PARTIALLY BOUNDED SOLUTIONS OF LINEAR ORDINARY DIFFERENTIAL EQUATIONS

DAVID LOWELL LOVELADY

1. Introduction. Let R, R^+ , and R^- be the intervals $(-\infty, \infty)$, $[0, \infty)$, and $(-\infty, 0]$ respectively. Let m be a positive integer, and let \mathscr{A} be the algebra of all $m \times m$ matrices. Let A be a locally integrable function from R to \mathscr{A} . We propose to study the problems

(NH) u'(t) = f(t) + A(t)u(t)

and

(H) v'(t) = A(t)v(t)

in \mathbb{R}^{m} . (H) and (NH) will denote whole-line problems, whereas (H)⁺, (NH)⁺, (H)⁻, and (NH)⁻ will denote corresponding semi-axis problems.

In [1] (see also [2, Theorem 1, p. 131]), W. A. Coppel obtained necessary and sufficient conditions for each bounded continuous f on R^+ to yield at least one bounded solution u of $(NH)^+$. The present author [3] has determined that an analogous result holds for (NH).

If one attempts to apply these results to a higher order problem

 $(NH)_n u^{(n)}(t) = f(t) + A(t)u(t)$

by converting to a first order problem over R^{mn} , one discovers that the results best fit the more general problem

$$u(t) = \sum_{k=1}^{n} t^{k-1} z_{k} + \sum_{k=1}^{n} \int_{0}^{t} \frac{(t-s)^{k-1}}{(k-1)!} f_{k}(s) ds + \int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} A(s) u(s) ds$$

and yield boundedness not only of u but also of the intermediate derivatives $u', u'', \ldots, u^{(n-1)}$. There is, however, a generalization of the original problem which includes $(NH)_n$ in a natural way.

Let each of S_1 and S_2 be a linear subspace of \mathbb{R}^m , and consider the problem of finding conditions which ensure that if f is a bounded S_1 -valued continuous function on \mathbb{R}^+ then $(NH)^+$ has a solution the projection of which into S_2 is bounded. It is clear that this problem not only includes the original problem,

Received September 13, 1973 and in revised form, March 11, 1974.

but also includes the aforementioned higher order problem. In § 2, we shall solve this problem for $(NH)^+$. In § 3, we shall use these results to obtain information on the solution space of (H), thus extending [4, Theorem 1]. We shall indicate in § 4 how this includes many of the results of [5], and how § 3 yields information on solution space structure for

$$(H)_n \quad v^{(n)}(t) = A(t)v(t).$$

2. The semi-axis problem. Let $\{z_1, \ldots, z_m\}$ be a basis for \mathbb{R}^m , and if x is in \mathbb{R}^m and $x = \sum_{k=1}^m a_k z_k$, let $|x| = \max\{|a_1|, \ldots, |a_m|\}$. Let $|| \quad ||_0$ be the induced norm on \mathscr{A} . Let each of α and β be a continuous function from R to $(0, \infty)$. Let $\mathscr{B}_{\alpha}\mathscr{C}$ be the space of all continuous functions f from R to \mathbb{R}^m such that there is a number b with $|f(t)| \leq b\alpha(t)$ whenever t is in R. If f is in $\mathscr{B}_{\alpha}\mathscr{C}$ let

$$||f||_{\alpha} = \sup \{|f(t)|/\alpha(t) : t \text{ is in } R\}.$$

Let $\mathscr{B}_{\alpha}\mathscr{C}^{+}$ and $\mathscr{B}_{\alpha}\mathscr{C}^{-}$ be the corresponding semi-axis function spaces with norms $|| \quad ||_{\alpha}^{+}$ and $|| \quad ||_{\alpha}^{-}$ respectively. Define $\mathscr{B}_{\beta}\mathscr{C}$, $\mathscr{B}_{\beta}\mathscr{C}^{+}$, $\mathscr{B}_{\beta}\mathscr{C}^{-}$, $|| \quad ||_{\beta}$, $|| \quad ||_{\beta}^{+}$, and $|| \quad ||_{\beta}^{-}$ analogously. Let S_{1} and S_{2} be as in § 1, and if i is in $\{1, 2\}$ let Q_{i} be a projection from \mathbb{R}^{m} to S_{i} . Let M_{1} be the subspace of \mathbb{R}^{m} to which x belongs if and only if $Q_{2}v$ is in $\mathscr{B}_{\alpha}\mathscr{C}^{+}$, where v is that solution of $(H)^{+}$ such that v(0) = x. Let M_{2} be a subspace of \mathbb{R}^{m} such that $\mathbb{R}^{m} = M_{1} \oplus M_{2}$, and let P_{1} and P_{2} be supplementary projections with ranges M_{1} and M_{2} respectively. Let Φ be the fundamental matrix for (H), i.e., Φ is that locally absolutely continuous function from \mathbb{R} to \mathscr{A} such that

$$\Phi(t) = I + \int_0^t A(s) \Phi(s) ds$$

whenever t is in R. Recall that each value of Φ is invertible. The following theorem is our main result.

