PARTIALLY BOUNDED SOLUTIONS OF LINEAR ORDINARY DIFFERENTIAL EQUATIONS

DAVID LOWELL LOVELADY

1. Introduction. Let R, R^{+}, and R^{-}be the intervals $(-\infty, \infty),[0, \infty)$, and $(-\infty, 0]$ respectively. Let m be a positive integer, and let \mathscr{A} be the algebra of all $m \times m$ matrices. Let A be a locally integrable function from R to \mathscr{A}. We propose to study the problems
$(\mathrm{NH}) \quad u^{\prime}(t)=f(t)+A(t) u(t)$
and

$$
\begin{equation*}
v^{\prime}(t)=A(t) v(t) \tag{H}
\end{equation*}
$$

in R^{m}. (H) and (NH) will denote whole-line problems, whereas $(\mathrm{H})^{+},(\mathrm{NH})^{+}$, $(\mathrm{H})^{-}$, and (NH) ${ }^{-}$will denote corresponding semi-axis problems.

In [1] (see also [2, Theorem 1, p. 131]), W. A. Coppel obtained necessary and sufficient conditions for each bounded continuous f on R^{+}to yield at least one bounded solution u of (NH $)^{+}$. The present author [3] has determined that an analogous result holds for (NH).

If one attempts to apply these results to a higher order problem

$$
(\mathrm{NH})_{n} u^{(n)}(t)=f(t)+A(t) u(t)
$$

by converting to a first order problem over $R^{m n}$, one discovers that the results best fit the more general problem

$$
\begin{aligned}
u(t)=\sum_{k=1}^{n} t^{k-1} z_{k} & \\
& +\sum_{k=1}^{n} \int_{0}^{t} \frac{(t-s)^{k-1}}{(k-1)!} f_{k}(s) d s+\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} A(s) u(s) d s
\end{aligned}
$$

and yield boundedness not only of u but also of the intermediate derivatives $u^{\prime}, u^{\prime \prime}, \ldots, u^{(n-1)}$. There is, however, a generalization of the original problem which includes $(\mathrm{NH})_{n}$ in a natural way.

Let each of S_{1} and S_{2} be a linear subspace of R^{m}, and consider the problem of finding conditions which ensure that if f is a bounded S_{1}-valued continuous function on R^{+}then (NH) ${ }^{+}$has a solution the projection of which into S_{2} is bounded. It is clear that this problem not only includes the original problem,
but also includes the aforementioned higher order problem. In § 2, we shall solve this problem for $(\mathrm{NH})^{+}$. In § 3, we shall use these results to obtain information on the solution space of (H), thus extending [4, Theorem 1]. We shall indicate in § 4 how this includes many of the results of [5], and how $\S 3$ yields information on solution space structure for

$$
(\mathrm{H})_{n} \quad v^{(n)}(t)=A(t) v(t) .
$$

2. The semi-axis problem. Let $\left\{z_{1}, \ldots, z_{m}\right\}$ be a basis for R^{m}, and if x is in R^{m} and $x=\sum_{k=1}^{m} a_{k} z_{k}$, let $|x|=\max \left\{\left|a_{1}\right|, \ldots,\left|a_{m}\right|\right\}$. Let $\left\|\|_{0}\right.$ be the induced norm on \mathscr{A}. Let each of α and β be a continuous function from R to $(0, \infty)$. Let $\mathscr{B}_{\alpha} \mathscr{C}$ be the space of all continuous functions f from R to R^{m} such that there is a number b with $|f(t)| \leqq b \alpha(t)$ whenever t is in R. If f is in $\mathscr{B}_{\alpha} \mathscr{C}$ let

