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1. Introduction. Let / be a ternary quadrat ic form whose matr ix F has 
integral elements with g.c.d. 1, t h a t is, an improperly or properly primitive 
form according as all diagonal elements are even or not. Let d be the determi­
nan t o f / (denoted by | / | ) , 12 the g.c.d. of the 2-rowed minors of F. Then 
d = 122A determines an integer A. Two forms / i n the same genus have the same 
invariants 12, A, d. The form whose matr ix is adj F/Q, is called the reciprocal 
form of/ . A theorem of Meyer, as extended by Dickson [1], who completely 
reworked Meyer 's inadequate proof, is the following: 

T H E O R E M 1. If fi and / 2 are two properly or improperly primitive indefinite 
ternary quadratic forms in the same genus, they are equivalent if 

(1) (12, A) < 2,12 ^ 0 (mod 4) , A ^ 0 (mod 4) . 

Meyer [3] also gave the number of classes in a genus of ternary indefinite forms 
in terms of sets of quadrat ic characters with respect to the primes common to 
12 and A, bu t his proofs are obscure. Siegel recently showed the author t ha t 
the forms 

/ = Xi — 2x2 + 64x3, g = (2xi + Xz) — 2x2 + I6X3 

are in the same genus bu t are not equivalent since the lat ter represents no 
perfect square whose factors are all congruent to 1 (mod 8). I t is the purpose 
of this article to give a large set of genera of one class whose invariants are not 
relatively prime. 

Let p be an odd prime factor common to 12 and A. I t is well known [2, Theorem 
25] t ha t for k arbi trary, / is equivalent to a form 

(2) / o == aixl + p2a2xl + pa&\ (mod pk), (ai, p) = 1. 

Then the transformation K: xi = pyi, x2 = y2, x% = 3/3, takes f0 into pg 
where g is a form whose matr ix has integral elements and 

g = paiyl + pa2yt + a<syl (mod pk~l). 

We call g the related or p-related form of / and shall prove 

T H E O R E M 2. If a form g above is in a genus of one class, if pz does not divide \g\, 

and if there is an integer q, prime to p and satisfying the following conditions: 

(i) \q\ is an odd prime or double an odd prime; 

(ii) — q is represented by the reciprocal form of g; 

(iii) every solution of the congruence 
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(3) x2 — qy2 = 1 (mod p) 

is congruent (mod p) to a solution of the Pell equation 

(4) x — qy = 1; 

then the form f is in a genus of one class. 

Notice t ha t (ii) imposes only congruence conditions on q and tha t q must be 
double a prime if the reciprocal of g is improperly primitive. 

Theorems 1 and 2 then imply 

COROLLARY 1. There is only one class in the genus of a (properly or improperly) 
primitive form f if 

(i) 12 fa 0 (mod 4), A ?ê 0 (mod 4) ; 
(ii) for any odd prime factor p dividing both 12 and A, it is true that pz does not 

divide \g\ and there exists a q satisfying the conditions of Theorem 2. 

The conditions of Theorem 2 will be further considered in §4. 

2. Equivalence o f / i a n d / 2 implies that of gi and g2. We consider / i a n d / 2 

two primitive forms of the same genus. Then [2, Theorem 40] we may assume 
/ i and f2 congruent modulo an arbitrary power of p. Suppose U = (ui3) is a 
unimodular transformation (determinant ± 1, integral elements) taking / i into 
f2, then 

pu2\ u22 w23 
l_£«31 ^32 ^33 

i ^ " 1 ^ = 

which is unimodular if Uu = Un = 0 (mod />) and takes gi into g2. Now U 
t a k e s / 1 i n t o / 2 , both of the form (2), which implies: 

ai(uuXi + U12X2 + ulzxz)2 + paziuzxXi + uZ2x2 + uzzxz)
2 

= a 1X1 + pazXz (mod £ ). 

