
CERTAIN DIOPHANTINE EQUATIONS 
LINEAR IN ONE UNKNOWN 

W. H. MILLS 

1. Introduction. A. Brauer and R. Brauer (2) and Barnes (1) (following a 
method of Mordell (6)) have solved the Diophantine equation x2+y2+c = xyz 
subject to the condition (x, y) = 1. Independently, but using the same methods, 
I treated (4) the equation 

x2Jry2+ax+ay-\-l = xyz, 

and subsequently (5) gave a method of obtaining all integral solutions of 

x2zky2-\-ax-\-by+c — xyz, 

thereby generalizing (2), (1), and (4). Recently Goldberg, Newman, Straus, 
and Swift (3) have treated the equation 

ax2Jrbxy-\-cy2 — (p-\-qxy)z, 

where a, b, c, p, and q are integers satisfying the divisibility conditions a] (ft, q) 
and c\(b, q). In the present paper we combine the methods of (3) and (5). 
This enables us to obtain the complete solution of the Diophantine equation 

(1) ax2-\-bxy+cy2-\-dx+ey+f — z(pxy+qx-\-ry+s), 

where a, b, c, d, e, / , p} q, r, and s are integers satisfying the divisibility condi­
tions a\ (by d, p, q) and c\ (b, e, p, r), and p ^ 0. This generalizes all the previous 
results. 

The solutions of (1) can be divided into classes, such that once one solution 
belonging to a given class is known the others can be determined recursively. 
In fact, after one solution is known, the others belonging to the same class 
can be determined explicitly by solving a pair of linear difference equations. 
Thus the problem is reduced to finding one solution in each class. All solutions 
in the same class have the same value of z. For sufficiently large numerical 
values of z there is a solution in each class for which either x = —r/p or 
y = —q/p, or for which both sides of (1) vanish. This makes it easy to give 
necessary and sufficient conditions for (1) to have solutions for an infinite 
number of different values of z, and means that for large numerical values of z 
the solutions of (1) can be readily obtained. Since for particular values of z 
the equation (1) is a quadratic Diophantine equation in two variables, which 
can be solved in integers by classical methods, we see that the complete solu­
tion of (1) can always be obtained in a finite number of steps. It is not necessary 
to use classical quadratic equation methods to solve (1) for particular values of 
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z. A method more in line with the spirit of this paper is developed in §4. For 
a fixed value of z there can be only a finite number of solution classes except 
in two simple special cases. 

Goldberg, Newman, Straus, and Swift have pointed out (3) that if the 
divisibility conditions are not satisfied the solution has an entirely different 
character. The present methods give only an incomplete solution in this case. 

2. Construction of a-sequences. Let us put 

N(x,y) = ax2+bxy+cy2+dx+ey+f, D{x,y) = pxy+qx+ry+s, 

where all the coefficients are rational integers, p ^ 0, and 

(2) a\(b,d,pyq), c|(6, e, p, r). 

These conditions imply that fl^O and c ^ 0. We consider the Diophantine 
equation 
(3) N(x,y) = zD(x,y). 

Let x = Wo, y = U\, z — a be an integral solution of (3). Then 

(4) N(x, Ui) = aD(x, ui) 

is a quadratic equation in x with roots x = UQ and x = u2y where u2 satisfies 

(5) a(uo+u2) = pUia+qa — bui — d. 

It follows from (2) that Uo+u2 is an integer. Therefore x = u2} y = u\, z = a 
is also an integral solution of (3). Continuing in this manner we obtain a 
sequence 
(6) . . . , UOy « 1 , U2l U%, . . . 
where 

(7) a(u2n+u2n+2) = pU2n+ia+qa — bu2n+i — d, 

and 
(8) c(u2n-i+u2n+i) = pu2na+ra-bu2n-e. 

It is clear that (6) can be extended infinitely far in either direction and that 
oo = u2n, y = U2n±i, z — a are integral solutions of (3) for every integer n. 
We will call such a sequence an a-sequence of (3). We consider two «-sequences 
identical if they lead to the same solutions of (3). 

We need the following result: 

LEMMA. If \u2\ > |wo|, then either pu\+q = 0 or 

|w0| < |c/a|*|wi| + C, 

where C is a constant depending only on the coefficients of N(x, y) and D(x,y). 

