AN EXTENSION OF MEYER’S THEOREM ON
INDEFINITE TERNARY QUADRATIC FORMS

BURTON W. JONES

1. Introduction. Let f be a ternary quadratic form whose matrix F has
integral elements with g.c.d. 1, that is, an improperly or properly primitive
form according as all diagonal elements are even or not. Let d be the determi-
nant of f (denoted by |f]), @ the g.c.d. of the 2-rowed minors of F. Then
d = Q%A determines an integer A. Two forms f in the same genus have the same
invariants @, A, d. The form whose matrix is adj F/Q is called the reciprocal
form of f. A theorem of Meyer, as extended by Dickson [1], who completely
reworked Meyer’s inadequate proof, is the following:

THEOREM 1. If fi and f. are two properly or improperly primitive indefinite
ternary quadratic forms in the same genus, they are equivalent if
1) (@, 4) < 2,2 0 (mod 4), A £ 0 (mod 4).

Meyer [3] also gave the number of classes in a genus of ternary indefinite forms
in terms of sets of quadratic characters with respect to the primes common to
Q and A, but his proofs are obscure. Siegel recently showed the author that
the forms

f=ux1— 205+ 64el, g = (2x1 4 x3)° — 2x3 + 163
are in the same genus but are not equivalent since the latter represents no
perfect square whose factors are all congruent to 1 (mod 8). It is the purpose
of this article to give a large set of genera of one class whose invariants are not
relatively prime.
Let p be an odd prime factor common to @ and A. Itis well known [2, Theorem
25] that for k arbitrary, f is equivalent to a form

2) fo = awxi + paxi + payei (mod p*), (a1, p) = 1.
Then the transformation K: x1 = pyi, X2 = ¥, X3 = V3, takes fy into pg
where g is a form whose matrix has integral elements and
g = pawi + pawyi + awyi (mod p7).
We call g the related or p-related form of f and shall prove

TaROREM 2. If a form g above is in a genus of one class, if p* does not divide :g] ,
and if there is an integer q, prime to p and satisfying the following conditions:
(i) lgi 1s an odd prime or double an odd prime;
(ii) — q s represented by the reciprocal form of g;
(iii) every solution of the congruence
120
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3) x*—¢y* =1 (mod p)
is congruent (mod p) to a solution of the Pell equation
4) -t =1

then the form f is in a genus of one class.

Notice that (ii) imposes only congruence conditions on ¢ and that ¢ must be
double a prime if the reciprocal of g is improperly primitive.
Theorems 1 and 2 then imply

COROLLARY 1. There is only one class in the genus of a (properly or improperly)
primitive form f if

(1) € = 0 (mod 4), A # 0 (mod 4);

(ii) for any odd prime factor p dividing both Q@ and A, it is true that p* does not
divide l g] and there exists a q satisfying the conditions of Theorem 2.

The conditions of Theorem 2 will be further considered in §4.

2. Equivalence of f; and f, implies that of g, and g,. We consider f; and f»
two primitive forms of the same genus. Then [2, Theorem 40] we may assume
f1 and f, congruent modulo an arbitrary power of p. Suppose U = (u;,) is a
unimodular transformation (determinant = 1, integral elements) taking f; into
fa, then

U1 ulzp—l u13j>_1
K 'UK = D1 Uaz a3 )
B Lpust usze U33

which is unimodular if %2 = #13 = 0 (mod p) and takes g; into go. Now U
takes f; into f2, both of the form (2), which implies:

al(unxl + %1952 + u13x3)2 + Pda(ualxl + uzexs + u33x3)2
= awi + page; (mod p°).
This implies
amis = amiz = 0 (mod p)
which, since (a1,p) = 1, implies #12 = u13 = 0 (mod p) which completes our
proof that f; = f, implies g1 = g» where = is the sign for equivalence. Hence

the number of classes in the genus of f is not less than the number of classes in
the genus of g.

3. Conditions under which g, = g, implies f; = f,.. As above, we may as-
sume g and g» congruent modulo p*. Now let the unimodular transformation
U = (uyy) take g into go. Then KUK takes fi into fo,

11 purs  puys
- 1 —1
KUK = tap Uag U3 |,
1
uzp Uszs U3
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and we need %y = u3 = 0 (mod p). But

as(usis + ugaks + users)” = ages (mod p)
follows from that fact that U takes g; into g and gy and g. are both in form
mod p*—1given above. This implies #3; = u3, = 0 (mod p) since a; = 0 (mod p)
would imply p? a divisor of ! gi contrary to hypothesis. It remains to make
us1 = 0 (mod p). This we do by showing that under certain circumstances we
can find an automorph P of g such that the last two elements of the first column
of PU are divisible by p.
Write G, the matrix of g, in the form

