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TIME DELAYS IN n-SPECIES COMPETITION - I:
GLOBAL STABILITY IN CONSTANT ENVIRONMENTS

K. GOPALSAMY AND R.A. AHLIP

Sufficient conditions which are verifiable in a finite number of

arithmetical steps are derived for the existence and global

asymptotic stability of a feasible steady state in an integro-

differential system modelling the dynamics of n competing

species in a constant environment with delayed interspecific

interactions. A novel method involving a nested sequence of

"asymptotic" upper and lower bounds is developed.

1. Introduction

The purpose of this article is to discuss the asymptotic behaviour of

solutions of a class of integrodifferential equations (see (2.8) below)

modelling the dynamics of n competing species (n > 2) with possibly

time delayed interspecific interactions. Various aspects of time delays in

dynamic ecosystem models have been considered by numerous authors since the

pioneering work of Volterra [14]. Most of the mathematical analyses of

such systems existing in the literature have been restricted to an

examination of the asymptotic (local or global) stability or instability of

feasible steady states (that is, steady states in the open positive cone of

the state space) assuming that such steady states exist. The method of

characteristic equations (Cushing [3], Busenberg and Travis [/]) or the

method of Lyapunov functions (Worz-Busekros [75], Post and Travis [73])

have been the principal methods used in such investigations. Without

making an explicit assumption on the existence of a feasible steady state,
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one can examine the "persistence" of an ecosystem in the sense that no

species can ever become extinct . A number of studies on persistence of

special ecosystems with no delays have been performed recently (Gard and

Hal lam [ 4 ] , Gard [ 5 ] , [6 ] , Hal\ametal. [J0] and Harrison [ / I ] ) .

I t is known (Coste et at. [2]) that in the case of a Lotka-Volterra

system of the form

dx. [ n ]

a necessary condition for persistence is that ( l . l ) has a feasible steady

s ta te x* = [x*, . . . , x*) . Steady states of ( l . l ) satisfying

n
(1.2) £ a. Jri + r. = 0 , i = 1, 2, . . . , n ,

j = l V3 J *

are said to be nontrivial steady states of (l.l). In general no conditions

(necessary or sufficient) on the coefficients of (l.l) are known for its

nontrivial steady states to be feasible also. It is for this reason that

everyone interested in the stability analysis of (l.l) has assumed the

existence of a feasible or partially feasible (that is, lying on the

boundary of the positive cone of the state space) steady state and derived

conditions for the stability of such a steady state. If such steady states

do not exist, then the stability analysis and the conditions derived for

the stability of such hypothetical steady states will be worthless. In the

analysis we present below we provide sufficient conditions for the

existence of feasible steady states which are globally asymptotically

stable in the sense that all orbits in the state space originating in the

open positive cone approach the feasible steady state as t •*•<*> in the

presence of delayed interspecific interactions. We will postpone further

discussion to the end of the article.

2. Asymptotic bounds and convergence

It is an elementary fact that the solution u of the scalar initial

value problem

(2.1) ^ f t ~ = u(t){r-au{t)} , * > 0 , w(0) = uQ ,
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is given by

(2.2) u(t) = ruo[auo+{r-auo)exp{-rt)]~X , t > 0 .

If u , a, r are positive constants then the solution u in (2.2) is

defined for a l l t > 0 and furthermore

(2.3) u(t) > 0 and lim u(t) = r/a .

The existence of u for a l l t > 0 and i t s asymptotic behaviour in (2.3)

is usually referred to as the global asymptotic stabil i ty of the positive

steady state (r/a) of the system (2.1). Equations of the form (2.1) play

a fundamental role in mathematical ecology.

One of the consequences of (2.3) is that for arbitrary positive

constants e > 0 , e > 0 , there exist positive numbers t* t* such

that

(2.It) u(t) < (r/a) + t± for t > t*

and

(2.5) u(t) > (r/a) - e2 for t > t* .

Using this elementary fact repeatedly we will construct sequences of

"asymptotic upper" and "asymptotic lower" bounds for solutions of a vector

system modelling n-species competition with delayed interspecific inter-

actions. In particular we establish the following:

THEOREM. Assume that r . , a. . (i, j = 1 , 2 , . . . , n) are positive

fixed constants such that

(2.6) a u t 0 , au > I aj. , r. > | a..{r./a..) ,

i = 1, 2, . . . , n .

