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ON BROWN-McCOY RADICAL CLASSES IN CATEGORIES

by S. VELDSMAN
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1. Introduction

What does a simple ring with unity, a topological Ty-space and a graph that has at
most one loop but may possess edges, have in common? In this note we show that they
all are Brown—-McCoy semisimple. Sulinski has generalised the well-known Brown-
McCoy radical class of associative rings (cf. [1]) to a category which satisfies certain
conditions. In [3] he defines a simple object, a modular class of objects and the Brown~
McCoy radical class as the upper radical class determined by a modular class in a
category which, among others, has a zero object and kernels. To include categories like
that of topological spaces and graphs, we use the concepts of a trivial object and a fibre.
We then follow Sulinski and define a simple object, a modular class of objects and then
the Brown-McCoy radical class as the upper radical class determined by a modular
class.

This definition coincides with Sulinski’s in his category and yields a non-trivial
Brown-McCoy radical class (connectedness) in the category of topological spaces, viz.
the class of all indiscrete spaces and in the category of graphs, viz. the class of all graphs
A such that if 4 is non-trivial, then each vertex of 4 has a loop.

We adopt the notions and notations of [5].

2. Definitions

Let A" be any category. For completeness we recall the following notions from [5].
Let 7 be the class of objects which satisfies the following conditions:

(T1) If there exists a constant epimorphism 4— B, then Be Z must hold;
(T2) 1If there exists a constant monomorphism C— D, then CeZ must hold;
(T3) If TeZ, then every morphism A— T and T— B must be constant.

The elements of & will be called trivial objects and a subobject (B, u) of A is called
trivial if Be J (or, equivalently, if u is constant). Two morphisms a: A—B and 8:C—B
form a constant pair [4] if, whenever 6:D— A and y:D—C are any two morphisms, then
the equality do=7yp must hold. A morphism u:F— A is called a fibre [4] of a: A— B if pa
is constant and whenever 6:C— A is a morphism such that dx and uo form a constant
pair, then there exists a unique §':C—F such that é’u=4. Let # be the following class
of morphisms:

M ={peMor A |y is a fibre of some morphism in #'}.
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We suppose Iso ', the class of all  -isomorphisms, is contained in .#. Let & be a class
of epimorphisms which is closed under compositions and with Iso # = &.
A class of objects Z is a radical class if # satisfies the following:

Ae R iff whenever A»>Bed&, B¢ 7, then there exists a
I1-Be M, I1¢T with [eA.

A class of objects & is a semisimple class if & satisfies the following:

Ae & iff whenever [ >Ae #, 1¢ 7, then there exists a
I-Beé&, B¢J with BeZ.

With appropriate choices for &, the above two definitions coincide with the usual
Kurosh—Amitsur radical and semisimple classes in algebraic categories, the torsion and
torsion-free  classes in Abelian categories and the connectednesses and
disconnectednesses of topological spaces and graphs. A class of objects & is called
regular if, whenever A€ and I-Ae#, 1¢7, then there exists an [-Be &, B¢J
with Be%. Lastly from [5] we need the operators %, and &, on a class of objects.
They are:

RsB={AeObx |there is no A>Be &, B¢ J with Be #} and
4B ={AcOb X |there is no C»Ae M, C¢T with CeB).

If # is a regular class, then #,4 is a radical class and if € is a radical class, then & €
is a semisimple class.