$$
\|f\|_{\alpha}=\sup \{|f(t)| / \alpha(t): t \text { is in } R\} .
$$

Let $\mathscr{B}_{\alpha} \mathscr{C}+$ and $\mathscr{B}_{\alpha} \mathscr{C}$ - be the corresponding semi-axis function spaces with norms $\left\|\|_{\alpha}{ }^{+}\right.$and $\| \|_{\alpha}{ }^{-}$respectively. Define $\mathscr{B}_{\beta} \mathscr{C}, \mathscr{B}_{\beta} \mathscr{C}^{+}, \mathscr{B}_{\beta} \mathscr{C}-$, $\left\|\left\|_{\beta},\right\|\right\|_{\beta^{+}}$, and \| $\|_{\beta^{-}}$analogously. Let S_{1} and S_{2} be as in $\S 1$, and if i is in $\{1,2\}$ let Q_{i} be a projection from R^{m} to S_{i}. Let M_{1} be the subspace of R^{m} to which x belongs if and only if $Q_{2} v$ is in $\mathscr{B}_{\alpha} \mathscr{C}^{+}$, where v is that solution of $(\mathrm{H})^{+}$such that $v(0)=x$. Let M_{2} be a subspace of R^{m} such that $R^{m}=M_{1} \oplus M_{2}$, and let P_{1} and P_{2} be supplementary projections with ranges M_{1} and M_{2} respectively. Let Φ be the fundamental matrix for (H), i.e., Φ is that locally absolutely continuous function from R to \mathscr{A} such that

$$
\Phi(t)=I+\int_{0}^{t} A(s) \Phi(s) d s
$$

whenever t is in R. Recall that each value of Φ is invertible. The following theorem is our main result.

Theorem 1. The following are equivalent:
(i) If f is in $\mathscr{B}_{\beta} \mathscr{C}+$ and $Q_{1} f=f$ then there is a solution u of (NH)+ such that $Q_{2} u$ is in $\mathscr{B}_{\alpha} \mathscr{C}^{+}$.

$$
\begin{equation*}
\text { (ii) } \quad \int_{0}^{\infty}\left\|\left(I-Q_{2}\right) P_{2} \Phi(s)^{-1} Q_{1}\right\| \beta(s) d s<\infty \tag{2}
\end{equation*}
$$

and there is a number K such that

$$
\begin{align*}
& \int_{0}^{t}\left\|Q_{2} \Phi(t) P_{1} \Phi(s)^{-1} Q_{1}\right\| \beta(s) d s \\
& \tag{3}\\
& \quad+\int_{t}^{\infty}\left\|Q_{2} \Phi(t) P_{2} \Phi(s)^{-1} Q_{1}\right\| \beta(s) d s \leqq K \alpha(t)
\end{align*}
$$

whenever t is in R^{+}.

Note that statement (ii) holds with respect to one norm on \mathscr{A} if and only if it holds with respect to every norm on \mathscr{A}. Thus we see that our a priori specification of the norm on R^{m}, and hence on \mathscr{A}, is more a matter of convenience than of necessity. In the case $Q_{2}=I$, inequality (2) is trivially satisfied and hence does not appear in [$\mathbf{2}$, Theorem 1, p. 131]. When auxiliary conditions similar to (2) were given in [$\mathbf{5}$, Theorems 1 and 5], it appeared that there was an essential difference between first order cases and higher order cases. Theorem 1 now makes it clear that all of these cases are part of a common phenomenon. This will be explored more fully in § 4.

Proof of Theorem 1. First suppose that (ii) is true. Now (3) says that

$$
\int_{0}^{\infty}\left\|Q_{2} P_{2} \Phi(s)^{-1} Q_{1}\right\| \beta(s) d s \leqq K \alpha(0)
$$

so (2) and (3) together say

$$
\int_{0}^{\infty}\left\|P_{2} \Phi(s)^{-1} Q_{1}\right\| \beta(s) d s<\infty
$$

Conclusion (i) is clearly equivalent to showing that if f is any member of $\mathscr{B}_{\beta} \mathscr{C}+$ then there is a solution u of
(4) $u^{\prime}(t)=Q_{1} f(t)+A(t) u(t)$
such that $Q_{2} u$ is in $\mathscr{B}_{\beta} \mathscr{C}+$. Let f be in $\mathscr{B}_{\beta} \mathscr{C}+$. Let u from R^{+}to R^{m} be given by

$$
u(t)=\int_{0}^{t} \Phi(t) P_{1} \Phi(s)^{-1} Q_{1} f(s) d s-\int_{t}^{\infty} \Phi(t) P_{2} \Phi(s)^{-1} Q_{1} f(s) d s
$$

