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1. Introduction

Explicit formulas for K-types of a (g, K') module, such as Blattner’s formula, are
well known. However, the formulas are often too complex to make the K-type
structure transparent. In this note we make use of someideas of Vogan linking the
‘edges’ of the set of K -typesto acertain restriction map fromu to une cohomology.
It is hoped that such ideas will lead to tighter control of the set of K-types.

To get at the notion of an ‘edge’, a general definition of a g-edge of the set of
K-typesisgivenin Section 2 for (g, K') modules. Section 3 proves a theorem that
links the geometry of aq-edgeto the algebraof the image of arestriction map from
u to u N € cohomology. Section 4 applies these notions to the special case of finite
dimesional representationsin which the reduction is multiplicity free. This shows
that the general definitions mesh well with the geometric motivating ideas and pin
down the structure of the K -typesin these cases.

This problem was suggested by D. Vogan and his conversations have been very
helpful.

2. Extremal K-types

Let G be areal reductive Lie group with K a maximal compact subgroup. Write
go = Lie(G) and tp = Lie(K) for their respective Lie algebras, g = (go)c and
t = (ko) for their respective complexifications, and g = ¢+ p for the corresponding
Cartan decomposition.

Fix a Cartan subalgebra t of ¢&. Write Wy for its Weyl group and [(w) for the
length of w € W . Denote the centralizer of t in g by h, a Cartan subalgebraof g.
Write W; for its Weyl group. Fix a positive root system A™ (&, t) and write px for
the half sum of positive rootsin A* (¢, t). Choose a positive root system A (g, h)
making px dominant and write p¢ for the half sum of positive rootsin A* (g, b).

Let X bea (g, K) module. For  adominant weight in t of ¢, write V, for the
irreducible representation of K with highest weight .. The multiplicity of V, in
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X|x will be denoted m (u). It is often useful (for instance in computing certain
Euler characteristics) to extend the domain of this multiplicity function to include
arbitrary weightsin t of ¢. The extention will be called m. (). To do this, fix x4 an
arbitrary weight in t of €. If u + px issingular, set me () = 0. Otherwise, there
isaunique element w € Wy so that w(p + px) — px isdominant. In this case,
define

me(p) = (=1)!™m(w(p + px) — pK)-

For thefinal piece of notation, let ¢ C g be a parabolic subalgebra containing p. Its
Levi decomposition will be denoted

g=1I+u

with u the nilradical and [ reductive. Write L for the normalizer of g in G.

Going back to Vogan'sideasin [ 7] and [6] about pencilsof K -typesand strongly
u-minimal K -types, wewant to be ableto speak about ‘ edges’ of the set of K -types
of X . Todescribe an edge, two thingsought to be given: aset of edgedirectionsand
a set of outward directions. One way to combine both pieces of datais to specify
a parabolic subalgebra q where [ represents the edge directions and u represents
the outward directions. So the rough idea for saying that a K-type i of X lieson
a‘q-edge’ of the set of K-typesisthat i + ¢ is not a K-type for any nonzero ¢
in the real positive span of A(u,t). Thisidea needs to be refined by making use
of the extended multiplicity function m, instead of m and deciding how much of
the outward direction needs to be free of further K-types. The technical additions
below are chosen to make g-edges appear in the image of a certain restriction map
of cohomology.

DEFINITION 2.1. Fix X a(g, K) module and q a #-stable parabolic. Write
R =dim(unyp).

Letw € Wk sothat wA(uNE t) C AT(Et). Write
m=min{R —1,l(w)}.

We say that i € t* ison ag-edge of the set of K-typesof X if

(i) n appearsasa K-typeof X.
(ii) me(p + S716;) = Oforany d; € A(unp,t) U {0}, notall §; zero.