Proof. Since Uo and u2 are the roots of (4), we have (5) and 

(9) auQu2 = cul+eui+f— a(rui+s). 

https://doi.org/10.4153/CJM-1956-003-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-003-2


DIOPHANTINE EQUATIONS LINEAR IN ONE UNKNOWN 7 

Eliminating « from (5) and (9) we obtain 

au2D(uo, Ui)+auo(rui-\-s) = cpui + Q(ui), 

where Q(ui) is a quadratic polynomial in u\ with constant coefficients, i.e., 
coefficients that depend only on a, b, c, d, e,f, p, q, r, and s. Since \u2\ > |wo|, 
we have 

|ĉ Wi + Ç(wi)| > \auoD(uo, Ui)\ — \au0(rui + s) | 

> \a(pui + q) ul\ — 2\a(rui + s) u0\. 

Therefore, if pui+q ^ 0, the quadratic formula yields 

|«o| < \pui + q\~l{\(ru1+s)\ + (|(r^i + 5>|2 + \a~l{pux + q){cpu\ + ÇOi)|)è} 

< |c/a|è|^| + C, 

where C is a positive constant depending only on the coefficients of N(x, y) 
and D(x, y). This proves the Lemma. 

3. Classification of ^-sequences. We will distinguish four types of 
«-sequences. 

Type I. We will say that an a-sequence is a type I sequence if D (u2fc} #2*+i) = 0 
or D(u2ki u2ic-i) = 0 for some integer k. It is clear that there exist type I 
sequences of (3) if and only if the system 

(10) D(x,y) = N(x,y) = 0 

has an integral solution. Each integral solution of (10) leads to an «-sequence 
of (3) for every integer a. Since pac 9^ 0, (10) has at most four solutions, and 
so there are at most four type I «-sequences for any particular value of a. 

Type II. We will say that an a-sequence is a type II sequence if 

(11) pu2k+i+q = 0, ru2k+i+s 7^ 0 

for some integer k. We see that (11) implies p\q, ps 9^ qr, and N(u2k, —q/p) 
= a(ps — qr)/p. Thus there exist type II sequences of (3) if and only if 
p\q, ps 9^ qr, and the congruence 

pN(x, —q/p) = 0 (mod ps — qr) 

has integral solutions. If type II sequences exist, then there exist «-sequences 
of type II for an infinite number of different values of «, namely for every 
integer « that can be represented in the form pN(x, —q/p)/(ps — qr) with 
integral x. 

Type 11 A. We will say that an «-sequence is of type IIA if pu21c + r = 0 
and qu2k + s 9^ 0 for some integer k. Interchanging the roles of x and y 
interchanges the type II and the type IIA sequences. Therefore the discussion 
of type II sequences can be applied directly to the type IIA sequences. 
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It is clearly a straightforward matter to determine all type I, II, and IIA 
sequences for any given numerical values of the parameters a, b, c, d, e, f, p, 
q, r, and s. 

Type III . If an a-sequence is not of type I, II, or IIA, we say that it is a 
type III sequence. 

THEOREM 1. There are a-sequences of type III for only a finite number of 
different values of a. 

Proof. Let {um} be a type III sequence. Without loss of generality we sup­
pose that Mi is an element of {um} of least absolute value. (This may involve 
interchanging the roles of x and y.) Furthermore we may suppose that 
\u2\ > \uo\. 

If pu\ + q = 0 and ru\ + 5 = 0, then D(uç>, U\) = 0. Hence, since {um} is 
neither of type I nor of type II, we have pu\ + q ^ 0. Therefore \uo\ < \c/a\,£ 

\ui\ + C by the Lemma of §2. Also, since \ui\ is minimal, we have \ui\ < \uo\. 
We now distinguish two cases: 

Case 1. \puo U\\ < 2\qu$ + ru\ + s|. Here 

\pUo ui\ < 2(\q\ \c/a\* + \r\)\ui\ + 2\q\C + 2\s\. 

Hence if u\ j£ 0 we have |wi| < |w0| < D for some constant D, while if u\ = 0 
we have \u0\ < C. Thus both \uo\ and \u\\ are bounded, and hence there are 
only a finite number of possible values for a = N(uo, UI)/D(UQ, M\). 

Case 2. \pUoUi\ > 2\quo + rux + s\. Here \D(u0, ui)\ > \\pu$Ui\, uQ ^ 0, 
u\ 7e 0, and so 

M = S S i J < 2 S + 2 w + *i + *' + * i + 2^ 
which is bounded since \uo/ui\ < \c/a\% + C. This completes the proof of 
Theorem 1. 