THEOREM 1. The following are equivalent:

(i) If f is in $\mathscr{B}_{\beta}\mathscr{C}^+$ and $Q_1f = f$ then there is a solution u of $(NH)^+$ such that Q_2u is in $\mathscr{B}_{\alpha}\mathscr{C}^+$.

(2) (*ii*)
$$\int_{0}^{\infty} ||(I-Q_2)P_2\Phi(s)^{-1}Q_1||\beta(s)ds < \infty$$

and there is a number K such that

(3)
$$\int_{0}^{t} ||Q_{2}\Phi(t)P_{1}\Phi(s)^{-1}Q_{1}||\beta(s)ds + \int_{t}^{\infty} ||Q_{2}\Phi(t)P_{2}\Phi(s)^{-1}Q_{1}||\beta(s)ds \leq K\alpha(t)$$

whenever t is in R^+ .

DAVID LOWELL LOVELADY

Note that statement (ii) holds with respect to one norm on \mathscr{A} if and only if it holds with respect to every norm on \mathscr{A} . Thus we see that our *a priori* specification of the norm on \mathbb{R}^m , and hence on \mathscr{A} , is more a matter of convenience than of necessity. In the case $Q_2 = I$, inequality (2) is trivially satisfied and hence does not appear in [2, Theorem 1, p. 131]. When auxiliary conditions similar to (2) were given in [5, Theorems 1 and 5], it appeared that there was an essential difference between first order cases and higher order cases. Theorem 1 now makes it clear that all of these cases are part of a common phenomenon. This will be explored more fully in § 4.

Proof of Theorem 1. First suppose that (ii) is true. Now (3) says that

$$\int_0^\infty ||Q_2 P_2 \Phi(s)^{-1} Q_1||\beta(s) ds \leq K\alpha(0),$$

so (2) and (3) together say

$$\int_0^\infty ||P_2\Phi(s)^{-1}Q_1||\beta(s)ds < \infty.$$

Conclusion (i) is clearly equivalent to showing that if f is any member of $\mathscr{B}_{\beta}\mathscr{C}^{+}$ then there is a solution u of

(4) $u'(t) = Q_1 f(t) + A(t) u(t)$

such that $Q_2 u$ is in $\mathscr{B}_{\beta} \mathscr{C}^+$. Let f be in $\mathscr{B}_{\beta} \mathscr{C}^+$. Let u from R^+ to R^m be given by

$$u(t) = \int_{0}^{t} \Phi(t) P_{1} \Phi(s)^{-1} Q_{1} f(s) ds - \int_{t}^{\infty} \Phi(t) P_{2} \Phi(s)^{-1} Q_{1} f(s) ds.$$

The above remarks assure us that the improper integrals exist and that u is differentiable. Clearly u satisfies (4) on R^+ . Also, if t is in R^+ ,

$$\begin{aligned} |Q_{2}u(t)| &= \left| \int_{0}^{t} Q_{2}\Phi(t)P_{1}\Phi(s)^{-1}Q_{1}f(s)ds - \int_{t}^{\infty} Q_{2}\Phi(t)P_{2}\Phi(s)^{-1}Q_{1}f(s)ds \right| \\ &\leq ||f||_{\beta}^{+} \int_{0}^{t} ||Q_{2}\Phi(t)P_{1}\Phi(s)^{-1}Q_{1}||\beta(s)ds \\ &+ ||f||_{\beta}^{+} \int_{t}^{\infty} ||Q_{2}\Phi(t)P_{2}\Phi(s)^{-1}Q_{1}||\beta(s)ds \\ &\leq ||f||_{\beta}^{+}K\alpha(t), \end{aligned}$$

so $Q_2 u$ is in $\mathscr{B}_{\alpha} \mathscr{C}^+$, and (i) is proved.

Now suppose that (i) is true. Let \mathscr{D} be the linear space to which u belongs if and only if u is locally absolutely continuous, $Q_2 u$ is in $\mathscr{B}_{\alpha} \mathscr{C}^+$, u(0) is in M_2 , and there is an S_1 -valued member \hat{u} of $\mathscr{B}_{\beta} \mathscr{C}^+$ such that $\hat{u}(t) = u'(t) - A(t)u(t)$ for almost all t in \mathbb{R}^+ . If u is in \mathscr{D} , let $||u||_D = ||Q_2 u||_{\alpha}^+ + |u(0)| + ||\hat{u}||_{\beta}^+$. Suppose that $\{u_n\}_{n=1}^{\infty}$ is a \mathscr{D} -valued sequence, and is a Cauchy sequence with respect to $|| \quad ||_D$. Find that z in M_2 and that S_1 -valued member w of