The second condition saysthat thereare no K -types (with respect to m..) beyond
w in the given direction for a certain distance. In the case that dim(u N p) = 1, the
condition is particularly easy to check.
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Wewill eventually show that such q-edgesarerel ated to the process of restricting
certain wu cohomology to wu N & cohomology. To show that the theory is non-
trivial, the following definitions and lemma are necessary. Given w € Wy and
ux aparabolic in € containing t with A(ug,t) C AT (g, t), recall from [3] the
definitions

AL ={ac AT )w e e —AT (1)},
Wic(ux) = {w € Wi|A} € Alug, )}

LEMMA 2.2. In Definition 2.1, w may also be chosen so that w € Wi (wu N €).
Proof. Write P for the finite non-empty set of al w € W satisfying w(A(u N
£,t)) C AT(gt). We claim that any w € P with [(w) minimal satisfies the
condition of thelemma. Let w be such an element. Supposew ¢ Wi (wunt). Then
thereisan o € At (e, t) sothat wla € —A* (e, t) witha & A(wu N e, t). Write
ro € Wy for the reflection through a. Then ryw is still in P, but [(row) =
l(wtry) = l(w™!) — 1 = I(w) — 1 which contradicts the choice of w. O

3. Cohomology of g-edges

We recall some notation from the Hochschild—Serre spectral sequence that will

allow usto relate g-edgesto a statement about restriction in conomology. Let q bea
#-stable parabolic as above and carry over the notation from the last section. There
is aspectral sequence

B = g (y, X)
with

EPY = @ (une, X) @c V-
Here V, isacertain summand of A (uNyp) decomposed under the L N K action, V*
isthe dual of V,, and r(a) isacertain integer between 0 and R = dim(u N p) with
V, C A" (unp) and r(0) = 0. See[2], [8], or [6] for details. The differential,
dy, has bidegree (¢,1 — t) and isan L N K module map.

Being afirst quadrant spectral sequence, there are inclusions Ef;fl — Ef’b. A
finite number of theseyield the inclusion

EY — EY* = H'(une, X).

Since H®(u, X) = @,, E™*~", projecting onto the %> component followed by
the above inclusion produces amap from H®(u, X) to H(un ¢, X).
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DEFINITION 3.1. Let
T H(u, X) = H°(unt, X)

be the map defined above. 7 isan L N K map and will be called the restriction
map.

Thereason for calling 7 the restriction map is becauseit is alternately realized
as the map from H®(u, X) to H(u N ¢, X) induced by restricting Hom(A® u, X)
to Hom(Ab(uNe), X) (see[6] and [7]).

The next two propositions are needed to make the connection between g-edges
and the restriction map. They are both old ideas from Vogan.

PROPOSITION 3.2. If 7: Hb(u, X) — H’(xN¢, X) is not surjective, thereis an
integer m with 0 < m < min{b, R — 1} so that

m+1
H™une,X)® A (unp)* #0.

Proof. If 7 is not surjective, then for somet, theinclusion EpY; — Ep* is not
surjective. Thishappensonly if d, isnonzero on EX. So at the very least, therange
of dy, EF"*1 must benonzero. Again, at thevery least, thisrequiresthat £3" 1
be nonzero. By definition, this implies that H*+2() (N ¢, X) ® V,* is nonze-

ro. Settingm = r(t) — 1and noting that V; € A”® (uNyp), the proof iscomplete. 0

PROPOSITION 3.3. If 7: H(x, X) — H°(un ¢ X) is not injective, there is
an integer m with 0 < m < min{b, R} so that

m
H™™une,X)® \(unp)* #0.
Proof. If 7 isnot injective, then E™2*~™ is nonzero for somen > 0. At the very
|east, thismeansthat E;" " isnonzero. Hence H~"() (un, X) ® V,* isnonzero.
By setting m = r(n), the proof is complete. O

These two lemmas lead to the main theorem of this section.