Definition 2.1. An object A in X is simple if A¢J and whenever u:F—Ae 4,
F¢,9_, then (F, ﬂ)=(A, IA)

In the categories of rings, groups and modules, the concept of a simple object
coincides with the usual concept of a simple ring, simple group and simple module
respectively. The category of topological spaces has exactly three non-homeomorphic
simple objects, viz. the three two-point spaces. They will be denoted by:

the Sierpinsky space, Do=({0; 1}, {{0; 1}; {0}; #}),
the indiscrete two-point space, D, =({0; 1}, {{0; 1}; ¢}) and
the discrete two-point space, Dp=({0; 1}, {{0; 1}; {0}; {1}; &}).
In the category of undirected graphs (which admits loops) there are exactly six non-
isomorphic simple objects, viz. the six two-vertex graphs. They will be denoted by:
B, with v(B,)={0; 1} and e(B,)= ¢,
B, with o(B,)={0; 1} and e(B)={(0, 1)},
B; with v(B;)={0; 1} and e(B;)={(1, 1)},
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B, with o(B,)={0; 1} and e(B))={(0,0); (1, )},
B with v(Bs)={0; 1} and e(Bs)={(0, 1); (1, 1)} and
Bg with v(Bg)=1{0; 1} and e(Bs)={0, 0); (1, 1); (0, 1)}.

Let & be the class of simple objects in . Then & is isomorphism closed and if
', then & is regular. Hence #,%" is a radical class. An interesting, but rather
expected property, is that every simple object A must declare itself with respect to any
radical class &. le. AcZ or Ae ¥ ,# must hold. Indeed, if 4¢ 5,2, then there is a
wl-Aed, 1¢J with IeZ. But A simple implies p an isomorphism. Hence Ae%
follows.

Definition 2.2. Let & be a class of simple objects in ). Let u: F—»>Ae #. Then:

(1) p is an F-maximal fibre of A if there exists an a: A— Be & with Be & such that u is
a fibre of «;
(2) pis an &-simple fibre of A if Fe &.

If y:F—> A is an ¥-maximal fibre of A, then (F, u)#(A4, 1,). Indeed, if (F, u)=(4,1,) and
a:A—Be& is such that Be % and yu is a fibre of a, then o is a constant epimorphism
which yields Be 7. This, however, contradicts B a simple object.

Definition 2.3. Let u:F—>Ae#. Then u is a retract of A if there exists a §:A—F
such that ué=1,.

Definition 2.4. A class & of simple objects will be called modular if the following
conditions hold:

(M1) If6:P->Ae A is an &-simple fibre of A, then § is a retract of A and there exists
an %-maximal fibre i:M—A of A such that (P,8)n(M, u) exists and is trivial
and if y:M’'—>A is any other &-maximal fibre of A such that (P,d)n (M, )
=(P, ) n(M, u), then (M, u) <(M’, ¢') must hold.

(M2) If 6:P>Ae# and 6:L—P is an &-maximal fibre of P, then ¢é € .# must hold.

Obviously, in categories where # is closed under composition, (M2) is trivially
satisfied. Every modular class is regular. Hence, if & is a modular class, then #£,% is a
radical class and will be called the Brown-McCoy radical class determined by &.

3. Examples

3.1. If X satisfies the conditions of Sulinski [3], then the above definition of a
modular class coincides with his if & is the class of all normal epimorphisms. Indeed,
(M,p) and (M',y') are maximal ideals and if (M, u)<(M’,y) then (M, pw)=(M’,y).
Because the only trivial ideal is of the form (0, w), it follows that (M, u) is unique with
respect to the property (P, 8) (M, p) =(0, ). For the categories of associative rings and
alternative rings, Sulinski has shown that any abstract class of simple rings with unity is
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modular. The ring theoretic Brown—McCoy radical is the smallest radical class among
them, i.e. the upper radical determined by the class of all simple rings with unity.