This implies 

a\U\2 = <2î i3 = 0 (mod />) 

which, since (ai,p) = 1, implies Uu = U\% = 0 (mod £) which completes our 
proof t ha t fi — / 2 implies g± = g2 where ~ is the sign for equivalence. Hence 
the number of classes in the genus of / is not less than the number of classes in 
the genus of g. 

3. Conditions under which gx ^ g2 implies fx ~f2- As above, we may as­
sume gi and g2 congruent modulo pk. Now let the unimodular transformation 
U = (Ufj) take gi into go. Then KUK~l t akes /1 in to/2 , 

KUET1 = 
Un 

u2ip~ 
Mz\p~ 

pu puu 
U22 U22, 

UZ2 Uzz J 
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and we need «21 = un = 0 (mod p). But 

#3(̂ 31X1 + W32X2 + ^33X3)2 = azx\ (mod p) 

follows from that fact that U takes gi into g2 and gi and g2 are both in form 
mod pk~l given above. This implies «31 = «32 == 0 (mod p) since a3 = 0 (mod p) 
would imply pz a divisor of \g\ contrary to hypothesis. It remains to make 
U21 = 0 (mod p). This we do by showing that under certain circumstances we 
can find an automorph P of g such that the last two elements of the first column 
of PU are divisible by p. 

Write Gj the matrix of g, in the form 

\pB pbi 1 \pB 0 1 *_! 

Since, under the conditions of Theorem 2, the reciprocal form of g represents 
— q (mod pk~l) we may take \B\ = — q. Let the unimodular transformation 
U taking gi into g2 be written 

U 
[Uo «1 "1 
L^2 ^33 J 

where «2 = (̂ 31,̂ 32) = (0,0) (mod p). We shall first prove 

LEMMA 1. If B has an automorph A such that 
(i) {A T 7)B_ 1 is integral for proper choice of ± , 

(ii) 4 = C/0 (mod £), 
then an integral 1 X 2 matrix w may be determined so that 

_ \ A w \ 
~Lo ±1 J' 

and hence P~l are integral automorphs of G and 

P~XU = 
1 0 Mis 
0 1 «23 

Lo o±«33J 
(mod p). 

In order to prove this, we need to make PTGP = G, that is 

( \ATpBA pATBw ± pATb1 ~| = \pB pb^\ 
^ ) \_pwTBA =b pbiA pwTBw ± pb\w d= pwTbi + b\ Ypb\ b J ' 

But ATBA = B and, if we can determine an integral w so that 

(6) ATBw±ATbx = bu 

\P\ = ± 1 with |j3| ^ 0 implies that b is equal to the corresponding member in 
the left-hand matrix of (5). However (6) is equivalent to 

BATxw = =F (^ r=F I)bl9 

° r w = =F ^ 5 _ 1 ( ^ T=F I)h = =F (J=T= ^)J3- ]6i = (4 =F 7)B"16i. 
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Hence w is integral if condition (i) of the Lemma holds. Furthermore, bi = 0 
(mod p) implies w = 0 (mod p). 

If, in addition, condition (ii) holds, we have 

^-[f±
0J[> :;J-[oC;]<-«. 

and our proof is complete. That is, we can, under the conditions of Lemma 1, 
find a transformation U taking gi into g2 for which u2i = «31 = 0 (mod />). In 
other words, gi ~ g2 implies f\ ~f2. 

It may easily be verified that 

/7\ A —\ t ~ bu — cu\ 
\_au t + buj 

is an automorph of ax2 + 2bxy + C3/2, the form whose matrix is B, if t,u is a 
solution of x2 — qy2 = 1, where — q = ac — b2. We prove 

LEMMA 2. Condition (i) 0/ Lemma 1 &0&fa if 4̂ is expressed in form (7) with 
t = d= 1 (mod g). 

To prove this, note that 

M =F Z)^ 1 - - a~\c{t * 1 } ^ " 6(* T 1}1 
(^=Fiji5 - q l_qu__b(tlzl) a ( ^ T l ) J? 

which is integral if / = ± 1 (mod q). Notice that any solution of x2 — qy2 = 1 
satisfies the condition if q is an odd prime or double an odd prime. 