THEOREM 3.4. Recalling the notation of Definition 2.1, let i be on a g-edge. Then
the restriction map

7 H'™) (wu, X) = H'™) (wune, X)

isbijectiveonthe w(u + px) — px L N K-types.
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Proof. We check that 7 is surjective first. If not, then Proposition 3.2 says that
the L N K-type

m—+1
[H@ ™ (wune, X) @ N (unp)eetes)=rx 20

for some 0 < m < min{l(w), R — 1}. Thusthere are 7 € A(wuNp,t) U {0} so
that the L N K-type

[HI)=m (o 1 g, X)]P T Pr)=px TS0 4 @

But then Kostant’s Borel-\Weil theorem saysthat thereisacertaino € Wi (wune)
and a K -type j11 So that

m+1

w(p+pr) = pr + Y 8 = o(pa+ pr) — pi-
j=1

Setting 0; = w*ldg- € A(unp,t) U {0} and rearranging terms yields

m+1

pt D 0 =wto(ur + pk) — p.
o

Hence, m.(u + E;ﬁfé,-) # 0 which contradicts the fact that 1 lies on a g-edge.
Hence 7 is surjective.

The argument that checksthat 7 isinjective is exactly the same, except one uses
Proposition 3.3, replaces E;.”jll by X7, andhas1 < m < min{l(w), R}. O

As a final note, the results of these last two sections may be generalized to
the case where K is any compact subgroup as long as a 6-stable parabalic is
interpreted in the obvious way. Namely, the parabolic is constructed by choosing
anelement z € i(tp)* and following the samedetailsasin [8] for the corresponding
Hochschild—Serre spectral sequence.

4. Application to multiplicity freereduction

Let A\ be a dominant weight in h of g and let F, be the corresponding finite
dimensional representation of G of highest weight A. We will apply the previous
sectionsto thecase X = F).

To moativate the special cases we will examine, recall that there are essentially
only three cases in which m(u), for any A and p, is always either O or 1 —in
other words, the reduction from G to K is multiplicity free. The three cases are
(su(l4+1),u(l)), (so(204+1),s0(2])),and (so(20+2),s0(2/+1)). See[1] for details.
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Moreover, the multiplicity function m(u) is well known in these three cases:
m(p) is 1 or O depending on whether 1 lies in a certain precisely defined par-
allelepiped. As such, it makes good geometric sense in these cases to say that a
K-type lies on the geometric edge of the set of K-typesif it lies on one of the
edges of the parallelepiped. The main theorem of this section will show that these
geometrical edges of K-types are parameterized by the image of the restriction
map 7 when ) is regular and the geometric edge does not lie completely inside a
Weyl chamber wall of K.

To be more precise, suppose that v is an L N K-type appearing in the image
of the restriction map 7: H®(u, Fy) — H’(u N, Fy). By Kostant's Borel-Weil
theorem, this tells us that a certain K-typeliesin F)|x. Namely, let w € Wi so
that w(v + px) isin the positive Weyl chamber of K. Then the K-type

w(v + pK) — PK

appearsin F\. The next theorem tell s usthat this procedure parameterizesthe edges
of the set of K-types.

THEOREM 4.1. Let (g, K') be one of the above multiplicity free reduction cases,
let A be dominant regular, and let E be a geometric edge of the set of K -types of
F not lying completely inside a Weyl chamber wall of K.

If nisa K-typelyingin E, then 1, may bewrittenintheformw (v + px ) — px for
some L N K -type v appearing in the image of the restriction map 7: H?(u, F) —
H®(une, Fy) for some §-stable parabolic g and somew € W

Moreover, only K -types on the geometrical edge are realized by this procedure
of associating K -types to the image of the restriction map.

Note that the restriction on the position of £ is nontrivial only in the case
of (D41, B;) sincein the other two cases a nontrivial geometrical edge is never
completely contained in a Weyl chamber wall.

The proof of the above theorem consists of a case by case check. Since the
details are very similar (and easier) for each of the other two cases, we will only
write explicitly the case (D;1, B;). The details are contained in Propositions 5.2
and 5.3 of the next section.

