ON THE GALKIN ALGEBRA AND THE COVERING HOMOTOPY PROPERTY, II

JOHN B. CONWAY

For a separable Hilbert space $\mathscr{H}, \mathscr{B}(\mathscr{H})$ is the algebra of bounded linear operators on $\mathscr{H}, \mathscr{C}=\mathscr{C}(\mathscr{H})$ is the ideal of compact operators, and π is the natural map of $\mathscr{B}(\mathscr{H})$ onto the Calkin algebra $\mathscr{B}(\mathscr{H}) / \mathscr{C}$. If \mathscr{A} and \mathscr{D} are any C^{*}-algebras then a^{*}-homotopy of \mathscr{A} into \mathscr{D} is a continuous map $\Phi: \mathscr{A} \times I \rightarrow \mathscr{D}$ such that for each t in $I=[0,1], \Phi_{\iota}(\cdot)=\Phi(\cdot, t)$ is a *-homomorphism of \mathscr{A} into \mathscr{D}. If $\mathscr{D}=\mathscr{B}(\mathscr{H}) / \mathscr{C}$ and $\Phi: \mathscr{A} \times I \rightarrow$ $\mathscr{B}(\mathscr{H}) / \mathscr{C}$ is a ${ }^{*}$-homotopy then an initial lifting of Φ is a ${ }^{*}$-homomorphism $\varphi: \mathscr{A} \rightarrow \mathscr{B}(\mathscr{H})$ such that $\pi \circ \varphi=\Phi_{0}$. A C^{*}-algebra \mathscr{A} has the C^{*}-covering homotopy property if for every ${ }^{*}$-homotopy $\Phi: \mathscr{A} \times I \rightarrow \mathscr{B}(\mathscr{H}) / \mathscr{C}$ with initial lifting $\varphi: \mathscr{A} \rightarrow \mathscr{B}(\mathscr{H})$ there is a ${ }^{*}$-homotopy $\Psi: \mathscr{A} \times I \rightarrow \mathscr{B}(\mathscr{H})$ such that $\Psi_{0}=\varphi$ and $\pi \circ \Psi=\Phi$. In [4] it was shown that $\mathscr{A}=C(X)$ has the C^{*}-covering homotopy property whever X is an interval, a circle, or a totally disconnected space. In this note it is proved that every approximately finite $(A F) C^{*}$-algebra has the covering homotopy property. Since the abelian $A F C^{*}$-algebras are precisely those $C(X)$ for X totally disconnected, this will generalize the principal result of [4].

As stated in [4], the original motivation for studying this property was its connection to the work of Brown, Douglas, and Fillmore [2]. Since the publication of [2] the problem of studying extensions of arbitrary C^{*}-algebras has been undertaken, and by the work of Voiculescu [7] and Choi and Effros [3] it is now known that the set of equivalence classes of extensions of a nuclear C^{*}-algebra forms a group. Approximately finite C^{*}-algebras are nuclear.
A C^{*}-algebra \mathscr{A} is approximately finite if there is an ascending sequence $\mathscr{A}_{1} \subseteq \mathscr{A}_{2} \subseteq \mathscr{A}_{3} \subseteq \ldots$ of C^{*}-subalgebras of \mathscr{A} such that each \mathscr{A}_{n} is finite dimensional and $\cup_{n=1}^{\infty} \mathscr{A}_{n}$ is dense in $\mathscr{A}([\mathbf{1}]$ and [6]). If $\Phi: \mathscr{A} \times I \rightarrow$ $\mathscr{B}(\mathscr{H}) / \mathscr{C}$ is a ${ }^{*}$-homotopy with initial lifting $\varphi: \mathscr{A} \rightarrow \mathscr{B}(\mathscr{H})$ then $\Phi^{(n)}=\Phi \mid \mathscr{A}_{n} \times I$ is a ${ }^{*}$-homotopy with initial lifting $\varphi_{n}=\varphi \mid \mathscr{A}_{n}$. If it can be shown that for each n there is a ${ }^{*}$-homotopy $\Psi^{(n)}: \mathscr{A}_{n} \times I \rightarrow \mathscr{B}(\mathscr{H})$ such that $\pi \Psi^{(n)}=\Phi^{(n)}, \Psi_{0}{ }^{(n)}=\varphi_{n}$ and $\Psi^{(n+1)} \mid \mathscr{A}_{n} \times I=\Psi^{(n)}$ then it follows that \mathscr{A} has the C^{*}-covering homotopy property. It is precisely this that will be proved.