Now, as may be shown in the same way as one establishes the automorphs 
of a binary form, 

UToBU0 = B (modp) 

implies, for p an odd prime, 

o - \ L 7 * ' <;zfl<""*»• 
where t'2 — qu'2 = 1 (mod p). Hence if there is a solution /, u of the Pell 
equation x2 — qy2 = 1 such that t = t' (mod p) we have qu2 = qu'2 (mod p) 
and thus by proper choice of sign of u' we have A = Uo (mod p). We have 
proved 

LEMMA 3. If for every solution t',u! of the congruence x2 — qy2 = 1 (mod p) 
there is a solution t,u of the Pell equation x2 — qy2 = 1 such that t = tr (mod p), 
condition (ii) of Lemma 1 /w/ds. 

These three lemmas establish Theorem 2. We now consider in more detail 
the conditions (ii) and (iii) of Theorem 2 and investigate the permissible values 
of p and q. 
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4. Modifications of the conditions of Theorem 2. Consider first the condition 
t ha t — q be represented by a ternary quadrat ic form h whose determinant 
is prime to q. We shall prove 

T H E O R E M 3. If h is an indefinite ternary form satisfying the conditions of 
Theorem 1, it represents — q with (q, \h\ ) <^ 2 if and only if it represents — q in 
R{2), the ring of 2-adic integers, and in R(r) for every odd prime factor of 12, that is, 
if h = — q (mod r) is solvable for every such r. 

We know from Corollary 44b of [2] tha t if h represents — q in R(r) for r = <» 
and every prime factor, r, of 2 \h\q, there is a form h' in the genus of h which 
represents — q. Bu t our Theorem 1 implies t ha t hf is equivalent to h which 
therefore represents — q if h! does. Since h is indefinite it represents — q in the 
field of reals. I t remains to show tha t h represents — q in R(r) for r an odd 
prime factor of q \h\. If r = q or \q, Corollary 34b of [2] gives the desired result. 
Now for any odd prime r we may consider 

h == aiXi + a2x2 + a3X3 (mod r"). 

First, if aia2 ^ 0 (mod r), then 

aiXi + a2x2 = — q (mod r") 

solvable shows tha t h represents — q in R(r). Second, two of ai ,a2 ,a s are divisible 
by r if and only if r divides 12. Suppose a\ = a2 = 0 (mod r) . Then h = — q 
is solvable in i?(r) if and only if h = — g (mod r) is solvable [2, Theorem 9a]. 
This completes the proof. 

Since g is a ternary form adj(adj G) = dG where d = \G\. If 12 is the g.c.d. 
of the 2 X 2 minors of G it divides all elements of dG, and g primitive implies 
d = £l2A, where A is an integer. Fur thermore, d is the g.c.d. of all elements of 
adj (adj G) and hence of all 2-rowed minors of adj G. This implies t h a t A is the 
g.c.d. of the 2-rowed minors of the matr ix of the reciprocal form of g. Hence 
we have 

T H E O R E M 4. Let p be a fixed odd prime and f a primitive form for which 
c> = & = 0 (mod p), neither 12 nor A being divisible by 4 or p2, and g its p-related 
form. Then the reciprocal form of g represents — q if and only if it represents it in 
R(r) for all prime divisors r of 2A/p. 

This has the effect of imposing on — q certain conditions modulo powers of 2 
and mod r for odd prime factors of A/p. 

COROLLARY. Condition (ii) of Theorem 2 may be replaced by the conditions of 

Theorem 4. 

Now let us consider further the condition (iii) of Theorem 2. I t may be shown 
tha t the number of solutions of the congruence (3) is 

P ~ (Z\P). 
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The number of solutions with y = 0 is 2, with x = 0 is 1 + (— q\p). Hence the 
number of solutions with neither x nor y zero is 

P- (2I/O - (~q\p) - 3 
and the number of distinct pairs of solutions x2,y2 with neither zero is one fourth 
of this number. Hence the number of distinct (mod p) pairs x2,y2 of solutions is 

M= Up- (q\p)+ {-q\p)+3}. 