Here we consider the case g = s0(2/ + 2,C) and ¢ = so(2/ + 1,C). The nat-
ural projections of g* onto £* and h* onto t* will be denoted by the map p. Let
a1,...,0p_1,a_, a4 bethe standard basis of roots in h* for the root system of
Dy glven by Qj =€ —€j+1 for 1< j < (l — 1) anday = ¢ £ €141 Likewise,
let a, . .., a; bethe standard basis of rootsin t* for the root system of B; given by
aj=¢j—¢egjpforl<j<(l—1) ado =pa_ =pay =g.
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Write (-, ) for an invariant symmetric non-degenerate two form on h* and t*

and set
2(x,y)
T,y) =
() ()
If A\ € p*, define

TLjZ()\,Gj) forl<gj<gl—1,
ny = ()\,ai, >, n; = min{ni}.

The dependence of these numberson A will be suppressed. If A isapositive weight
inp* and s isapositive weight in t*, it iswell known (e.g. [1]) that m(u) is1if p
is conjugate to pA by the projection of the weight lattice of h* and if n liesin the
parallelepiped

l
P:{xet*|$:p)\—ztj€j, Ogtjgnj}.

J=1

m () is 0 otherwise. From this, we say that the K -type 1 ison ageometrical edge
if t; = 0ort; = n; intheaboveequation for somej € {1,...,[}.

The Weyl groupsof D;; and B; act by permutations and certain sign changes.
For o in one of the Weyl groups, we write its action as os; = 1,je,; Where
ne; € {£1}. Thefollowing calculation is straightforward.

LEMMA 5.1. Continue the notation for ¢ and n above. For 1 < j < [, write
k= o 1. 1fn; = +1, the coefficient of £; in the expression A — o'\ is

(i) —ng —---—mnj—1, 1<k <j<l,

(i) nj+--+m1+n_, 1<j<k=(+1),

(iv) 0, j=k.

If n; = —1, the coefficient of ¢; in the expression A — o\ is

(V) nj+ -t ng_1+2n,+ -+ 201 +n_ +ny, 1<ji<k<(l-1),
(vi) —nk—---—nj,l—an—---—an_l—n,—n+, 1<k<j<(I-1),
(Vii)nj+---+nl_1+n,+n+, 1<i<k=l,
(Viii)nj+---+nl_1+n+, 1<j<k=(1+1),

(iX) —ngp —---—m_1—n_—ny, 1<k<j=lI,

X) 2nj+---+2ni_1+n_+ny, j=k.

PROPOSITION. 5.2. Let A be dominant regular in h* and q a #-stable parabolic
with A(ungt) € AT (g t). If visan L N K-type appearing in the image of the
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restriction map 7: H%(u, F)\) — H°(u N, Fy) and o(v + pg) is dominant for
o € Wg,theny = o(v+ pk) — px isa K-type of F appearing on a geometrical
edge of the set of K -types.

Proof. Note the assumption A(u N €,t) C AT (¢, t) isalways possible by using
the W action. (In the case of (A;, A; 1) and (B, D;), more notation is involved
since the Weyl chambers of K contain a number of Weyl chambersfor G, but the
calculations are similar.)

To begin, observe that 1 is a K-type by Kostant's theorem. Namely, if v isan
LNK-typein H®(une, Fy), thenthereisa K-type uq of Fy andwy € Wi (uNe) so
that v = wi(u1+pkx)—pr.-Henceo (v+pk) = cwi(p1+pk ). Butsinceo (v+pi)
isdominant and 11 + px isdominant regular, o = wit S0 1 = o (v + pr) — pic.
In particular, i = p1 isa K-type.

It remainsto seethat 1. lies on ageometrical edge. For this, we may assumethat
uNeisnot empty or elsethe propositionistrivial. Since q is 6-stable, we may thus
fix aj, € A(1,p) for somel < jo < I.

