ON BROWN-McCOY RADICAL CLASSES IN CATEGORIES

by S. VELDSMAN

(Received 2nd June 1982)

1. Introduction

What does a simple ring with unity, a topological T_0 -space and a graph that has at most one loop but may possess edges, have in common? In this note we show that they all are Brown-McCoy semisimple. Suliński has generalised the well-known Brown-McCoy radical class of associative rings (cf. [1]) to a category which satisfies certain conditions. In [3] he defines a simple object, a modular class of objects and the Brown-McCoy radical class as the upper radical class determined by a modular class in a category which, among others, has a zero object and kernels. To include categories like that of topological spaces and graphs, we use the concepts of a trivial object and a fibre. We then follow Suliński and define a simple object, a modular class of objects and then the Brown-McCoy radical class as the upper radical class determined by a modular class.

This definition coincides with Suliński's in his category and yields a non-trivial Brown-McCoy radical class (connectedness) in the category of topological spaces, viz. the class of all indiscrete spaces and in the category of graphs, viz. the class of all graphs A such that if A is non-trivial, then each vertex of A has a loop.

We adopt the notions and notations of [5].

2. Definitions

Let \mathcal{K} be any category. For completeness we recall the following notions from [5]. Let \mathcal{F} be the class of objects which satisfies the following conditions:

- (T1) If there exists a constant epimorphism $A \rightarrow B$, then $B \in \mathcal{F}$ must hold;
- (T2) If there exists a constant monomorphism $C \rightarrow D$, then $C \in \mathcal{F}$ must hold;
- (T3) If $T \in \mathcal{F}$, then every morphism $A \to T$ and $T \to B$ must be constant.

The elements of \mathcal{F} will be called *trivial objects* and a subobject (B, μ) of A is called *trivial* if $B \in \mathcal{F}$ (or, equivalently, if μ is constant). Two morphisms $\alpha: A \to B$ and $\beta: C \to B$ form a constant pair [4] if, whenever $\delta: D \to A$ and $\gamma: D \to C$ are any two morphisms, then the equality $\delta \alpha = \gamma \beta$ must hold. A morphism $\mu: F \to A$ is called a fibre [4] of $\alpha: A \to B$ if $\mu \alpha$ is constant and whenever $\delta: C \to A$ is a morphism such that $\delta \alpha$ and $\mu \alpha$ form a constant pair, then there exists a unique $\delta: C \to F$ such that $\delta' \mu = \delta$. Let \mathcal{M} be the following class of morphisms:

 $\mathcal{M} = \{ \mu \in \text{Mor } \mathcal{K} \mid \mu \text{ is a fibre of some morphism in } \mathcal{K} \}.$

EMS_C- 337

We suppose Iso \mathcal{K} , the class of all \mathcal{K} -isomorphisms, is contained in \mathcal{M} . Let \mathcal{E} be a class of epimorphisms which is closed under compositions and with Iso $\mathcal{K} \subseteq \mathcal{E}$.

A class of objects \mathcal{R} is a radical class if \mathcal{R} satisfies the following:

$$A \in \mathcal{R}$$
 iff whenever $A \to B \in \mathcal{E}$, $B \notin \mathcal{T}$, then there exists a $I \to B \in \mathcal{M}$, $I \notin \mathcal{T}$ with $I \in \mathcal{R}$.

A class of objects $\mathcal S$ is a semisimple class if $\mathcal S$ satisfies the following:

$$A \in \mathcal{S}$$
 iff whenever $I \to A \in \mathcal{M}$, $I \notin \mathcal{T}$, then there exists a $I \to B \in \mathcal{E}$, $B \notin \mathcal{T}$ with $B \in \mathcal{S}$.

With appropriate choices for \mathscr{E} , the above two definitions coincide with the usual Kurosh-Amitsur radical and semisimple classes in algebraic categories, the torsion and torsion-free classes in Abelian categories and the connectednesses and disconnectednesses of topological spaces and graphs. A class of objects \mathscr{S} is called regular if, whenever $A \in \mathscr{S}$ and $I \to A \in \mathscr{M}$, $I \notin \mathscr{T}$, then there exists an $I \to B \in \mathscr{E}$, $B \notin \mathscr{T}$ with $B \in \mathscr{S}$. Lastly from [5] we need the operators $\mathscr{R}_{\mathscr{E}}$ and $\mathscr{S}_{\mathscr{M}}$ on a class of objects. They are:

$$\mathcal{R}_{\mathscr{S}}\mathcal{B} = \{A \in \text{Ob } \mathcal{K} \mid \text{there is no } A \to B \in \mathscr{E}, B \notin \mathcal{T} \text{ with } B \in \mathscr{B}\} \text{ and}$$

$$\mathcal{S}_{\mathscr{A}}\mathcal{B} = \{A \in \text{Ob } \mathcal{K} \mid \text{there is no } C \to A \in \mathscr{M}, C \notin \mathcal{T} \text{ with } C \in \mathscr{B}\}.$$

If \mathscr{B} is a regular class, then $\mathscr{R}_{\mathscr{E}}\mathscr{B}$ is a radical class and if \mathscr{C} is a radical class, then $\mathscr{S}_{\mathscr{A}}\mathscr{C}$ is a semisimple class.