As a direct result of Theorem 1 and the elementary properties of type I, 
II, and IIA sequences we obtain: 

THEOREM 2. A necessary and sufficient condition for (3) to have integral 
solutions for an infinite number of different values of z is that either 

(i) the system N(x, y) = D(x, y) = 0 has at least one integral solution, or 
(ii) p\q, ps ?£ qr, and the congruence pN(x, —q/p) = 0 (mod ps — qr) has 

at least one integral solution, or 
(iii) p\r, ps 9^ qr, and the congruence pN( — r/p, y) = 0 (mod ps — qr) has 

at least one integral solution. 

Special cases of Theorem 2 can be found in (3), (4), and (5). 

4. The a-sequences for a fixed value of a. We proved in the last section 
that, for any fixed values of the coefficients of N{x, y) and D{x, y), the possible 
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values of z are bounded except for a limited number of infinite classes of 
sequences, which can be readily determined. To obtain the complete solution 
of (3) we need an effective method of determining all «-sequences for a fixed 
value of a. In this section we will discuss such a method. 

Let {um} be an a-sequence of (3). Put V = b — pa, d' — d — qa, ef = e — ra, 
and f=f— sa. Then (3) becomes 

ax2 + b'xy + cy2 + d'x + e'y + / ' = 0, 

and the divisibility conditions (2) yield 

(12) a\(br,d') c\(b',e'). 

Furthermore (7) and (8) become 

(13) a(u2n + u2n+2) = —b'uu+i — d\ 

and 
(14) C(u2n-1 + «2n+l) = ~b'u2n — ë. 

If we eliminate U\ from a(u0 + u2) = —b'u\ — dr and 

auoU2 = cui + ëui + / ' , 

which is obtained from (9), then we get G(uo, u2) = 0, where 

G(u, v) = u2 + 5tw + v2 + £>w + 25» + F, 

3 = 2 - 6/2/ac, £> = (2cd' - 6V)/ac, and 

F = (of2 + ft'2/' - Vdfë)/a2c. 

It follows from (12) that JB and Z> are integers. Hence F must be an integer. 
From (13) and (14) we obtain 

ac{u2n + 2u2n+2 + u2n+i) = -bfc{u2n+i + u2n+z) - 2cd' 

= bf2u2n+2 + b'ë - 2cd'. 

Therefore 
(15) u2n + u2n+4 = —Bu2n+2 — D. 

It follows that x = Uo and x = u± are the roots of G(x, u2) = 0, and hence 

(16) U0U4 — u2 + Du2 + F. 

Now we may suppose, without loss of generality, that \u2\ < \u2n\ for all n. 
In particular |M0| > [̂ 2! and |w4| > |w2|, and so we may write 

Uo = €W2 + <5, W4 = ^ ^ 2 + <5', 

where 
(17) e = dzl, e = ± 1 , 6W2 5 > 0, 6^2 $' > 0. 

Substituting in (15) and (16) we obtain 

(18) -Bu2 - D = (e + e')u2 + 5 + <5', 
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and 

(19) u\ + Du2 + F = ec'tta + €Ô'w2 + e'ôw2 + ôô'. 

Every non-zero term on the right hand side of (19) has the same sign by (17). 
Therefore 
(20) \Du2 + F\ > \ô' u2\ + \5u2\. 

If u2 y£ 0, then (20) yields |ô| + |ô'| < \D\ + \F\, and there are only a finite 
number of possibilities for e, e', 5, and 5'. From (18) and (19) we see t h a t for 
any fixed values of e, e', <5, and <5' there are a t most two values of u2 unless 

(21) e + e' = -B, 5 + Ô' = - D , 
€e; = 1, €0' + €'<5 = A ÔÔ' = F. 

Thus , unless (21) has an integral solution, there are only a finite number of 
possible values for u2. Each value of u2 leads to a t most one «-sequence. Hence 
if (21) has no integral solution, then there are a t most a finite number of 
a-sequences, and they can all be found in a finite number of steps. 

Suppose t h a t (21) holds. Then e = e' = ± 1 . 

(i) e = e ' = 1. Here we have B = - 2 , -D = 5 + <$' = D, and ÔÔ' = F. 
Hence D = 0. Ignoring the possibility u2 = 0, which leads to a t most one 
a-sequence, we obtain ô = ô' = 0 from ô + 8f = 0 and (17). Therefore 

(22) B = - 2 , D = F = 0. 

