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ON BROWN-McCOY RADICAL CLASSES IN CATEGORIES

by S. VELDSMAN
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1. Introduction

What does a simple ring with unity, a topological T0-space and a graph that has at
most one loop but may possess edges, have in common? In this note we show that they
all are Brown-McCoy semisimple. Sulinski has generalised the well-known Brown-
McCoy radical class of associative rings (cf. [1]) to a category which satisfies certain
conditions. In [3] he defines a simple object, a modular class of objects and the Brown-
McCoy radical class as the upper radical class determined by a modular class in a
category which, among others, has a zero object and kernels. To include categories like
that of topological spaces and graphs, we use the concepts of a trivial object and a fibre.
We then follow Sulinski and define a simple object, a modular class of objects and then
the Brown-McCoy radical class as the upper radical class determined by a modular
class.

This definition coincides with Sulihski's in his category and yields a non-trivial
Brown-McCoy radical class (connectedness) in the category of topological spaces, viz.
the class of all indiscrete spaces and in the category of graphs, viz. the class of all graphs
A such that if A is non-trivial, then each vertex of A has a loop.

We adopt the notions and notations of [5].

2. Definitions

Let Jf be any category. For completeness we recall the following notions from [5].
Let 3T be the class of objects which satisfies the following conditions:

(Tl) If there exists a constant epimorphism A->B, then B e J must hold;
(T2) If there exists a constant monomorphism C-*D, then Ce^~ must hold;
(T3) If Te9~, then every morphism A->T and T->B must be constant.

The elements of ST will be called trivial objects and a subobject (B, fi) of A is called
trivial if BBUT (or, equivalently, if n is constant). Two morphisms a:A->B and fl:C-*B
form a constant pair [4] if, whenever 5:D-*A and y:D-*C are any two morphisms, then
the equality 8ct = yf} must hold. A morphism fi:F-*A is called a fibre [4] of a:A->B if/ia
is constant and whenever 5:C-+A is a morphism such that <5<x and /toe form a constant
pair, then there exists a unique 8':G-*F such that 8'n = 5. Let Jt be the following class
of morphisms:

Jf = {/J6Mor tf\\x is a fibre of some morphism in X'}.
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We suppose Iso JT, the class of all Jf-isomorphisms, is contained in Jt. Let $ be a class
of epimorphisms which is closed under compositions and with Iso JT £ &.

A class of objects M is a radical class if 9t satisfies the following:

iff whenever A-^BeS, B^F, then there exists a
with

A class of objects Sf is a semisimple class if 5" satisfies the following:

iff whenever /->,4 6^#, lfcy, then there exists a
I-+BeS, B£2T with

With appropriate choices for S, the above two definitions coincide with the usual
Kurosh-Amitsur radical and semisimple classes in algebraic categories, the torsion and
torsion-free classes in Abelian categories and the connectednesses and
disconnectednesses of topological spaces and graphs. A class of objects £f is called
regular if, whenever AeSf and I^AeJi, I£&~, then there exists an I-^BeS1, B^ST
with BeSf. Lastly from [5] we need the operators 9te and S/"^ on a class of objects.
They are:

is no A-*BsS, B^ST with Be@} and

= {AeObX|there is no C^A&Ji, C<£3~ with

If & is a regular class, then 9tt38 is a radical class and if <€ is a radical class, then y ^
is a semisimple class.

Definition 2.1. An object A in Jf" is simple \i A£ST and whenever fx:F->AeJt,

In the categories of rings, groups and modules, the concept of a simple object
coincides with the usual concept of a simple ring, simple group and simple module
respectively. The category of topological spaces has exactly three non-homeomorphic
simple objects, viz. the three two-point spaces. They will be denoted by:

the Sierpinsky space, Dc = ({0; 1}, {{0; 1}; {0}; (/>}),

the indiscrete two-point space, DA = {{0\ 1}, {{0; 1}; <f>}) and

the discrete two-point space, DD=({0; 1}, {{0; 1}; {0}; {1}; </>}).