Let k.. : [-T, 0] -*• [0, <*>) (i, j = 1 , 2, . . . , n) denote continuous delay

kernels normalised suoh that

1°
(2.7) \-As)ds = 1 , i , j = 1, 2, . . . , n .
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Consider the integrodifferential system

du.(t)
(2-8)

[ n rO

- »M"i-auui{t) ~ £ aij J ^hjdt

i = 1, 2, ..., n ,

(2.9) uAs) = 4As) > 0 , s € [-T, 0] ,

where T is a fixed positive constant and 4. (i = 1, 2, . . . , n) are

bounded integrable nonnegative functions with possible jump discontinuities

at s = 0 so that

( 2 . 1 0 ) M . ( 0 ) = 4 ( 0 ) > 0 , i = 1 , 2 , . . . , n .

Then the system (2.8) ?ws a feasible steady state x* = {x* . . . , x*) with

x*. > 0 (i = 1, 2, . . . , n) ; also solutions of (2.8)-(2.10) exist for all

t i 0 and satisfy the following:

( 2 . 1 1 ) u.{t) > 0 for t 2 0 and l i m « . (* ) = x? > 0 ,

i = l , 2 , • • - , " ,

where

n
(2.12) £ a ^ / ^ = ri (i = 1, 2, . . . , n) .

Proof. We f i r s t note from the form of (2.8) and the nonnegativity of

i n i t i a l condi t ions, solut ions of (2.8)-(2.10) can never become negative.

The l oca l existence of u. for small t > 0 can be establ ished by

construct ing the usual Plcard i t e r a t e s ; boundedness and global existence

for a l l t > 0 of u , « „ , . . . , u i s a consequence of our arguments

below. We sha l l d i r ec t ly proceed to examine the behaviour of u.(t)
It

(i = 1, 2, .. . , n) as t increases unboundedly.

Let V.(t) be the solution of
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Then since u.(t+s) > 0 {j = 1, 2, ..., n) it will follow that

du.
f o r(2.1»0 - ^ < u^r.-a^^

From (2.13)-(2.ll*) one derives

(2.15) u.{t) 5 v[}\t) = r . M . (0) [a . .M.(0) + (r -a u. (O) )exp( - r - t ] ] " 1 ,r.M.(0)[a..M.(0) + (r a u. (
Is Is Ir Is Is ' Is Isls Is

t > 0 .

Choose e > 0 such that

(2.16) e, < 1 and -±- \r. -
1 a.• \ i A

v.
M > 0 , i = 1, 2, ..., n ,

Such a choice of e is possible by hypothesis (2.6). As remarked before,

there exists a t > 0 such that

(2.17) u^t) 5 / X ) = (̂ /o.̂ ) + e± for t > ̂  , i = 1, 2, ..., n .

Now let V^}\t) be the solution of

dx. r n , n
at i\ i vv ̂  A tj J 1

(2.18)

From the choice of e we have

lx i ^ > 0

and the solution of (2.18) is given by

(2.19) . |

where
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G{t) = a..x.(t+T)
3

.x.[t +

i J.1 I

1 , i = 1, 2, t > t± + T

Since

(2.20)

du.- r n n n
-jj- > u.\r.-a..u. - y a. .N\ ' \ , t > tn + T ,

i

i t follows that

(2.21) for t > t +

Hence from (2.l8)-(2.2l) we have the following: there exists a

t > t + T such that

n

3=1

(2.22) M.(

where

(2.23) e < min • -K, e min'(%)

for

= 1, 2, . . . , n ,

n
r . - ^ a. JVV(1)

aii\ '

We thus have the following f i rs t asymptotic upper N. and first
u

asymptotic lower M. bounds respectively so that
i

(2.2U) for

(The appendage "asymptotic" is used since the bounds are not valid for all

t ^ 0 .) Using the upper and lower "bounds in (2.2U) we will generate as

before new upper and lower bounds valid for still larger values of t .

(2)
Let V;. (*) be the solution of
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dx.