I t is easily seen t h a t (22) is equivalent to 

(23) 4a (ax2 + Z/xy + ry2 + a^x + e'y + / ' ) = (2ax + b'y + aT/)2. 

Conversely suppose (23) holds. Then , since u2n and ^2n+2 are the roots of 
(2ax + bfu2n+i + d')2 = 0, we see t h a t u2n = W2n+2. Similarly U2n-i — u2n+i. 
Therefore um = wm+2 for all w, and so in this case every a-sequence is cyclic of 
period 1 or 2. Fur thermore , since B = — 2, we have (b — £a:)2 = 4ac, and 
thus this type of behavior can occur for a t most two values of a, namely 
a = (6 =fc 2Vac)/p. 

(ii) e = e' = — 1 . Here (21) yields B = 2, and so &' = 0. Conversely 
suppose 6' = 0. Then a = b/p. Here (13) gives us 

u2n + u2n+2 = —d'/a 

for all n. Hence u2n = 2^+4. Similarly from (14) we obtain u^n-i = U2n+z-
Therefore ^ m = wm+4 for all w. If um = ^ m + 2 for all m, then w0 = —d'/2a, 
U\ — —e'/2c, and so the conic 

ax2 + ry2 + d'x + e'y + f = 0 

degenerates either to a single point or to a pair of intersecting s t ra ight lines. 
Therefore if V = 0 every a-sequence is cyclic, and with at most one exception 
every a-sequence has period exactly 4. We have proved: 
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THEOREM 3. If (3) has an infinite number of a-sequences for a fixed value of a, 
then either 

(i) a — (bzL2\/ac)/pj N(x,y) — aD{x,y) is a constant times a perfect 
square, and every a-sequence is of period 1 or 2, or 

(ii) a = b/p, N(x,y) — aD{x,y) has no xy term, and with at most one 
exception every a-sequence has period exactly 4. 

Using the methods of §3 and §4 all «-sequences of (3) can be found in a finite 
number of steps. In particular cases short cuts are frequently available, and 
sometimes it is but the work of a few lines to determine all a-sequences 
(3; 4). 

5. Cyclic a-sequences. We observed in the last section that 

(24) u2n + Bu2n+2 + u2n+i + D = 0. 

Hence if B = — 2, then u2n is a quadratic function of n. If B = 2, then V = 0, 
and we know that in this case {um} is cyclic of period 1, 2, or 4. Now if B ^ ± 2 , 
then the general solution of the difference equation (24) is 

u2n= deï+Gel-D/iB + 2), 

where ex and e2 are the roots of x2 + Bx + 1 = 0 , and C\ and C2 are arbitrary. 
Hence if \B\ > 2, the sequence {u2n} is non-cyclic unless C\ = C2 = 0, in which 
case u2n+2 = u2n. For B ~ 1,0, and —1, ex and e2 are the primitive 3rd, 4th, 
and 6th roots of unity respectively. Thus if B •= 1, then u2n+% = u2n; if B = 0, 
then u2n+s = u2n; and if B = —1, then u2n+\2 = u2n. Since the identical state­
ments hold for elements of the form ^2W+i, with D replaced by (2cef — b'd')/ac 
but with the same value of B, we have the following result: 

THEOREM 4. 7/ an a-sequence is cyclic it has period 1, 2, 3, 4, 6, 8, or 12. 

All a-sequences have been determined in (4) for 

x2 + y2 + dx + dy + 1 — xyz, 0 < d < 10. 

They include cyclic sequences of periods 1, 2, 3, 4, and 6, as well as many 
non-cyclic sequences. 

If a = 1, V = c = 2, d' = er = 0, / = —10, there is a cyclic sequence of 
period 8 with m = 2, u\ — 1 : 

. . . , 2 , 1, - 4 , 3 , - 2 , - 1 , 4 , - 3 , 2 , 1 , . . . . 

If a = 1, V = c = 3, df = er = 0, / = —13, there is a cyclic sequence of 
period 12 with u0 = 2, u\ = 1 : 

. . . , 2, 1, - 5 , 4, - 7 , 3, - 2 , - 1 , 5, - 4 , 7, - 3 , 2, 1, . . . . 

Thus we see that all the possible periods listed in Theorem 4 actually occur. 
Additional examples and special cases of the results of this paper can be 

found in (1; 2; 3; 4; and 5). 
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