Supposethat v liesin the image of the restriction map . Recalling that 7 isan
L N K map, this meansthat v appearsin H®(u, F) restricted to L N K. However,
since F), isfinite dimensional, Kostant’s theorem says that the highest weights of
the L-types appearing in H®(u, Fy) are of the form wg (A + pg) — pe for certain
wg € Wq. Examining Kostant’s multiplicity formula in [5] or in [1] where the
desired caseis explicitly worked out in Section 4, we seethat if v isan L N K type
appearing in the L-representation of highest weight wq (A — pi) — pa, then v must
be of the form

plwa(A + pa) — pa) =&,

where ¢ = Eézjo 116 With ¢; > 0. Though ¢ may be described even more
precisely, all we will need isthat the the € 5, term does not appear in &.

Since we are redlly interested in the K -type associated to v, we must examine
when

wi[p(wa(X + pa) — pc) — &+ pi] — pr

liesin the parallelepiped P for somewy € Wi . Tothisend, ook at the coefficient
of £;, 1 < j <, inthe expression

p(A) — [wk[p(wa(A + pc) — pc) — & + pk] — pK]- 1)

In order for the associated K -typeto liein P, each coefficient of ¢, in Equation 1
must beintheclosedinterval [0, n;]. If the K-typeisin P, it liesonthe edgeif and
only if at least one of the coefficientsof ; iseither O or n;. Below, we demonstrate
that if such an associated K -typeliesin P, it must lie on the edge. Thiswill finish
the proposition.
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Equation 1 may be rewritten as p applied to the sum of the following four
equations:

A — WKWGA,

PG — WKWGEPG,

(px — pa) —wk (px — pa),
—wké.

Using Lemma 5.1, it will be easy to show that every coefficient of ¢; from the
the sum of the first three equations lies outside the open interval (0, n;). Since the
fourth equation leaves at least one coefficient unchanged, for instance w jo, at
least one coefficient lies outside (0, ;). Thisimplies that if the K-typeliesin P,
it must lie on the boundary as desired.

Since the above statement follows trivially from Lemma5.1, we give a sample
calculation and omit the rest. Recalling that A is dominant regular, each n; is a
positive integer in Lemma 5.1 applied to the first equation. To apply the Lemma
to the second equation, usen; = 1for 1 < j < !+ 1 andto apply it to the third

equation, usen; = 0for 1 < j <! —1landn; = —3 for j = {,1 + 1. Consider
case (i) of the Lemma. Here the contribution to the coefficient from the first three
equationsis

(mj ++ - +nk 1) + (k= §) +0.

Sincek > j andn; > 1, thisnumber is clearly greater than n;. In particular, it lies
outside (0, n;). The other cases are similar and as easy. O

PROPOSITION 5.3. Let A be dominant regular and let E be a geometrical
edge of the set of K-types not contained in a Weyl chamber wall. If 4 is a
K-type of F) in E, then there is §-stable parabolic ¢ and w € Wy so that
p = w+ pr) — px Wherev isa L N K type appearing in the image of the
restriction map 7: H(u, Fy\) — H(uN ¢, Fy).

Proof. Let 1 beon E. Thismeansthat y = pA — X5_t;e; with ¢; € [0, n;] and
for somejo, ¢, € {0, 7, }. Pickaz € t C pof theformz = (0,...,0,£1,0,...,0)
wherethe Lisinthe jo placewith a+ if ¢;, = Oanda— if t;; = nj,. Let q1 bethe
associated #-stable parabolicin >. Inparticular, A(l1, ) = {« € A(g, h) | a(z) =
0} and A(ug, h) = {a € A(g,h) | a(z) > O}. Itiseasy to check in this case that
A(unp,t) = {ej, }if tjo = 0and A(unp,t) = {—¢j,} if t;, = nj,. Ineither case,
R=dmunyp)=1.