The above remarks assure us that the improper integrals exist and that u is differentiable. Clearly u satisfies (4) on R^{+}. Also, if t is in R^{+},

$$
\begin{aligned}
\left|Q_{2} u(t)\right| & =\left|\int_{0}^{t} Q_{2} \Phi(t) P_{1} \Phi(s)^{-1} Q_{1} f(s) d s-\int_{t}^{\infty} Q_{2} \Phi(t) P_{2} \Phi(s)^{-1} Q_{1} f(s) d s\right| \\
& \leqq\|f\|_{\beta}^{+} \int_{0}^{t}\left\|Q_{2} \Phi(t) P_{1} \Phi(s)^{-1} Q_{1}\right\| \beta(s) d s \\
& \quad+\|f\|_{\beta}^{+} \int_{t}^{\infty}\left\|Q_{2} \Phi(t) P_{2} \Phi(s)^{-1} Q_{1}\right\| \beta(s) d s \\
& \leqq\|f\|_{\beta}^{+} K \alpha(t),
\end{aligned}
$$

so $Q_{2} u$ is in $\mathscr{B}_{\alpha} \mathscr{C}^{+}$, and (i) is proved.
Now suppose that (i) is true. Let \mathscr{D} be the linear space to which u belongs if and only if u is locally absolutely continuous, $Q_{2} u$ is in $\mathscr{B}_{\alpha} \mathscr{C}+, u(0)$ is in M_{2}, and there is an S_{1}-valued member \hat{u} of $\mathscr{B}_{\beta} \mathscr{C}+$ such that $\hat{u}(t)=u^{\prime}(t)-$ $A(t) u(t)$ for almost all t in R^{+}. If u is in \mathscr{D}, let $\|u\|_{D}=\left\|Q_{2} u\right\|_{\alpha^{+}}+|u(0)|+$ $\|\hat{u}\|_{\beta^{+}}$. Suppose that $\left\{u_{n}\right\}_{n=1}^{\infty}$ is a \mathscr{D}-valued sequence, and is a Cauchy sequence with respect to $\left\|\|_{D}\right.$. Find that z in M_{2} and that S_{1}-valued member w of
$\mathscr{B}_{\beta} \mathscr{C}+$ such that $\left|u_{n}(0)-z\right| \rightarrow 0$ and $\left\|\hat{u}_{n}-w\right\|_{\beta}{ }^{+} \rightarrow 0$ as $n \rightarrow \infty$. Now, if t is in R^{+}and n is a positive integer,

$$
u_{n}(t)=\Phi(t) u_{n}(0)+\int_{0}^{t} \Phi(t) \Phi(s)^{-1} \hat{u}_{n}(s) d s
$$

so there is a continuous function u_{0} from R^{+}to R^{m} such that $u_{n}(t) \rightarrow u_{0}(t)$ uniformly on compact subsets of R^{+}. Since $\left\{Q_{2} u_{n}\right\}_{n=1}^{\infty}$ has pointwise limit $Q_{2} u_{0}$, and is a Cauchy sequence with respect to $\left\|\|_{\alpha}^{+}\right.$, we see that $Q_{2} u_{0}$ is in $\mathscr{B}_{\alpha} \mathscr{C}+$. Thus, u_{0} is in \mathscr{D} and $\left\|u_{n}-u_{0}\right\|_{D} \rightarrow 0$ as $n \rightarrow \infty$. Clearly now, \mathscr{D} is a Banach space with respect to $\left\|\|_{D}\right.$.

Let \mathscr{E} be that closed linear subspace of $\mathscr{B}_{\beta} \mathscr{C}+$ consisting of all S_{1}-valued members of $\mathscr{B}_{\beta} \mathscr{C}^{+}$. Let T be the linear transformation from \mathscr{D} to \mathscr{E} given by $T u=\hat{u}$. Clearly T is continuous, and T is onto by hypothesis. Suppose that u is in \mathscr{D} and $T u=0$. Now $Q_{2} u$ is in $\mathscr{B}_{\alpha} \mathscr{C}+, u$ satisfies $(\mathrm{H})^{+}$, and $u(0)$ is in M_{2}. Thus $u=0$, so T is one-to-one. Hence [$\mathbf{6}$, Theorem 4.1, p. 63], T^{-1} is continuous and there is a number L such that
(5) $\|u\|_{D} \leqq L\|u\|_{\beta^{+}}$
whenever u is in \mathscr{D}.
If f is in \mathscr{E} let u_{f} be that solution of (NH) ${ }^{+}$such that $Q_{2} u_{f}$ is in $\mathscr{B}_{\alpha} \mathscr{C}+$ and $P_{1} u_{f}(0)=0$. Now (5) says that