Now if \mathscr{A} is a finite dimensional C^{*}-algebra then the Artin-Wedderburn Theorem implies that \mathscr{A} is the direct sum of full matrix rings. Hence the case $\mathscr{A}=M_{n}$, the $n \times n$ matrices, is the subject of the first effort.

[^0]Define a collection of elements $\left\{e_{i j}: 1 \leqq i, j \leqq n\right\}$ in a C^{*}-algebra \mathscr{A} to be a collection of matrix units if
a) $e_{i j} e_{k l}=0$ for $k \neq j$,
b) $e_{i j} e_{j l}=e_{i l}$,
c) $e_{i j}{ }^{*}=e_{j i}$.

Notice that if $\mathscr{A}=M_{n}$ and $e_{i j}$ is the matrix with 1 in the (i, j) place and zeros elsewhere then $\left\{e_{i j}\right\}$ is a system of matrix units for M_{n}. Also, if $\left\{e_{i j}: 1 \leqq i, j \leqq n\right\}$ is a system of matrix units in \mathscr{A} then there is a homomorphism of M_{n} into \mathscr{A}. Noreover, it is easy to see that M_{n} has the C^{*}-covering homotopy property precisely if paths of matrix units in $\mathscr{B}(\mathscr{H}) / \mathscr{C}$ can be lifted to paths of matrix units in $\mathscr{B}(\mathscr{H})$.

Lemma 1. Let $u: I \rightarrow \mathscr{B}(\mathscr{H}) / \mathscr{C}$ be a path of partial isometries with U_{0} a partial isometry in $\mathscr{B}(\mathscr{H})$ such that $\pi U_{0}=u(0)$, and suppose $p=u^{*} u$, $q=u u^{*}$, and $q \leqq p^{\perp} \equiv 1-p$. If $P, Q: I \rightarrow \mathscr{B}(\mathscr{H})$ are paths of projections such that $\pi P=p, \pi Q=q, Q \leqq P^{\perp}, P(0)=U_{0}{ }^{*} U_{0}$, and $Q(0)=U_{0} U_{0}{ }^{*}$, then there is a path $U: I \rightarrow \mathscr{B}(\mathscr{H})$ of partial isometries such that:

$$
\begin{aligned}
& \pi U=u, \quad U^{*} U=P \\
& U(0)=U_{0}, \quad U U^{*}=Q
\end{aligned}
$$

Proof. Using the Bartle-Graves Theorem [5], there is a path $A: I \rightarrow \mathscr{B}(\mathscr{H})$ such that $\pi A=u$ and $A(0)=U_{0}$. By replacing A with $Q A P$ we may assume that $A=Q A P$. Disregarding the trivial case, we may assume that $p(0) \neq 0$; that is P_{0}, and hence Q_{0}, are infinite rank projections. If it is the case that $A(t)$ is invertible for all t (so U_{0} is a unitary operator) then by taking $A=U\left(A^{*} A\right)^{1 / 2}$ to be the polar decomposition of A, U would be the required path of unitaries. The remainder of the proof is devoted to overcoming this helpful but over restrictive hypothesis.

Using Lemma 7 of [4], there are paths of partial isometries R, S with $R^{*} R=Q, R R^{*}=Q(0), R(0)=Q(0), S^{*} S=P(0), S S^{*}=P, S(0)=$ $P(0)$. If $B=S U_{0}{ }^{*} R$ then B is a path of partial isometries with $B^{*} B=Q$, $B B^{*}=P$, and $B(0)=U_{0}{ }^{*}$.