T h a t is 

M = \{p + 3)ilp=l (mod 4), 

M = i(p + 1) if p = - 1 (mod 4) and (q\p) = 1, 

M = \{p + 5) if p = - 1 (mod 4) and (q\p) = - 1. 

First we consider two special cases. Suppose^? = 3 and q = 1 (mod 3). Then 
there is only one pair of solutions of the congruence, namely, x2 = 1, y2 = 0 
(mod 3), and hence condition (iii) of Theorem 2 holds. Then from Theorem 4 
and Corollary 1 we prove 

T H E O R E M 5. An indefinite primitive ternary quadratic form f is in a genus of 
one class provided 

(i) (0,A) divides 6, 
(ii) Q =z§ 0 je A (mod 4), 

(iii) \f\ =é 0 (mod 81). 

To prove this we need merely show the existence of a prime or double a prime 
q with (q\ 3) = 1 and satisfying the conditions of Theorem 4. This means tha t 
q = 1 (mod 3) and satisfies certain congruence conditions modulo powers of r 
where r is a prime factor of 2A/3. Dirichlet's theorem shows tha t such a g 
exists provided tha t these conditions are consistent and the conditions of the 
theorem imply tha t A/3 is not divisible by 3. This completes the proof. 

Furthermore, for p = 3, (q\3) = 1, condition (iii) of Theorem 2 holds even if 
q is negative and g a positive form. Thus we have 

T H E O R E M 6. For p = 3, a positive ternary quadratic form f is in a genus of only 
one class if its 3-related form g is, and if \f\ ^ 0 (mod 81). 

Two examples are 

/ = x2 + 1 8 / + 3z2
t g = 3x2 + 6y2 + z2, 

f = x2 + 18y + 6z , g = 3x + 6^2 + 2s2. 

Group theoretic considerations lead to another special case of interest. Let 
T,U be the fundamental solution of x2 — qy2 = 1. I t is well known tha t all 
solutions are given by 

ln + uWq = ± (r + £V<Z)W 

for integral powers of w. Hence under this law of combination, the solutions 
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(mod p) of the Pell equation form a multiplicative group Hp which must be a 
subgroup of the multiplicative group of solutions of the congruence (mod p). 
Hence s, the order of Hp, is a divisor of 2u = p — (q\p). Condition (iii) of 
Theorem 2 will be met if and only if s = 2u. Now 5 must be even since (t,u), a 
solution of the Pell equation, implies that (— t,u) is a solution and (0,«), a so­
lution, implies that (0,— u) is. Hence 5 = 2s'. But 5 > 2 unless, for the funda­
mental solution, [ 7 = 0 (mod p) and, with this exception, u a prime would imply 
s' = u and s = 2u. Hence, if for proper choice of sign \{p ± 1) is a prime, 
condition (iii) of Theorem 2 holds and q may be chosen to satisfy conditions (i) 
and (ii) unless [ 7 = 0 (mod p) for the fundamental solution of the Pell equation. 

To consider the general case we notice again that any solution t,u of 
x2 _ qyi = 1 is expressible in the form 

tr + urVq = ± (T+ UVqY 
where T, U is the fundamental solution. Now 

tr + ur\/q = ts + us\/q (mod p) 
implies 

tT — uTy/q = ts — us\/q (mod p) 

where if (q\p) = — 1 by such a congruence we mean that corresponding parts 
are congruent and if (q\p) = 1 we replace y/q by a solution of q = r2 (mod />). 
Hence /r = ts, since /? is odd and thus ur = ws. 

First, if (<z|/>) = 1, there are p — 1 solutions of the congruence and 
± (Z" + [7\/<7 )* yields all solutions if and only if one of the following holds: 

(a) co = T + Uy/q is a primitive root (mod p). 