Definition 2.1. An object A in \mathcal{K} is simple if $A \notin \mathcal{T}$ and whenever $\mu: F \to A \in \mathcal{M}$, $F \notin \mathcal{T}$, then $(F, \mu) = (A, 1_A)$.

In the categories of rings, groups and modules, the concept of a simple object coincides with the usual concept of a simple ring, simple group and simple module respectively. The category of topological spaces has exactly three non-homeomorphic simple objects, viz. the three two-point spaces. They will be denoted by:

```
the Sierpińsky space, D_C = (\{0; 1\}, \{\{0; 1\}; \{0\}; \phi\}), the indiscrete two-point space, D_A = (\{0; 1\}, \{\{0; 1\}; \phi\}) and the discrete two-point space, D_D = (\{0; 1\}, \{\{0; 1\}; \{0\}; \{1\}; \phi\}).
```

In the category of undirected graphs (which admits loops) there are exactly six non-isomorphic simple objects, viz. the six two-vertex graphs. They will be denoted by:

$$B_1$$
 with $v(B_1) = \{0; 1\}$ and $e(B_1) = \phi$,
 B_2 with $v(B_2) = \{0; 1\}$ and $e(B_2) = \{(0, 1)\}$,
 B_3 with $v(B_3) = \{0; 1\}$ and $e(B_3) = \{(1, 1)\}$,

$$B_4$$
 with $v(B_4) = \{0; 1\}$ and $e(B_4) = \{(0, 0); (1, 1)\}$,
 B_5 with $v(B_5) = \{0; 1\}$ and $e(B_5) = \{(0, 1); (1, 1)\}$ and
 B_6 with $v(B_6) = \{0; 1\}$ and $e(B_6) = \{0, 0; (1, 1); (0, 1)\}$.

Let \mathscr{G} be the class of simple objects in \mathscr{K} . Then \mathscr{G} is isomorphism closed and if $\mathscr{G}' \subseteq \mathscr{G}$, then \mathscr{G}' is regular. Hence $\mathscr{R}_{\mathscr{E}}\mathscr{G}'$ is a radical class. An interesting, but rather expected property, is that every simple object A must declare itself with respect to any radical class \mathscr{R} . I.e. $A \in \mathscr{R}$ or $A \in \mathscr{G}_{\mathscr{M}}\mathscr{R}$ must hold. Indeed, if $A \notin \mathscr{G}_{\mathscr{M}}\mathscr{R}$, then there is a $\mu: I \to A \in \mathscr{M}$, $I \notin \mathscr{F}$ with $I \in \mathscr{R}$. But A simple implies μ an isomorphism. Hence $A \in \mathscr{R}$ follows.

Definition 2.2. Let \mathscr{S} be a class of simple objects in \mathscr{K} . Let $\mu: F \to A \in \mathscr{M}$. Then:

- (1) μ is an \mathscr{G} -maximal fibre of A if there exists an $\alpha: A \to B \in \mathscr{E}$ with $B \in \mathscr{G}$ such that μ is a fibre of α ;
 - (2) μ is an \mathcal{S} -simple fibre of A if $F \in \mathcal{S}$.

If $\mu: F \to A$ is an \mathscr{S} -maximal fibre of A, then $(F, \mu) \neq (A, 1_A)$. Indeed, if $(F, \mu) = (A, 1_A)$ and $\alpha: A \to B \in \mathscr{E}$ is such that $B \in \mathscr{S}$ and μ is a fibre of α , then α is a constant epimorphism which yields $B \in \mathscr{T}$. This, however, contradicts B a simple object.

Definition 2.3. Let $\mu: F \to A \in \mathcal{M}$. Then μ is a retract of A if there exists a $\delta: A \to F$ such that $\mu \delta = 1_F$.