$$
\left\|u_{f}\right\|_{D} \leqq L\|f\|_{\beta}+
$$

whenever f is in \mathscr{E}. But $\left|u_{f}(0)\right| \leqq\left\|u_{f}\right\|_{D}$ and $\left\|Q_{2} u_{f}\right\|_{\alpha}{ }^{+} \leqq\left\|u_{f}\right\|_{D}$, so
(6) $\left|u_{f}(0)\right| \leqq L| | f \|_{\beta}{ }^{+}$
and
(7) $\left\|Q_{2} u_{f}\right\|_{\alpha}{ }^{+} \leqq L\|f\|_{\beta}^{+}$
whenever f is in \mathscr{E}.
If f is in \mathscr{E} and has compact support; let w_{f} be given by

$$
w_{f}(t)=\int_{0}^{t} \Phi(t) P_{1} \Phi(s)^{-1} Q_{1} f(s) d s-\int_{t}^{\infty} \Phi(t) P_{2} \Phi(s)^{-1} Q_{1} f(s) d s
$$

Routine computations show that $w_{f}=u_{f}$. Now the formula given for w_{f}, the inequalities (6) and (7), and an argument similar to that of [2, pp. 133-134], show that
(8) $\int_{0}^{\infty}\left\|P_{2} \Phi(s)^{-1} Q_{1}\right\| \beta(s) d s<\infty$
and that (3) holds with $K=m L$. If s is in R then

$$
\left\|\left(I-Q_{2}\right) P_{2} \Phi(s)^{-1} Q_{1}\right\| \leqq\left\|P_{2} \Phi(s)^{-1} Q_{1}\right\|+\left\|Q_{2} P_{2} \Phi(s)^{-1} Q_{1}\right\|
$$

so (8) and (3) imply (2). This completes the proof.
3. Solution space structure on the whole line. In [4, Theorem 1] it was shown that if (NH) has a bounded solution on R whenever f is a bounded continuous function on R, then every solution v of (H) is if the form $v=v_{-1}+$ $v_{0}+v_{1}$, where each of v_{-1}, v_{0}, and v_{1} satisfies (H), v_{-1} is bounded on R^{+}, v_{0} is bounded on R, and v_{1} is bounded on R^{-}. The corresponding result in our present situation is not quite so tidy, but it does give additional understanding of $[4$, Theorem 1].

We take S_{1}, S_{2}, Q_{1}, and Q_{2} as before. Let M_{0} be the subspace of R^{m} to which x belongs if and only if $Q_{2} v$ is in $\mathscr{B}_{\alpha} \mathscr{C}$, where v satisfies (H) and $v(0)=x$. Let M_{-1} be determined by the requirement that $M_{-1} \oplus M_{0}$ is the subspace of initial points for solutions v of $(\mathrm{H})^{+}$with $Q_{2} v$ in $\mathscr{B}_{\alpha} \mathscr{C}+$. Let M_{1} be similarly determined by problem (H)-. (Note that M_{1} here is not as in §2.) Let M_{∞} be determined by the requirement that

$$
R^{m}=M_{0} \oplus M_{-1} \oplus M_{1} Ð M_{\infty}
$$

Let P_{0}, P_{1}, P_{-1}, and P_{∞} be supplementary projections with ranges M_{0}, M_{1}, M_{-1}, and M_{∞} respectively.

Theorem 2. Suppose that if f is an S_{1}-valued member of $\mathscr{B}_{\beta} \mathscr{C}$ then there is a solution u of $(N H)$ such that $Q_{2} u$ is in $\mathscr{B}_{\alpha} \mathscr{C}$. Then

$$
S_{1} \subseteq \bigcap_{(t \in R)} \Phi(t)\left[M_{-1} \oplus M_{0} \oplus M_{1}\right]
$$

Note that if $S_{1}=R^{m}$ then $P_{\infty}=0$ and we get an analogue of [$\mathbf{4}$, Theorem 1]. Also, the extent to which " $P_{\infty}=0$ " may fail is determined by the size of S_{1} and is independent of the size of S_{2}.