Let wy € Wi sothat wi(A(ug NE L)) C AT (e, t). Put ¢ = wiqy, u = wiug,
[ = wil, w = wl‘l, and b = [(w1). In the next paragraphs we will show that
4 is on a qi-edge according to Definition 2.1. Thus Theorem 3.4 tells us that
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7 H(u, F\) — H®(un¢, Fy) isbijectiveonthe v = wi(u + pr) — px LN K-
types. By Lemma 2.2, we may also assume that w; € Wi (un€) so that by
Kostant’stheorem, v actually appearsin H®(uN¢, F)) since i isa K -type. Writing
p=w(v+pg)— px, wewill bedone.

It remains to show that 1 is on a q;-edge. Since R = 1, we need to show that
me(p % €5,) = Owherethe + dependson « asabove. (Thecaseof (4;, A;_1) does
not even need to use the restriction on R.) Write u + ¢, = pA — £_y¢je;. Itis
enough to show that

!

w | pA =Y ciej+px | — pr )
j=1

doesnot liein P for any w € Wg . Write this last expression as

l
PA — [)\—w (pA—ZCjEj—f—pK) + pK

J=1

Tobein P, al the coefficients of ¢; in

l
A—w (p)\—ZCjaj+pK> + pPK,

i=1

must lie [0, n;] for 1 < j < I. Thislast equation can be written as the projection of
the sum of the three equations

A —wA,

PK — WPK,
l
w Z CjEj.
j=1

By assumption, ¢; € [0, ;] for j # joandc;, isineither [—-1,0) orin (nj,, n,+ 1]
depending on z as above. Recalling that A is dominant regular and examining the
cases of Lemma 5.1 where j < k& = w1 applied to the first two equations, it is
easy to check that if (2) liesin P, then thereis an ig, 1 < ig < jo, SO that w1 is
acyclic permutation of the ¢; of the form (jo,jo — 1,...,%0 + 1,4) with certain
sign changes. Examining the Lemma again in the caseswheren, = —1, it is easy
to seethat if (2) liesin P, then every n; = +1for j # io.

Ifig < jo, then part (ii) of the Lemmaapplied to the above three equationswith
j =10+ lyields —n;, — 1+ s where s € [0, n;,] so that the number is negative.
In particular, it isnot in [0, n;,+1] so that (2) isnotin P.
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Hence, if (2) isin P then ig = jo so that w is the identity except perhaps for a
signchangeof ¢;,. By definition, if n;, = +1, w istheidentity and (2) cannot liein
P. If nj, = —1, then the Lemma applied to the three equations with j = jo yields

[2njo + -+ +2m—1 + 1 +ny] + [2(0 — jo) + 1] — ¢, 3)

wheret is—1 or n, + 1 depending on whether a+ appearsinz. If [ > jo, then (3)
liesoutside of [0, nj,] sothat if (2) isin P, then! = jo. In this case, (3) reducesto

n_o4ng+1—t

Recalling that n; = min{n_,n, }, the above equation liesin [0, n;] if and only if
t=nj;+landn_ =n,.Butitiseasytoseethat n_ = n if andonly if E lies
in the Weyl chamber wall perpendicular to ;. But since we have assumed that E is
not in a chamber wall, we have achieved our goal of showing that Equation 2 does
not liein P. i

6. Concluding remarks

The examination of thefinite dimensional multiplicity free case has shown that the
ideaof ageometric edge of the set of K -typesfitsvery well with theideaof aq-edge
which isin turn related to the restriction map on cohomology. The assumption of
finite dimensionality can hopefully be removed. For instance, it seems likely that
similar results are reasonablefor the discrete series since one can replace Kostant's
theorem by theorems of Schmid ([4]).

When the multiplicity free assumption is removed, the idea of a geometrical
edge is ho longer easy to describe. In fact, even in the special case we examined,
new techniques are needed for geometrical edges that lie on a Weyl chamber
wall. However, various examples still suggest that further study of q-edges and the
restriction map will help to pin down the structure of the K -types.
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