Definition 2.4. A class \mathcal{S} of simple objects will be called *modular* if the following conditions hold:

- (M1) If $\delta: P \to A \in \mathcal{M}$ is an \mathscr{S} -simple fibre of A, then δ is a retract of A and there exists an \mathscr{S} -maximal fibre $\mu: M \to A$ of A such that $(P, \delta) \cap (M, \mu)$ exists and is trivial and if $\mu': M' \to A$ is any other \mathscr{S} -maximal fibre of A such that $(P, \delta) \cap (M', \mu') = (P, \delta) \cap (M, \mu)$, then $(M, \mu) \leq (M', \mu')$ must hold.
- (M2) If $\delta: P \to A \in \mathcal{M}$ and $\sigma: L \to P$ is an \mathcal{S} -maximal fibre of P, then $\sigma \delta \in \mathcal{M}$ must hold. Obviously, in categories where \mathcal{M} is closed under composition, (M2) is trivially satisfied. Every modular class is regular. Hence, if \mathcal{S} is a modular class, then $\mathcal{R}_{\mathcal{S}}\mathcal{S}$ is a radical class and will be called the *Brown-McCoy radical class determined by* \mathcal{S} .

3. Examples

3.1. If \mathscr{K} satisfies the conditions of Suliński [3], then the above definition of a modular class coincides with his if \mathscr{E} is the class of all normal epimorphisms. Indeed, (M, μ) and (M', μ') are maximal ideals and if $(M, \mu) \leq (M', \mu')$ then $(M, \mu) = (M', \mu')$. Because the only trivial ideal is of the form $(0, \omega)$, it follows that (M, μ) is unique with respect to the property $(P, \delta) \cap (M, \mu) = (0, \omega)$. For the categories of associative rings and alternative rings, Suliński has shown that any abstract class of simple rings with unity is

modular. The ring theoretic Brown-McCoy radical is the smallest radical class among them, i.e. the upper radical determined by the class of all simple rings with unity.

3.2. Let \mathscr{K} be the category of all topological spaces and continuous functions with & the class of all onto continuous functions. We show that, in this case, there is only one non-trivial Brown-McCoy radical class (connectedness), viz. $\mathcal{R}_{\mathcal{S}}\{D_{\mathcal{C}}\}=\{\text{all indiscrete}\}$ spaces). Let $\mathcal{S} = \{D_C\}$. Obviously \mathcal{S} satisfies (M2) and to see (M1), suppose D_C is a subspace of a space X with $j:D_C \to X$ the inclusion. Because $\{0\}$ is open in D_C , there exists an open subset V in X such that $V \cap \{0,1\} = \{0\}$. Let U be the union of all the open subsets V of X such that $V \cap \{0,1\} = \{0\}$. Then U is open in X. Define $f: X \to D_C$ by $f(U) = \{0\}$ and $f(X - U) = \{1\}$. Then f is an onto continuous function, $jf = 1_{D_C}$ and $D_C \cap f^{-1}(1) = D_C \cap (X - U) = \{1\}$. If $g: X \to D_C$ is any other onto continuous function such that $D_C \cap g^{-1}(x) = \{1\}$ for some $x \in \{0, 1\}$, then $f^{-1}(1) \subseteq g^{-1}(x)$. Indeed, if x = 0, then $\{1\}$ $=D_C \cap g^{-1}(0)$ must be open in D_C which is not possible. Hence x=1 and if $W=g^{-1}(0)$, then W is open in X and $W \subseteq U$. Thus $f^{-1}(1) = X - U \subseteq X - W = g^{-1}(1)$ follows. Hence $\mathscr{S} = \{D_C\}$ is modular and $\mathscr{R}_{\mathscr{E}}\mathscr{S} = \mathscr{R}_{\mathscr{E}}\{D_C\} = \{\text{all indiscrete spaces}\}\$. Note that $\mathscr{S}_{\mathscr{M}}\mathscr{R}_{\mathscr{E}}\mathscr{S}$ ={all T_0 -spaces}. If $\mathcal{S} = \{D_A\}$ it can also be shown that \mathcal{S} is modular, but $\mathcal{R}_{\mathfrak{g}}\mathcal{S}$ is the class of all trivial spaces and $\mathcal{S}_{\mathcal{M}}\mathcal{R}_{\mathcal{E}}\mathcal{S}$ is the class of all topological spaces. In fact, if \mathcal{B} is any regular class of topological spaces such that $D_A \in \mathcal{B}$, then $\mathcal{R}_{\mathcal{E}}\mathcal{B}$ is the class of all trivial spaces. If $\mathcal{S} = \{D_D\}$, then \mathcal{S} is not modular. To this end we need the following lemma of which the proof is elementary:

Lemma. Let D_D be a subspace of X. Then D_D is a retract of X iff there exists an open and closed subset U of X such that $0 \in U$ and $1 \in X - U$.