(b) co belongs to \{p — 1) (mod p) and no power of co is congruent to — 1 
(mod p). 

We can show that condition (b) may be replaced by 

(b') o) belongs to \{p — 1) (mod p) and p = 3 (mod 4). 

Suppose £ = 1 (mod 4). Then œ belonging to \{p — 1) would imply co1 = — 1 
(mod p) for / = £(£ — 1). On the other hand, if p = 3 (mod 4), co' = - 1 
(mod £) would imply \{p — 1) divides 2t and since the former is odd it must 
divide /. This would make it impossible for co to belong to \{p — 1). 

Second, if (q\p) = — 1 there are p + 1 solutions of the congruence and 
± (T + Us/qY yields all solutions if and only if one of the following holds: 

(a) co belongs to p + 1 (mod p). 

(b) co belongs to \{p + 1) (mod p) and no power of co is congruent to — 1 
(mod p). 

As above, we may replace condition (b) by 

(br) co belongs to \{p + 1) (mod p) and p = 1 (mod 4). 
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5. Examples. We consider p = 5 and p = 7, giving explicit conditions for 
primes q or doubles of primes q satisfying condition (iii) of Theorem 2 and append 
a short table of values. 

p = 5 

Case 1. Suppose (q\p) = 1. The primitive roots (mod 5) are 2 and 3. Let 
a2 = q (mod 5) and have 

T2 - aU2 = 1 (mod 5), T - aU = ± 2 (mod 5) 
imply 

r + aU = ± 3 (mod 5) 
and hence 

T= 0 (mod 5) 

is the necessary and sufficient condition for (iii) of Theorem 2, since T2 = —- 1 
(mod 5) would imply a2U2 = — 2 (mod 5) which is impossible. 

Case 2. Suppose (g|/>) = — 1. Since p + 1 = 2 (mod 4) we want co ?£ ± 1 
(mod 5) and co3 = ± 1 (mod 5). Now 

o>2 = r 2 + gt/2 + 2UTVq = 1 (mod 5) 

only i(UT = 0 (mod 5). But T = 0 (mod 5) would imply - gt/2 = 1 (mod 5) 
which would deny (q\p) = — 1. Hence U = 0 (mod 5), T = ± 1 (mod 5) 
which must be excluded. Thus the necessary and sufficient condition for (iii) is 

T = ± 2 (mod 5). 

We can include both case 1 and 2 by writing 

(8) r ^ O , ± 2 (mod 5). 

The prime and double prime values of q less than 50 for which (8) holds are : 

3, 6, 7, 11, 14, 17, 19, 22, 31, 34, 37, 38, 43, 46, 47. 

In terms of our general results this means that il and A may have a common 
factor 5 if the negative of one of the numbers in the table is represented by the 
reciprocal form of g. 

P = I 

Case 1. Suppose (q\p) = 1. The primitive roots (mod 7) are 3 and 5. Here 
we want co3 = ± 1 and co ^ d= 1, all congruences being (mod 7). Suppose 
T + aU = ± 1 ; then T = ± 1 which is excluded. Similarly it is easily shown 
that T = 0 and T = ± 2 are impossible. Hence a necessary and sufficient 
condition for (iii) is 

T = =±z 3 (mod 7). 

Case 2. Suppose (g|£) = — 1. Then co must belong to 8 (mod 7), that is, 
co2 & =b 1. But 
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(T + UVq)2 = T2 + U2q + 2TUVq = ± 1 

imply TU = 0. Thus U = 0 and T2 = 1 or T = 0 and g[/2 - ± 1 both of 
which are excluded. But T2 = 9 is impossible. We include both cases in 

(9) T ^ ± 2 , ± 3 (mod 7). 

The prime and double prime values of q less than 50 for which (9) holds are: 

3, 5, 6, 10, 11, 13, 17, 19, 23, 26, 37, 38, 41, 43, 46. 

Extensions of the results of this paper are being considered by the author and 
his students. 
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