(2.25)

, t > *_ + T ,

o*i

Now since

r . - A A

- *%• ~ L a • • a. .̂
• i-3J

> 0 , t = 1, 2 , . . . , n ,

and

(2.26) i < « . l , ^ , i = 1 , 2 , . . . . n ,^

there ex i s t s a t_ > 0 such tha t for t > t > to"1'-'' w e n a v e

r . - T a. M\
t '—* i l l

(2.27) uAt) s N[.2) =

where

(2.28) 0 < e 3 < min • {\, e2} and

(2)Now l e t U) ( t ) be the solution of

I F

(2.29)

,(1) + e 3 , t = l , 2 , . . . , n ,

i = 1 , 2 , . . . , n

*3 + T '

x,\t+T) = vA

By the choice of £ ,
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( 2 . 3 0 )

Also we have

(2.31)

r . - T a . . > 0 .

Ho

du.

> u-ir.-a. .u. -

Hence there exists a t, > 0 such that

(2.32) uAt) ^ MJ. *. - i -W\ - e. for t > t. >
k k

where

(2.33) 0 < eu < min • \\, e , min • |r . - t a,A2)\ -±-\ .^

Th\is we have

(2.3U) [2) S uAt) 5 ^ 2 ) for

At th i s stage le t us compare the relative magnitudes of the respective
bounds; from the definitions of these bounds we derive that

r, - I ..V.1)

A

a . . 3 \a..

Thus

(2.35)

Similarly

tj j 3 1

< 0 since e < e and M\X' > 0 U = 1 , 2, . . . , n)

, i = i , 2, . . . , n .
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M\2) - A/.1* = r. - I a../2) .* A %o ° \a 2au

£ 0

and hence

(2.36)

Thus we have

(2.37) A41 }

n .

for

i = 1, 2, ..., n

Repeating the above procedure we generate sequences of upper and lower

bounds for larger and larger values of t so that

(2.38) W(.l) < M(.
1s I?

for , i = 1 , 2 , . . . , n

The sequence W. , fe = 1, 2, •••{ is a nonincreasing sequence bounded

below by AT. and hence
I*

(2 .39) l im N. e x i s t s and l e t Urn N\K) = 3* , i = 1 , 2 , . . . , « .

S i m i l a r l y the sequence •jW. , k = 1 , 2 , . . . ? • i s a nondecreas ing sequence

bounded above by Ar. and hence

(2 .40) l im « ' ' e x i s t s and l e t l im M\k' -»• o* , i = 1 , 2 , . . . , n .

Since

https://doi.org/10.1017/S0004972700025934 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025934


4 36 K. G o p a l s a m y a n d R . A . Ah I i p

n
r. - l a . JIT.1 '

a..
> 0 , i = 1, 2, ..., n ,

we note that a* > 0 (£ = 1, 2, ..., n) and thus we have

(2.1*1) 0 < a* 5 lim inf u.(t) S lim sup w.(t) 2 g* , i = 1, 2, ..., n

From the definition of 3* we have

(2.1*2) g* = lim /?.

= l i m

= l i m
3=1
3*1

.j.j 1=1

r. n
(2.1*3) = - L - - " ^ I «,,

1*3

N{k-1].
31 1

, i = 1, 2, . . . , n ,

s i n c e e, •*• 0 a s fe •*•

By the assumption

t*

it follows that the matrix A = [a. .) is nonsingular and hence there
T-3

exists a unique solution (x*, ..., x*) of the linear system

n
(O Jill ̂  / /T T* — T* •>* ^ 1 Q *7

satisfying

v _ 1 y
•2-"Z» Ztr 3—1
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so that

(2.U5) x* = -r^--±- I a. A-*- - ̂ ~ I a..x*

Since (a;*, ..., x*) satisfying (2.1+5) is unique by the nonsingularity of

A , it follows that

(2.1»6) B* = x* (i = l, 2, .... n) .

Exactly in a similar way one can show that

(2.1*7) a* = x* (i = 1, 2, ..., n) .

Thus it follows from (2.1*l)-(2.1*7) that

(2.U8) lim u.(t) exists and lim u.{t) = x*

where (x*, ..., x*) is a feasible steady state of the system (2.7)-(2.8).