If $C=A+B+\left(P^{\perp}-Q\right)$ then $C^{*} C=A^{*} A+P^{\perp}$. Since $P\left(A^{*} A\right) P=$ $A^{*} A$, it follows that $|C| \equiv\left(C^{*} C\right)^{1 / 2}=|A|+P^{\perp}$. Let $A=U|A|$ be the minimal polar decomposition of A. Note, $A(t)=U(t)|A(t)|$ and $t \rightarrow|A(t)|=$ $\left[A^{*} A(t)\right]^{1 / 2}$ is continuous, but $t \rightarrow U(t)$ is not necessarily continuous. (Indeed, if U were a path the proof would be finished.) Now for each time t, $U^{*} U(t) \leqq P(t)$ and $U U^{*}(t) \leqq Q(t)$ since $Q A P=A$. Hence $U+B+\left(P^{\perp}-Q\right)$ is a partial isometry and

$$
C=\left[U+B+\left(P^{\perp}-Q\right)\right]|C| .
$$

So if $C=W|C|$ is the minimal polar decomposition of C then

$$
\begin{aligned}
& W^{*} W \leqq\left[U+B+\left(P^{\perp}-Q\right)\right]^{*}\left[U+B+\left(P^{\perp}-Q\right)\right] \\
& W W^{*} \leqq\left[U+B+\left(P^{\perp}-Q\right)\right]\left[U+B+\left(P^{\perp}-Q\right)\right]^{*}
\end{aligned}
$$

and $U+B+\left(P^{\perp}-Q\right)$ extends W.

Let $\delta>0$ be such that for $|s-t|<\delta$,

$$
\|A(t)-A(s)\|,\|B(t)-B(s)\|,\|P(t)-P(s)\|,\|Q(t)-Q(s)\|<1 / 12
$$

Now $C(0)=A(0)+B(0)+P(0)^{\perp}-Q(0)=U_{0}+U_{0}{ }^{*}+P^{\perp}(0)-Q(0)$ is hermitian and it is easy to check that $C(0)^{2}=1$; so $C(0)$ is a self adjoint unitary. If $0 \leqq t \leqq \delta$ then $\|C(t)-C(0)\|<\frac{1}{3}<1$, so $C(t)$ is invertible. Hence $W(t)$ is unitary and $W=U+B+\left(P^{\perp}-Q\right)$ on $[0, \delta]$. But P^{\perp}, Q, B, and $W=C \mid C^{-1}$ are continuous on $[0, \delta]$, so U must be continuous there. Also $A(0)=U_{0}$ implies that $U(0)=U_{0}$ and $u=\pi(A)=\pi(U|A|)=\pi(U) \pi(|A|)=$ $\pi(U) p=\pi(U) \pi(P)=\pi(U P)=\pi(U)$. Also, on $[0, \delta]$

$$
\begin{aligned}
& 1=W^{*} W=U^{*} U+P^{\perp} \\
& 1=W W^{*}=U U^{*}+1-Q
\end{aligned}
$$

So $U^{*} U=P$ and $U U^{*}=Q$. This defines the path $U:[0, \delta] \rightarrow \mathscr{B}(\mathscr{H})$ with all the required properties.

If $K=U(\delta)-A(\delta)$ then $K \in \mathscr{C}$. Put $A_{1}=Q[A+K] P$ and $C_{1}=A_{1}+$ $B+\left(P^{\perp}-Q\right)$. Now $A_{1}(\delta)=U(\delta)$ and $C_{1}(\delta)=W(\delta)$, a unitary operator. If $\delta \leqq t \leqq 2 \delta$ then $\left\|A_{1}(t)-A_{1}(\delta)\right\|=\| Q(t)[A(t)-A(\delta)] P(t)+[Q(t)-$ $Q(\delta)] U(\delta) P(t)+Q(\delta) U(\delta)[P(t)-P(\delta)] \|<\frac{1}{4}$. Hence $\left\|C_{1}(t)-W(\delta)\right\|=$ $\left\|C_{1}(t)-C_{1}(\delta)\right\|<1$, and $C_{1}(t)$ is invertible for $\delta \leqq t \leqq 2 \delta$. Let $C_{1}=W_{1}\left|C_{1}\right|$, $A_{1}=U_{1}\left|A_{1}\right|$ be the minimal polar decompositions; then $U_{1}(\delta)=U(\delta)$, $W_{1}(\delta)=W(\delta), U_{1}{ }^{*} U_{1} \leqq P, U_{1} U_{1}{ }^{*} \leqq Q$. As before $W_{1}=U_{1}+B+\left(P^{\perp}-Q\right)$ on [$\delta, 2 \delta$] and so $U_{1}{ }^{*} U=P, U_{1} U_{1}{ }^{*}=Q$. Define $U(t)=U_{1}(t)$ on $[\delta, 2 \delta]$ and this gives a continuous path $U:[0,2 \delta] \rightarrow \mathscr{B}(\mathscr{H})$ of partial isometries having the required properties.