Let $Z = \{0; 1; 2\}$ with $\{0; 2\}$, $\{1; 2\}$ and $\{2\}$ open in Z. Then D_D is a subspace of Z, but Z has no open and closed subset U with $0 \in U$ and $1 \in X - U$. Hence D_D is not a retract of Z and $\mathcal{S} = \{D_D\}$ is not modular. Thus the only modular class which yields a nontrivial Brown-McCoy radical class is the class $\mathcal{S} = \{D_D\}$.

3.3. Let \mathscr{K} be the category of all undirected graphs (which admit loops) and graph homomorphisms. Let \mathscr{E} be the class of all onto homomorphisms. We show that, in this case, there is only one non-trivial Brown-McCoy radical class, viz. $\mathscr{R}_{\mathscr{E}}\{B_5\} = \{A \mid \text{if } A \text{ is non-trivial, then each vertex of } A \text{ has a loop} \}$. Let $\mathscr{S} = \{B_5\}$. (M2) follows trivially and to show that \mathscr{S} is modular, we show the validity of (M1). Suppose B_5 is a subgraph of A. Let X be the biggest subgraph of A such that $0 \in v(X)$ and $e(X) = \phi$. There is at least one such subgraph, viz. the loopless vertex 0. Define $\theta: A \to B_5$ by $\theta(v(X)) = \{0\}$ and $\theta(v(A) - v(X)) = \{1\}$. Then θ is an onto homomorphism and if $j: B_5 \to A$ is the inclusion, then $j\theta = 1_{B_5}$. Furthermore, $\theta^{-1}(1) \cap B_5 = (A - X) \cap B_5$ which is the vertex 1 with a loop. If $\alpha: A \to B_5$ is any other onto homomorphism such that $\alpha^{-1}(x) \cap B_5 = \theta^{-1}(1) \cap B_5$ for some $x \in v(B_5)$, then x = 1 and $\theta^{-1}(1) \subseteq \alpha^{-1}(1)$ follows by remembering that $(0,0) \notin e(B_5)$ and using the definition of the subgraph X. Hence $\mathscr{S} = \{B_5\}$ is modular, $\mathscr{R}_{\mathscr{E}} \mathscr{S} = \mathscr{R}_{\mathscr{E}}\{B_5\} = \{A \mid if A \text{ is non-trivial, then each vertex has a loop} \}$ and

 $\mathscr{S}_{\mathscr{A}}\mathscr{R}_{\mathscr{E}}\{B_5\} = \{A \mid A \text{ has at most one loop but may possess edges}\}.$

If $\mathcal{S} = \{B_6\}$ it can be shown that \mathcal{S} is modular. However, $\mathcal{R}_{\mathcal{S}}\{B_6\}$ is the class of all trivial graphs. In fact, if \mathcal{C} is any regular class of graphs such that $B_6 \in \mathcal{C}$, then $\mathcal{R}_{\mathcal{S}}\mathcal{B}$ is the class of all trivial graphs. Each of the graphs B_1 , B_2 , B_3 and B_4 can be subgraphs of a graph without being a retract. Hence any class of simple graphs which contains one of B_1 , B_2 , B_3 or B_4 is not modular.

A final remark concerns the hereditariness of the Brown-McCoy radical class. Rashid and Wiegandt [2] have shown that in a category with, among others, a zero object and kernels, every radical class $\mathcal{R}_{\ell}\mathcal{S}$ determined by a modular class \mathcal{S} (where \mathcal{S} is the class of all normal epimorphisms) is hereditary. Although, in this general setting, I have not been able to prove this result, the Brown-McCoy connectednesses in *Top* and *Graph* behave nicely with respect to this property, i.e., they both are hereditary. In fact, they are the only hereditary connectednesses in these two categories (cf. [6]).

REFERENCES

- 1. N. J. DIVINSKY, Rings and Radicals (George Allen and Unwin Ltd., London, 1975).
- 2. M. A. RASHID and R. WIEGANDT, The hereditariness of the upper radical, Acta Math. Sci. Hung. 24 (1973), 343-347.
 - 3. A. Suliński, The Brown-McCoy radical in categories, Fund. Math. 59 (1966), 23-41.
 - 4. J. A. TILLER, Component subcategories, Quaestiones Mathematicae 4 (1980), 19-40.
- 5. S. Veldsman, On the characterization of radical and semisimple classes in categories, *Comm. in Algebra* 10 (1982), 913–938.
- 6. R. Wiegandt, A condition in general radical theory and its meaning for rings, topological spaces and graphs, Acta Math. Acad. Sci. Hung. 26 (1975), 233-240.

DEPARTMENT OF MATHEMATICS RAND AFRIKAANS UNIVERSITY P.O. BOX 524 JOHANNESBURG 2000 SOUTH AFRICA