368

 $\mathscr{B}_{\beta}\mathscr{C}^{+}$ such that $|u_{n}(0) - z| \to 0$ and $||\hat{u}_{n} - w||_{\beta}^{+} \to 0$ as $n \to \infty$. Now, if t is in R^{+} and n is a positive integer,

$$u_n(t) = \Phi(t)u_n(0) + \int_0^t \Phi(t)\Phi(s)^{-1}\hat{u}_n(s)ds,$$

so there is a continuous function u_0 from R^+ to R^m such that $u_n(t) \to u_0(t)$ uniformly on compact subsets of R^+ . Since $\{Q_2u_n\}_{n=1}^{\infty}$ has pointwise limit Q_2u_0 , and is a Cauchy sequence with respect to $|| \quad ||_{\alpha}^+$, we see that Q_2u_0 is in $\mathscr{B}_{\alpha}\mathscr{C}^+$. Thus, u_0 is in \mathscr{D} and $||u_n - u_0||_{\mathcal{D}} \to 0$ as $n \to \infty$. Clearly now, \mathscr{D} is a Banach space with respect to $|| \quad ||_{\mathcal{D}}$.

Let \mathscr{E} be that closed linear subspace of $\mathscr{B}_{\beta}\mathscr{C}^{+}$ consisting of all S_1 -valued members of $\mathscr{B}_{\beta}\mathscr{C}^{+}$. Let T be the linear transformation from \mathscr{D} to \mathscr{E} given by $Tu = \hat{u}$. Clearly T is continuous, and T is onto by hypothesis. Suppose that u is in \mathscr{D} and Tu = 0. Now Q_2u is in $\mathscr{B}_{\alpha}\mathscr{C}^{+}$, u satisfies (H)⁺, and u(0) is in M_2 . Thus u = 0, so T is one-to-one. Hence [**6**, Theorem 4.1, p. 63], T^{-1} is continuous and there is a number L such that

(5)
$$||u||_{D} \leq L||u||_{\beta}^{+}$$

whenever u is in \mathcal{D} .

If f is in \mathscr{E} let u_f be that solution of $(NH)^+$ such that Q_2u_f is in $\mathscr{B}_{\alpha}\mathscr{C}^+$ and $P_1u_f(0) = 0$. Now (5) says that

$$||u_f||_D \leq L||f||_{\beta}^+$$

whenever f is in \mathscr{E} . But $|u_f(0)| \leq ||u_f||_D$ and $||Q_2u_f||_{\alpha^+} \leq ||u_f||_D$, so

(6)
$$|u_f(0)| \leq L ||f||_{\beta^+}$$

and

(7)
$$||Q_2 u_f||_{\alpha^+} \leq L||f||_{\beta^+}$$

whenever f is in \mathscr{E} .

If f is in \mathscr{E} and has compact support; let w_f be given by

$$w_f(t) = \int_0^t \Phi(t) P_1 \Phi(s)^{-1} Q_1 f(s) ds - \int_t^\infty \Phi(t) P_2 \Phi(s)^{-1} Q_1 f(s) ds.$$

Routine computations show that $w_f = u_f$. Now the formula given for w_f , the inequalities (6) and (7), and an argument similar to that of [2, pp. 133–134], show that

(8)
$$\int_0^\infty ||P_2\Phi(s)^{-1}Q_1||\beta(s)ds < \infty$$

and that (3) holds with K = mL. If s is in R then

$$||(I - Q_2)P_2\Phi(s)^{-1}Q_1|| \le ||P_2\Phi(s)^{-1}Q_1|| + ||Q_2P_2\Phi(s)^{-1}Q_1||$$

so (8) and (3) imply (2). This completes the proof.

3. Solution space structure on the whole line. In [4, Theorem 1] it was shown that if (NH) has a bounded solution on R whenever f is a bounded continuous function on R, then every solution v of (H) is if the form $v = v_{-1} + v_0 + v_1$, where each of v_{-1} , v_0 , and v_1 satisfies (H), v_{-1} is bounded on R^+ , v_0 is bounded on R, and v_1 is bounded on R^- . The corresponding result in our present situation is not quite so tidy, but it does give additional understanding of [4, Theorem 1].

We take S_1 , S_2 , Q_1 , and Q_2 as before. Let M_0 be the subspace of \mathbb{R}^m to which x belongs if and only if Q_2v is in $\mathscr{B}_{\alpha}\mathscr{C}$, where v satisfies (H) and v(0) = x. Let M_{-1} be determined by the requirement that $M_{-1} \oplus M_0$ is the subspace of initial points for solutions v of (H)⁺ with Q_2v in $\mathscr{B}_{\alpha}\mathscr{C}^+$. Let M_1 be similarly determined by problem (H)⁻. (Note that M_1 here is not as in § 2.) Let M_{∞} be determined by the requirement that

 $R^m = M_0 \oplus M_{-1} \oplus M_1 \oplus M_{\infty}.$

Let P_0 , P_1 , P_{-1} , and P_{∞} be supplementary projections with ranges M_0 , M_1 , M_{-1} , and M_{∞} respectively.