If $K_{2}=U(2 \delta)-A(2 \delta), A_{2}=Q\left[A+K_{2}\right] P$, and $C_{2}=A_{2}+B+\left(P^{\perp}-Q\right)$ then the argument given above will result in an extension of U to $[0,3 \delta]$. After a finite number of such arguments, U will be defined on I and have all the required properties. This completes the proof.

Identify M_{n} with the subalgebra of M_{n+1} consisting of all matrices ($a_{i j}$) such that

$$
a_{n+1, j}=0=a_{i, n+1} \quad \text { for } 1 \leqq i, j \leqq n+1 .
$$

Lemma 2. Let $\Phi: M_{n+1} \times I \rightarrow \mathscr{B}(\mathscr{H}) / \mathscr{C}$ be a ${ }^{*}$-homotopy with initial lifting $\varphi: M_{n+1} \rightarrow \mathscr{B}(\mathscr{H})$. If $\Theta: M_{n} \times I \rightarrow \mathscr{B}(\mathscr{H})$ is a*-homotopy such that $\theta_{0}=\varphi \mid M_{n}$ and $\pi \Theta=\Phi \mid M_{n} \times I$ then there is a *-homotopy $\Psi: M_{n+1} \times I \rightarrow \mathscr{B}(\mathscr{H})$ such that

$$
\Psi_{0}=\varphi, \quad \pi \Psi=\Phi, \quad \text { and } \quad \Psi \mid M_{n} \times I=\Theta .
$$

Furthermore, if $P: I \rightarrow \mathscr{B}(\mathscr{H})$ is a path of projections such that $P(0)=\varphi(1)$, $\pi P(t)=\Phi(1, t)$, and $P(t) \geqq \Theta(1, t)$ then Ψ may be chosen such that $\Psi(1, t)=P(t)$ for $0 \leqq t \leqq 1$.

Proof. Let $\left\{e_{i j}: 1 \leqq i, j \leqq n+1\right\}$ be the system of matrix units for M_{n+1} and put $E_{i j}(t)=\theta\left(e_{i j}, t\right)$ for $1 \leqq i, j \leqq n, 0 \leqq t \leqq 1$. If $P: I \rightarrow \mathscr{B}(\mathscr{H})$ is given as in the statement of this lemma let $P_{n+1}=P-\sum_{i=1}^{n} E_{i i}$. Notice that

$$
\begin{aligned}
P_{n+1}(0) & =\varphi\left(e_{n+1, n+1}\right), \\
\pi P_{n+1}(t) & =\Phi\left(e_{n+1, n+1}, t\right), \\
P_{n+1} & \leqq 1-\sum_{i=1}^{n} E_{i i} .
\end{aligned}
$$

If P is not given, then Lemma 5 of [4] says that there exists a path of projections $P_{n+1}: I \rightarrow \mathscr{B}(\mathscr{H})$ having the above properties.