3.2. Let X be the category of all topological spaces and continuous functions with
& the class of all onto continuous functions. We show that, in this case, there is only
one non-trivial Brown-McCoy radical class (connectedness), viz. #,{D¢} = {all indiscrete
spaces}. Let & ={D.}. Obviously & satisfies (M2) and to see (M1), suppose D¢ is a
subspace of a space X with j:D.—X the inclusion. Because {0} is open in D, there
exists an open subset ¥ in X such that ¥ n{0;1}={0}. Let U be the union of all the
open subsets V of X such that ¥ n{0;1)={0}. Then U is open in X. Define f:X—D.
by f(U)={0} and f(X —U)={1}. Then f is an onto continuous function, jf=1,_ and
Den f7H(1)=Den(X —U)={1}. If g:X > D is any other onto continuous function such
that Dcng ™ '(x)={1} for some xe{0; 1}, then f~ (1) =g~ *(x). Indeed, if x=0, then {1}
=Dcng ™ }(0) must be open in D, which is not possible. Hence x=1 and if W=g1(0),
then W is open in X and W< U. Thus f~}(1)=X-U< X —W=g~ (1) follows. Hence
& ={D¢} is modular and ;¥ =R,{D.}={all indiscrete spaces}. Note that ¥, R,
={all Ty-spaces}. If ¥ ={D,} it can also be shown that ¥ is modular, but %, is the
class of all trivial spaces and & ,%,% is the class of all topological spaces. In fact, if #
is any regular class of topological spaces such that D, e, then #,% is the class of all
trivial spaces. If & ={Dp}, then & is not modular. To this end we need the following
lemma of which the proof is elementary:

Lemma. Let D, be a subspace of X. Then Dy, is a retract of X iff there exists an open
and closed subset U of X such that 0eU and 1e X —U.

Let Z={0;1;2} with {0; 2}, {1;2} and {2} open in Z. Then D, is a subspace of Z, but
Z has no open and closed subset U with 0c U and 1€ X —U. Hence D, is not a retract
of Z and ¥ ={Dp} is not modular. Thus the only modular class which yields a non-
trivial Brown-McCoy radical class is the class & ={Dp}.

3.3. Let X4 be the category of all undirected graphs (which admit loops) and graph
homomorphisms. Let & be the class of all onto homomorphisms. We show that, in this
case, there is only one non-trivial Brown-McCoy radical class, viz. #,{Bs}={A|if 4 is
non-trivial, then each vertex of A has a loop}. Let & ={Bs}. (M2) follows trivially and
to show that % is modular, we show the validity of (M1). Suppose B is a subgraph of
A. Let X be the biggest subgraph of A such that 0ev(X) and e(X)=¢. There is at least
one such subgraph, viz. the loopless vertex 0. Define 6:4—Bs by 6(v(X))={0} and
6(v(A)—v(X))={1}. Then @ is an onto homomorphism and if j:Bs—A4 is the inclusion,
then jO0=1p,. Furthermore, 0~ (1)nBs=(A— X) N B5 which is the vertex 1 with a loop.
If :A—>Bs is any other onto homomorphism such that a *(x)nBs=60"1)nB; for
some xev(Bs), then x=1 and 6~ '(1)ca™!(1) follows by remembering that (0,0) ¢ e(Bs)
and using the definition of the subgraph X. Hence & ={B;} is modular, %,¥ =% 4{Bs}
={A|if A is non-trivial, then each vertex has a loop} and

& «Re{Bs}={A| A has at most one loop but may possess edges}.
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If &¥={Bg} it can be shown that & is modular. However, #,{B¢} is the class of all
trivial graphs. In fact, if € is any regular class of graphs such that Bge¥, then £,4 is
the class of all trivial graphs. Each of the graphs B,, B,, B; and B, can be subgraphs of
a graph without being a retract. Hence any class of simple graphs which contains one of
B,, B,, B, or B, is not modular.

A final remark concerns the hereditariness of the Brown-McCoy radical class. Rashid
and Wiegandt [2] have shown that in a category with, among others, a zero object and
kernels, every radical class #,% determined by a modular class & (where & is the class
of all normal epimorphisms) is hereditary. Although, in this general setting, I have not
been able to prove this result, the Brown-McCoy connectednesses in Top and Graph
behave nicely with respect to this property, i.e., they both are hereditary. In fact, they
are the only hereditary connectednesses in these two categories (cf. [6]).
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