Indication of proof. It can be shown, using techniques almost identical to those of [4, Proof of Theorem 1], that our hypotheses imply that

$$
\int_{-\infty}^{\infty} P_{\infty} \Phi(s)^{-1} Q_{1} f(s) d s=0
$$

whenever f is in $\mathscr{B}_{\beta} \mathscr{C}$. Thus $P_{\infty} \Phi(t)^{-1} Q_{1}=0$ whenever t is in R. Now if (t, x, y) is in $R \times R^{m} \times R^{m}$ and $y=\Phi(t)^{-1} Q_{1} x$, then $P_{\infty} y=0$, so y is in $M_{-1} \oplus M_{0} \oplus$ M_{1}. Thus $Q_{1} x$ is in $\Phi(t)\left[M_{-1} \oplus M_{0} \oplus M_{1}\right]$, the conclusion follows, and the proof is complete.
4. Higher order equations. Let n be a positive integer and consider the problems $(\mathrm{NH})_{n},(\mathrm{H})_{n},(\mathrm{NH})_{n}{ }^{+}$, and $(\mathrm{H})_{n}{ }^{+}$. If we write $(\mathrm{NH})_{n}{ }^{+}$as a first order problem over $R^{m n}$, then Theorem 1 includes [5, Theorem 5] with Q_{1} and Q_{2} given by $Q_{1}\left(x_{0}, \ldots, x_{n-1}, x_{n}\right)=\left(0, \ldots, 0, x_{n}\right)$ and $Q_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $\left(x_{1}, 0, \ldots, 0\right)$. In this case, (2) implies that if k is an integer in $[1, n-1]$ then the mapping described by $f \rightarrow u_{f}{ }^{(k)}$ is continuous considered as a function from $\mathscr{B}_{\beta} \mathscr{C}+$ to $\mathscr{C}\left[R^{+}, R^{m}\right]$ with compact-open topology. Thus we see another point of view from which (2) can be considered superfluous in the case $n=1$, $S_{1}=S_{2}=R^{m}$.

It does not follow from Theorem 2 that the hypothesis "if f is in $\mathscr{B}_{\beta} \mathscr{C}$ then there is a solution u of $(\mathrm{NH})_{n}$ in $\mathscr{B}_{\alpha} \mathscr{C}$ " gives a decomposition of the solution space of $(\mathrm{H})_{n}$. The comments following Theorem 2, however, indicate that a stronger hypothesis will yield such a decomposition. We state our result without proof.

Theorem 3. Suppose that if $\left(f_{1}, \ldots, f_{n}\right)$ is in $\mathscr{B}_{\beta} \mathscr{C}^{n}$ then there is a subset $\left\{z_{1}, \ldots, z_{n}\right\}$ of R^{m} such that the solution u of (1) is in $\mathscr{B}_{\alpha} \mathscr{C}$. Then, if v satisfies $(\mathrm{H})_{n}, v$ is of the form $v_{-1}+v_{0}+v_{1}$ where each of v_{-1}, v_{0}, and v_{1} satisfies $(\mathrm{H})_{n}$, v_{0} is in $\mathscr{B}_{\alpha} \mathscr{C}$, the restriction of v_{-1} to R^{+}is in $\mathscr{B}_{\alpha} \mathscr{C}+$, and the restriction of v_{1} to R^{-}is in $\mathscr{B}_{\alpha} \mathscr{C}^{-}$.

References

1. W. A. Coppel, On the stability of ordinary differential equations, J. London Math. Soc. 38 (1963), 255-260.
2. -_Stability and asymptotic behavior of differential equations (D. C. Heath \& Co., Boston, 1965).
3. D. L. Lovelady, Bounded solutions of whole-line differential equations, Bull. Amer. Math. Soc. 79 (1973), 752-753.
4. -_Boundedness and ordinary differential equations on the real line, J. London Math. Soc. 7 (1973), 597-603.
5. - Relative boundedness and second order differential equations, Tôhoku Math. J. 25 (1973), 365-374.
6. M. Schechter, Principles of functional analysis (Academic Press, New York, 1971).

Florida State University, Tallahassee, Florida