Now Lemma 1 implies there is a path $U: I \rightarrow \mathscr{B}(\mathscr{H})$ of partial isometries such that $U(0)=\varphi\left(e_{1, n+1}\right), \quad \pi U(t)=\Phi\left(e_{1, n+1}, \quad t\right), \quad U^{*} U=P_{n+1}, \quad$ and $U U^{*}=E_{11}$. For $1 \leqq k \leqq n$ let $E_{k, n+1}=E_{k, 1} U ; \quad E_{n+1, k}=U^{*} E_{1 k} ;$ and $E_{n+1, n+1}=P_{n+1}$. It is easy to check that $\left\{E_{i j}: 1 \leqq i, j \leqq n+1\right\}$ is a collection of paths such that at each time t they form a system of matrix units. At $t=0$ they equal $\left\{\varphi\left(e_{i j}\right)\right\}$ and $\pi E_{i j}(t)=\Phi\left(e_{i j}, t\right)$. If $\Psi\left(\left(\alpha_{i j}\right), t\right)=\sum_{i, j} \alpha_{i j} E_{i j}(t)$ then Ψ has all the required properties.

Corollary 3. M_{n} has the C^{*}-covering homotopy property.
Proof. For $n=2$ this amounts to combining Lemma 1 and Lemma 5 of [4]. The proof is completed by using the previous lemma to furnish the induction step.

If $n, m \geqq 1$ then $M_{n} \oplus M_{m}$ will be identified with the subalgebra of M_{n+m} consisting of all matrices $\left(\alpha_{i j}\right)$ such that $\alpha_{i j}=0$ except possibly when $1 \leqq i, j \leqq n$ or $n+1 \leqq i, j \leqq n+m$.

Lemma 4. Let $\Phi: M_{n+m} \times I \rightarrow \mathscr{B}(\mathscr{H}) / \mathscr{C}$ be a ${ }^{*}$-homotopy with initial lifting $\varphi: M_{n+m} \rightarrow \mathscr{B}(\mathscr{H})$. If $\mathscr{A}=M_{n} \oplus M_{m}$ and there is a *-homotopy $\theta: \mathscr{A} \times I \rightarrow \mathscr{B}(\mathscr{H})$ such that $\Theta_{0}=\varphi \mid \mathscr{A}$ and $\pi \theta=\Phi \mid \mathscr{A} \times I$ then there is a *-homotopy $\Psi: M_{n+m} \times I \rightarrow \mathscr{B}(\mathscr{H})$ such that

$$
\Psi_{0}=\varphi, \quad \pi \Psi=\Phi, \quad \text { and } \quad \Psi \mid \mathscr{A} \times I=\theta
$$

Proof. Let $\left\{e_{i j}: 1 \leqq i, j \leqq n+m\right\}$ be the standard matrix units for M_{n+m}; so

$$
\mathscr{A}=\left\{\sum_{i, j=1}^{n} \alpha_{i j} e_{i j}+\sum_{i, j=n+1}^{n+m} \alpha_{i j} e_{i j}: \quad \alpha_{i j} \in C\right\} .
$$

For $1 \leqq i, j \leqq n$ and $n+1 \leqq i, j \leqq n+m$ let $E_{i j}(t)=\theta\left(e_{i j}, t\right)$.
Lemma 1 implies there is a path $U: I \rightarrow \mathscr{B}(\mathscr{H})$ of partial isometries such that $U(0)=\varphi\left(e_{n+1,1}\right), U^{*} U=E_{11}, U U^{*}=E_{n+1, n+1}$, and $\pi U(t)=\Phi\left(e_{n+1,1}, t\right)$ for $0 \leqq t \leqq 1$. For $n+1 \leqq i \leqq n+m$ and $1 \leqq j \leqq n$ define

$$
\begin{aligned}
E_{i j} & \equiv E_{i, n+1} U E_{1 j} \\
E_{j i} & \equiv E_{j 1} U^{*} E_{n+1, i} .
\end{aligned}
$$

It is an exercise to show that for each $t,\left\{E_{i j}(t): 1 \leqq i, j \leqq n+m\right\}$ is a system of matrix units in $\mathscr{B}(\mathscr{H})$ and $\Psi\left(\left(\alpha_{i j}\right), t\right)=\sum \alpha_{i j} E_{i j}(t)$ has all the required properties.