In the category of undirected graphs (which admits loops) there are exactly six non-
isomorphic simple objects, viz. the six two-vertex graphs. They will be denoted by:

B1 with v(B1) = {0; 1} and e(B1) = 4>,

B2 with u(B2) = {0; 1} and e(B2) = {(0,1)},

B3 with v(B3) = {0; 1} and e(B3) = {(l, 1)},
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B4 with v(B4) = {0; 1} and e(B4) = {(0,0);(l, 1)},

B5 with t;(B5) = {0; 1} and e(B5) = {(0,1);(1,1)} and

B6 with v(B6) = {0; 1} and e(B6) = {0,0);(l, l);(0,1)}.

Let if be the class of simple objects in Jf. Then if is isomorphism closed and if
if'^if, then if' is regular. Hence 911&" is a radical class. An interesting, but rather
expected property, is that every simple object A must declare itself with respect to any
radical class ^ . I.e. Aet% or AeifM0l must hold. Indeed, if A£ifMM, then there is a
H\I-*AeJi, l^ST with leM. But /I simple implies \i an isomorphism. Hence Ae3%
follows.

Definition 2.2. Let if be a class of simple objects in JT. Let fi:F->AeJt. Then:

(1) /x is an if-maximal fibre of ,4 if there exists an a.:A^BeS with Be if such that i* is
a fibre of a;

(2) n is an ^-simple fibre of A if Fei?.

If n.F^A is an ^-maximal fibre of /I, then (F,(j.)=£(A, lA). Indeed, if (F, n) = (A, lA) and
a.\A-*Be£ is such that Be if and /i is a fibre of a, then a is a constant epimorphism
which yields BeST. This, however, contradicts B a simple object.

Definition 2.3. Let p.F^AeJl. Then tx is a retract of y4 if there exists a <5:,4-»F
such that /z<5 = lF.

Definition 2.4. A class if of simple objects will be called modular if the following
conditions hold:

(Ml) If b.P^AeM is an .^-simple fibre of A, then 5 is a retract of /I and there exists
an ^-maximal fibre fi:M->A of A such that (P, d) n (M, n) exists and is trivial
and if n':M'-*A is any other ^"-maximal fibre of A such that (P, 3) n (M', //)
=(P,(5)n(M,iu), then (M, ^) ̂  (M', **') must hold.

(M2) If d.P^AeJt and o:L-*P is an .^-maximal fibre of P, then abeJl must hold.
Obviously, in categories where M is closed under composition, (M2) is trivially

satisfied. Every modular class is regular. Hence, if if is a modular class, then 8&gif is a
radical class and will be called the Brown-McCoy radical class determined by if.

3. Examples

3.1. If Jf satisfies the conditions of Sulinski [3], then the above definition of a
modular class coincides with his if $ is the class of all normal epimorphisms. Indeed,
(M,fj) and (M',/z') are maximal ideals and if (M, n) ^ (M', //) then (M, //) = (M', //)•
Because the only trivial ideal is of the form (0, co), it follows that (M, /x) is unique with
respect to the property (P, 5) n (M, ix) = (0, co). For the categories of associative rings and
alternative rings, Sulinski has shown that any abstract class of simple rings with unity is
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modular. The ring theoretic Brown-McCoy radical is the smallest radical class among
them, i.e. the upper radical determined by the class of all simple rings with unity.

3.2. Let JT be the category of all topological spaces and continuous functions with
& the class of all onto continuous functions. We show that, in this case, there is only
one non-trivial Brown-McCoy radical class (connectedness), viz. Mg{Dc) = {all indiscrete
spaces}. Let y={Dc}. Obviously y satisfies (M2) and to see (Ml), suppose Dc is a
subspace of a space X with j:Dc^X the inclusion. Because {0} is open in Dc, there
exists an open subset V in X such that Kn{0;l} = {0}. Let U be the union of all the
open subsets V of X such that Fn{0;l) = {0}. Then U is open in X. Define f:X-*Dc

by f(U) = {0} and f(X — £/) = {l}. Then / is an onto continuous function, jf=lDc and
Dcnf~1(l) = Dcn(X — U) = {l}. If g:X->Dc is any other onto continuous function such
that Dcng-\x) = {l} for some xe{0; 1}, then / - ' ( l ) ^ " 1 ^ ) . Indeed, if x = 0, then {1}
= Dcng~l(0) must be open in DC which is not possible. Hence x = \ and if W=g~1(0),
then W is open in X and W^U. Thus f~1(l) = X-U^X-W=g~\\) follows. Hence
£f ={DC} is modular and Mgy = @g{Dc} = {a\\ indiscrete spaces}. Note that yM@gy
= {all T0-spaces}. If y = {DA} it can also be shown that ¥ is modular, but 01 s¥ is the
class of all trivial spaces and y^Sk^y is the class of all topological spaces. In fact, if 88
is any regular class of topological spaces such that DA e &, then Stg^ is the class of all
trivial spaces. If y = {DD}, then y is not modular. To this end we need the following
lemma of which the proof is elementary:

Lemma. Let DD be a subspace of X. Then DD is a retract of X iff there exists an open
and closed subset U of X such that OeU and leX — U.

Let Z = {0; 1; 2} with {0; 2}, (1; 2} and {2} open in Z. Then DD is a subspace of Z, but
Z has no open and closed subset U with 0 e U and 1 e X — U. Hence DD is not a retract
of Z and y = {DD} is not modular. Thus the only modular class which yields a non-
trivial Brown-McCoy radical class is the class y = {DD).

3.3. Let Jf be the category of all undirected graphs (which admit loops) and graph
homomorphisms. Let S be the class of all onto homomorphisms. We show that, in this
case, there is only one non-trivial Brown-McCoy radical class, viz. <%s{B5} = {A\\f A is
non-trivial, then each vertex of A has a loop}. Let y = {B5}. (M2) follows trivially and
to show that y is modular, we show the validity of (Ml). Suppose B5 is a subgraph of
A. Let X be the biggest subgraph of A such that 0 e v(X) and e{X) = </>. There is at least
one such subgraph, viz. the loopless vertex 0. Define 0:A->B5 by 9(v(X)) = {0} and
9(v(A) — v(X)) = {l}. Then 6 is an onto homomorphism and if j:B5->A is the inclusion,
then J6=1B5- Furthermore, 8~1(l)nB5 = (A — X)nB5 which is the vertex 1 with a loop.
If <x:A->B5 is any other onto homomorphism such that <x~l(x)nB5 = 6~1(l)nB5 for
some xev(B5), then x = l and {T^ l j so r^ l ) follows by remembering that
and using the definition of the subgraph X. Hence y = {Bs} is modular,
= {A | if A is non-trivial, then each vertex has a loop} and

has at most one loop but may possess edges}.
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If £f = {B6} it can be shown that £f is modular. However, MS{B6) is the class of all
trivial graphs. In fact, if *<? is any regular class of graphs such that B6 e #, then Me26 is
the class of all trivial graphs. Each of the graphs Bu B2, B3 and BA can be subgraphs of
a graph without being a retract. Hence any class of simple graphs which contains one of
Bu B2, B3 or B4 is not modular.

A final remark concerns the hereditariness of the Brown-McCoy radical class. Rashid
and Wiegandt [2] have shown that in a category with, among others, a zero object and
kernels, every radical class &e£f determined by a modular class Zf (where $ is the class
of all normal epimorphisms) is hereditary. Although, in this general setting, I have not
been able to prove this result, the Brown-McCoy connectednesses in Top and Graph
behave nicely with respect to this property, i.e., they both are hereditary. In fact, they
are the only hereditary connectednesses in these two categories (cf. [6]).

REFERENCES

1. N. J. DIVINSKY, Rings and Radicals (George Allen and Unwin Ltd., London, 1975).

2. M. A. RASHID and R. WIEGANDT, The hereditariness of the upper radical, Ada Math. Sci.
Hung. 24 (1973), 343-347.

3. A. SULINSKI, The Brown-McCoy radical in categories, Fund. Math. 59 (1966), 23-41.

4. J. A. TILLER, Component subcategories, Quaestiones Mathematicae 4 (1980), 19-40.

5. S. VELDSMAN, On the characterization of radical and semisimple classes in categories, Comm.
in Algebra 10 (1982), 913-938.

6. R. WIEGANDT, A condition in general radical theory and its meaning for rings, topological
spaces and graphs, Ada Math. Acad. Sci. Hung. 26 (1975), 233-240.

DEPARTMENT OF MATHEMATICS

RAND AFRIKAANS UNIVERSITY

P.O. Box 524
JOHANNESBURG 2000
SOUTH AFRICA

https://doi.org/10.1017/S0013091500004405 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004405