The positivity of x*. follows from that of B* = a* - x*

(i = 1, 2, ..., n) and our proof is complete.

3. A discussion

Stability or instability criteria developed for mathematical analysis

of model ecosystems are usually expressed in several different forms; some

of these forms can be easily interpreted directly in terms of the

parameters of the model systems than some other forms. The most common

criterion expressed in terms of the negativity of the real parts of the

eigenvalues of the "community matrix" (coefficient matrix of the linear

variational system about the steady state in question) is not directly

Interpretable in terms of the model parameters since in general eigenvalues

have no intuitive relation with the elements of the relevant matrix; the

same remark applies to the Routh-Hurwitz criterion also. Furthermore

criteria based on eigenvalues are not applicable when the parameters of the

model are time dependent. Requiring the existence of a Lyapunov function

in ecosystem analyses always presupposes the existence of a feasible (at

least partially) steady state (Goh [7], Ikeda and Siljak [J2]). Also

finding lyapunov functions or Lyapunov functionals for time delayed systems
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is usually difficult. In view of these remarks, the method we have

proposed has great potential in applications. In a future investigation we

apply our technique for the analysis of a system with time varying model

parameters.

The sufficient conditions we have obtained in Theorem 2.1 have the

following ecological interpretations. The positivity a.. > 0

{i- = 1, 2, . . . , n) implies that each species has a self-regulating

negative feedback. I t is known that if a species fails to self-regulate or

self-regulates with some time delay then a feasible steady state if exists

will not be stable (Gopalsamy and Aggarwala [8, 9]). The sufficient

condition

is known as diagonal (column) dominance of the matrix A = [a. .) which

ecologically means that the self-regulating negative feedback in each

species is stronger than the interaction of that species on all others.

Such a diagonal dominance guarantees mathematically that the matrix

A = [a. .) is nonsingular. One can also consider instead of the above

s t r i c t diagonal dominance the so called quasi-diagonal dominance as

follows: there exist positive constants d , d , . . . , d such that

(i = 1, 2, . . . . n) .

In this case however, there is no ecologically realistic interpretation of

the abstract positive numbers <L , d~, .. ., d ; in spite of this drawback

numerous authors have used such a quasi-diagonal dominance condition.

The other set of conditions

3 •*

have the following interpretation: one can consider
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n
r. - T a. .[r ./a ..)

as the growth rate of the ith species when the population of the ith

species is small while that of all others are near their potential maximum

(achievable in the absence of interspecific competition) sizes. In this

sense if

n
r. - V a. .{r./a ..) > 0
* fix %3 3 33J

then the ith species can successfully recover when its population is low

in the presence of the other (n-l) competitors; thus

n
r.- Y a. • [r ./a ..]
i £x ->-3K 3 33'

denotes the potential of the i th species to successfully invade and
establish i t se l f in a community consisting originally of the other (n-l)
species. Thus we can translate our analytical result of Theorem 2.1 in the
following form.

AN ECOTHEOREM. if each species of an n-speoies competition community
(n i 2) has a sufficiently strong self-regulating negative feedback and
has a positive potential to invade a community of all other competitors,
then all the n-spedes of the competition system can not only persist in
the sense that no species is ever threatened with extinction but can co-
exist in the sense that the sizes of all the competing populations approach
constant positive values in the long run and this happens in spite of the
fact that there are various time delays in the interspecific interactions.

We conclude with the following mathematical note; consider a system
of "positive" linear nonhomogeneous equations

n
£ ^ - i ^ i = r i ( i = 1* 2' • • • ' n)

3=1 Z° ° %

in the unknowns x , xo, ..., x where a..,r. (i, j = 1, 2, .. . , n)

are all positive constants. What is a necessary or sufficient or necessary
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and sufficient set of conditions on the a. ., r. for the above positive

linear system to have a solution (x*, — , a:*) with x*. > 0

(i = 1, 2, ..., n) 1 Theorem 2.1 provides an ecologically motivated

sufficient condition for the existence of a positive solution of the above

positive linear system. An otherwise independent answer to this algebraic

problem is of interest by itself.
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