Let J_{m} denote an $m \times m$ identity matrix. $M_{n} \otimes J_{m}$ is identified with the subalgebra of $M_{n m}$ consisting of all matrices $\left(\alpha_{i j}\right)$ where

$$
\alpha_{i j}=\alpha_{k n+i, k n+j}
$$

for $1 \leqq i, j \leqq n$ and $0 \leqq k \leqq m-1$.
Lemma 5. Let $\Phi: M_{n m} \times I \rightarrow \mathscr{B}(\mathscr{H}) / \mathbb{C}$ be a ${ }^{*}$-homotopy with initial lifting $\varphi: M_{n m} \rightarrow \mathscr{B}(\mathscr{H})$. If $\mathscr{A}=M_{n} \otimes J_{m}$ and $\Theta: \mathscr{A} \times I \rightarrow \mathscr{B}(\mathscr{H})$ is a*-homotopy such that $\Theta_{0}=\varphi \mid \mathscr{A}$ and $\pi \Theta=\Phi \mid \mathscr{A} \times I$ then there exists a*-homotopy $\Psi: M_{n m} \times I \rightarrow \mathscr{B}(\mathscr{H})$ such that

$$
\Psi_{0}=\varphi, \quad \pi \Psi=\Phi, \quad \text { and } \quad \Psi \mid \mathscr{A} \times I=\theta
$$

Proof. Let $\left\{e_{i j}: 1 \leqq i, j \leqq n m\right\}$ be the standard matrix units for $M_{n m}$. If $1 \leqq i, j \leqq n$ and

$$
f_{i j}=\sum_{k=0}^{m-1} e_{k n+i, k n+j}
$$

then $\left\{f_{i j}: 1 \leqq i, j \leqq n\right\}$ is a system of matrix units for \mathscr{A} that spans \mathscr{A}. Let $e_{k}=e_{(k-1) n+1,(k-1) n+1}$ for $1 \leqq k \leqq m$; so $e_{1}+\ldots+e_{m}=f_{11}$. By Lemma \therefore of [4] there are paths E_{1}, \ldots, E_{m} of projections in $\mathscr{B}(\mathscr{H})$ such that $E_{k} \perp E_{l}$ for $k \neq l, \quad E_{k}(0)=\varphi\left(e_{k}\right), \pi E_{k}(t)=\Phi\left(e_{k}, t\right)$, and $\left(E_{1}+\ldots+E_{m}\right)(t)=$ $\theta\left(f_{11}, t\right)$.

Let $F_{i j}(t)=\Theta\left(f_{i j}, t\right)$ for $1 \leqq i, j \leqq n$. If $1 \leqq k \leqq m$ and $(k-1) n+1 \leqq$ $p, q \leqq k n$ then define $E_{p q}: I \rightarrow \mathscr{B}(\mathscr{H})$ by

$$
E_{p q}=F_{p-(k-1) n, 1} E_{k} F_{1, q-(k-1) n}
$$

It is easy to check that $\left\{E_{p q}(t):(k-1) n+1 \leqq p, q \leqq k n, 1 \leqq k \leqq m\right\}$ is a system of matrix units at each time t, and each $F_{i j}(t)$ is the sum of some collection of $E_{p q}(t)$. In this way a ${ }^{*}$-homotopy $\theta^{\prime}: \mathscr{E} \times I \rightarrow \mathscr{B}(\mathscr{H})$ is obtained where $\mathscr{C}=M_{n} \oplus \ldots \oplus M_{n} \equiv$ all $\left(\alpha_{i j}\right)$ in $M_{n m}$ such that $\alpha_{i j}=0$ except possibly when $(k-1) n+1 \leqq i, j \leqq k n$ for some $k, 1 \leqq k \leqq m$. Moreover, $\theta^{\prime}\left|\mathscr{A} \times I=\theta, \Theta_{0}{ }^{\prime}=\varphi\right| \mathscr{C}^{\circ}$, and $\pi \Theta^{\prime}=\Phi \mid \mathscr{E} \times I$. By applying Lemma 4, the desired ${ }^{*}$-homotopy $\Psi: M_{n m} \times I \rightarrow \mathscr{B}(\mathscr{H})$ is obtained.

