof readily extends). Let g be a hyperbolic element in Gn with 
fixed points x (a t t ract ing) and y. Then g satisfies the S-condition for H by 
which there are equations gni = ut • ht • vu with Ui,Vi-+e, and we may assume 
the tit's to be strictly increasing. Let I, J, and K be closed w-balls in Rn centered 
a t x (euclidean distance for radii) with K C interior (7), and 7 C interior (J), 
and so t ha t y is not in J 

As is known, convergence in Gn implies uniform convergence in Rw+1, and so 
for large i, v{~l(I) C / , and u~l(K) C 7. Also, g7H(J) C K, since x is the 
a t t rac t ing fixed point of g. T h a t is, for large i, 

ht(I) = ucl-gni'vcl(l) C 7 , 

and so by the Brouwer fixed point theorem, ht has a fixed point in 7. We can 
do the same thing a t y, which is the a t t rac t ing fixed point of g~l, using the same 
5-condition equations. Taking a sequence of such 7, J, and K with radii de
creasing to zero, we see that , a t least for a subsequence of the hu each ht has 
fixed points in Rw, xt-^ x, and yt —> y. 

Moreover, the h{ must be loxodromic for all but finitely many i. Otherwise, 
there would be infinitely many elliptic hu each with fixed points xt and yt 

and pointwise fixed geodesic axis joining xt and yt. But then, taking a point zt 

on each such axis exterior to some fixed w-ball, / , centered a t x and not con
taining y, we see tha t for large i the points Vi~l(Zi) are exterior to some w-ball, 
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/ , centered at x and contained in interior (J), as are the points 

Ui(zt) = Ui -hi-Vf vrl(zi) = gni • vcl(Zi). 

This contradicts the fact that gni moves the points vi~
1(zi) arbitrarily close to x 

(provided the zt were chosen so as not to accumulate at y). 
Finally, replacing ht by hf1 if necessary, we have that xt is the attracting 

fixed point of hu and so H is pairwise of the first kind. 

Case (ii). If x = y, take any sequence of points Xj 9^ x in R" converging to x. 
For each pair (x, Xj), apply case (i) above to obtain a sequence of loxodromic 
elements htj with fixed points xtj —> Xj and yti, —> x, as i —> GO . Then, for some 
diagonal sequence, ha', we have xu>, yu> —> x, as required. This completes the 
proof of (6.2). 
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