THEOREM 2. Suppose that if f is an S_1 -valued member of $\mathscr{B}_{\beta}\mathscr{C}$ then there is a solution u of (NH) such that Q_2u is in $\mathscr{B}_{\alpha}\mathscr{C}$. Then

$$S_1 \subseteq \bigcap_{(t \in R)} \Phi(t) [M_{-1} \oplus M_0 \oplus M_1].$$

Note that if $S_1 = R^m$ then $P_{\infty} = 0$ and we get an analogue of [4, Theorem 1]. Also, the extent to which " $P_{\infty} = 0$ " may fail is determined by the size of S_1 and is independent of the size of S_2 .

Indication of proof. It can be shown, using techniques almost identical to those of [4, Proof of Theorem 1], that our hypotheses imply that

$$\int_{-\infty}^{\infty} P_{\infty} \Phi(s)^{-1} Q_{1} f(s) ds = 0$$

whenever f is in $\mathscr{B}_{\beta}\mathscr{C}$. Thus $P_{\infty}\Phi(t)^{-1}Q_1 = 0$ whenever t is in R. Now if (t, x, y) is in $R \times R^m \times R^m$ and $y = \Phi(t)^{-1}Q_1x$, then $P_{\infty}y = 0$, so y is in $M_{-1} \oplus M_0 \oplus M_1$. Thus Q_1x is in $\Phi(t)[M_{-1} \oplus M_0 \oplus M_1]$, the conclusion follows, and the proof is complete.

4. Higher order equations. Let *n* be a positive integer and consider the problems $(NH)_n$, $(H)_n$, $(NH)_n^+$, and $(H)_n^+$. If we write $(NH)_n^+$ as a first order problem over \mathbb{R}^{mn} , then Theorem 1 includes [5, Theorem 5] with Q_1 and Q_2 given by $Q_1(x_0, \ldots, x_{n-1}, x_n) = (0, \ldots, 0, x_n)$ and $Q_2(x_1, x_2, \ldots, x_n) = (x_1, 0, \ldots, 0)$. In this case, (2) implies that if *k* is an integer in [1, n - 1] then the mapping described by $f \to u_f^{(k)}$ is continuous considered as a function from $\mathscr{B}_{\beta}\mathscr{C}^+$ to $\mathscr{C}[\mathbb{R}^+, \mathbb{R}^m]$ with compact-open topology. Thus we see another point of view from which (2) can be considered superfluous in the case n = 1, $S_1 = S_2 = \mathbb{R}^m$.

370

It does not follow from Theorem 2 that the hypothesis "if f is in $\mathscr{B}_{\beta}\mathscr{C}$ then there is a solution u of $(NH)_n$ in $\mathscr{B}_{\alpha}\mathscr{C}$ " gives a decomposition of the solution space of $(H)_n$. The comments following Theorem 2, however, indicate that a stronger hypothesis will yield such a decomposition. We state our result without proof.

THEOREM 3. Suppose that if (f_1, \ldots, f_n) is in $\mathscr{B}_{\beta}\mathscr{C}^n$ then there is a subset $\{z_1, \ldots, z_n\}$ of \mathbb{R}^m such that the solution u of (1) is in $\mathscr{B}_{\alpha}\mathscr{C}$. Then, if v satisfies $(H)_n$, v is of the form $v_{-1} + v_0 + v_1$ where each of v_{-1} , v_0 , and v_1 satisfies $(H)_n$, v_0 is in $\mathscr{B}_{\alpha}\mathscr{C}$, the restriction of v_{-1} to \mathbb{R}^+ is in $\mathscr{B}_{\alpha}\mathscr{C}^+$, and the restriction of v_1 to \mathbb{R}^- is in $\mathscr{B}_{\alpha}\mathscr{C}^-$.

References

- 1. W. A. Coppel, On the stability of ordinary differential equations, J. London Math. Soc. 38 (1963), 255-260.
- Stability and asymptotic behavior of differential equations (D. C. Heath & Co., Boston, 1965).
- D. L. Lovelady, Bounded solutions of whole-line differential equations, Bull. Amer. Math. Soc. 79 (1973), 752-753.
- Boundedness and ordinary differential equations on the real line, J. London Math. Soc. 7 (1973), 597-603.
- 5. —— Relative boundedness and second order differential equations, Tôhoku Math. J. 25 (1973), 365–374.
- 6. M. Schechter, Principles of functional analysis (Academic Press, New York, 1971).

Florida State University, Tallahassee, Florida