If \mathscr{E} is a C^{*}-subalgel)ra of M_{n} then a little thought and the fact that \mathscr{E} must be isomorphic to the direct sum of full matrix rings yields the following. Representing M_{n} with a fixed orthonormal basis,

$$
\mathscr{E}=\oplus_{i=1}^{p} M_{k_{i}} \oplus \oplus_{j=1}^{q}\left(M_{l_{j}} \otimes J_{s_{j}}\right) \oplus 0
$$

where the zero has dimension

$$
n-\sum_{i=1}^{p} k_{i}-\sum_{j=1}^{q} l_{j} s_{j} .
$$

Thus, if $\Phi: M_{n} \times I \rightarrow \mathscr{B}(\mathscr{H}) / \mathscr{C}$ is a ${ }^{*}$-homotopy with initial lifting $\varphi: M_{n} \rightarrow \mathscr{B}(\mathscr{H})$ and $\theta: \mathscr{E} \times I \rightarrow \mathscr{B}(\mathscr{H})$ is a *-homotopy such that $\Theta_{0}=\varphi \mid \mathscr{E}$ and $\pi \Theta=\Phi \mid \mathscr{E} \times I$ then the preceding lemmas imply that there is a *-homotopy $\Psi: M_{n} \times I \rightarrow \mathscr{B}(\mathscr{H})$ such that $\Psi_{0}=\varphi, \pi \Psi=\Phi$, and $\Psi \mid \mathscr{C}^{\mathscr{E}} \times I=\theta$.

Now suppose \mathscr{A}_{1} is a C^{*}-subalgebra of the finite dimensional C^{*}-algebra \mathscr{A}_{2} and $\Phi: \mathscr{A}_{2} \times I \rightarrow \mathscr{B}(\mathscr{H}) / \mathscr{C}$ is a *-homotopy with initial lifting $\varphi: \mathscr{A}_{2} \rightarrow \mathscr{B}(\mathscr{H})$. Let $\theta: \mathscr{A}_{1} \times I \rightarrow \mathscr{B}(\mathscr{H})$ be a ${ }^{*}$-homotopy such that $\Theta_{0}=\varphi\left|\mathscr{A}_{1}, \pi \Theta=\Phi\right| \mathscr{A}_{1} \times I$. Now $\mathscr{A}_{2} \approx M_{n 1} \oplus \ldots \oplus M_{n m}$ and under this same isomorphism, $\mathscr{A}_{1} \approx \mathscr{E}_{1} \oplus \ldots \oplus \mathscr{E}_{m}$ where \mathscr{E}_{j} is a ${ }^{*}$-subalgebra of $M_{n_{j}}$. The preceding paragraph shows that θ can be extended to a ${ }^{*}$-homotopy $\Psi: \mathscr{A}_{2} \times I \rightarrow \mathscr{B}(\mathscr{H})$ such that $\pi \Psi=\Phi$ and $\Psi_{0}=\varphi$. This proves the main result of this note.

Theorem. An approximately finite C^{*}-algebra has the C^{*} covering homotopy property.

References

1. O. Bratteli, Inductive limits of finite dimensional C^{*}-algebras, Trans. Amer. Math. Soc. 171 (1972), 195-234.
2. L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equiralence modulo the compact operators and extensions of C^{*} algebras, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345 (Springer-Verlag, New York, 1973), 58-128.
3. M. D. Choi and E. G. Effros, The completely positive lifting problem for C^{*}-algebras, preprint.
4. J. B. Conway, On the Calkin algebra and the covering homotopy property, Trans. Amer. Math. Soc. 211 (1975), 135-142.
5. E. Michael, Continuous selections I, Ann. of Math. 6.3 (1956), 361-382.
6. S. Stratila and D. Voiculescu, Representations of $A F$-Algebras and of the group $U(\infty)$, Lecture Notes in Math. vol. 486, (Springer-Verlag, Berlin, 1975).
7. D. Voiculescu, A non-commutative Weyl-ion Neumann theorem, preprint.

Indiana University, Bloomington, Indiana

[^0]: Received May 20, 1976 and in revised form, August 6, 1976. This research was supported by a National Science Foundation (U.S.A.) Grant MPS 75-05266 A01.