B b B 0 _
[Zzzbf by ]E[Po b ](m"df’k -

Since, under the conditions of Theorem 2, the reciprocal form of g represents
— ¢ (mod p* 1) we may take |B| = — ¢g. Let the unimodular transformation

U taking g; into g, be written
o[z 1]
Uz Uss

where us = (u31,u32) = (0,0) (mod p). We shall first prove

LemMA 1. If B has an automorph A such that
(1) (4 F I)B is integral for proper choice of +,
(i) 4 = Uy (mod p),
then an integral 1 X 2 matrix w may be determined so that

A w
P“[O +1 ]

and hence P~ are integral automorphs of G and

1 0 %13
P'U={0 1 wuy | (modyp).

0 0 U3
In order to prove this, we need to make PGP = G, that is
A" pBA pA" Bw + pA”"b, pB  pb
(5) T T T T T = T .
pw BA &+ pb1A pw Bw + pbiw &+ pw b+ b pby b

But ATBA = B and, if we can determine an integral w so that
(6) A"Bw &+ A"by = by,

[Pl = =% 1 with (B[ # 0 implies that b is equal to the corresponding member in
the left-hand matrix of (5). However (6) is equivalent to

BA7'w = F (AT F I)by,

or w=F ABTA"F Dby =F (IF A)B b1 = (4F I)B b
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Hence w is integral if condition (i) of the Lemma holds. Furthermore, b; = 0
(mod p) implies w = 0 (mod p).
If, in addition, condition (ii) holds, we have

L[4 FaTw ]_[A"‘ 0]
P ”[0 +1 =lo 1] (med2)

. A1 0] [U u ] [I A-‘u]
17y _ 0 1 _ 1
U= [0 21100 gl = L0 uy, | Med2)

and our proof is complete. That is, we can, under the conditions of Lemma 1,
find a transformation U taking g, into g» for which #s = u3; =0 (mod p). In
other words, g1 =< g, implies fi =< f5.

It may easily be verified that

t — bu — cu
™ 4= [au t+ bu:l

is an automorph of ax® + 2bxy + cy?, the form whose matrix is B, if t,u is a
solution of x2 — ¢y* = 1, where — ¢ = ac — b%. We prove

LeEmMA 2. Condition (i) of Lemma 1 holds if A is expressed in form (7) with
t= +1 (mod g).

To prove this, note that
1 i c(tF 1 u— b+ 1
M¥ DB = —¢ [—( qu ——)b(H: 1) Z(th 1() )]’

which is integral if £ = £ 1 (mod ¢). Notice that any solution of x? — ¢gy* = 1
satisfies the condition if ¢ is an odd prime or double an odd prime.

Now, as may be shown in the same way as one establishes the automorphs
of a binary form,

U%BU, = B (mod p)

implies, for p an odd prime,

| = b - cu’il
Uo = l:au' £+ bu (mod p),

where /2 — gu’> =1 (mod p). Hence if there is a solution ¢, % of the Pell
equation x? — ¢y* = 1 such that ¢t = ¢ (mod p) we have qu® = qu’? (mod p)
and thus by proper choice of sign of #' we have 4 = U, (mod p). We have
proved

LeEmMmA 3. If for every solution i',u’ of the congruence x* — qy* =1 (mod p)
there is a solution t,u of the Pell equation x* — gqy? = 1 such that t = t’ (mod p),
condition (ii) of Lemma 1 holds.

These three lemmas establish Theorem 2. We now consider in more detail
the conditions (ii) and (iii) of Theorem 2 and investigate the permissible values
of p and ¢.
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4. Modifications of the conditions of Theorem 2. Consider first the condition
that — ¢ be represented by a ternary quadratic form % whose determinant
is prime to q. We shall prove

THEOREM 3. If h is an indefinite ternary form satisfying the conditions of
Theorem 1, it represents — q with (g, lhi ) < 2 if and only if it represents — q in
R(2), the ring of 2-adic integers, and in R(r) for every odd prime factor of Q, that is,
if h = — q (mod r) s solvable for every such r.

We know from Corollary 44b of [2] that if /4 represents — ¢ in R(r) forr = o«
and every prime factor, 7, of 2 ’hlg, there is a form 4’ in the genus of 4 which
represents — ¢. But our Theorem 1 implies that %’ is equivalent to % which
therefore represents — ¢ if ’ does. Since 7 is indefinite it represents — ¢ in the
field of reals. It remains to show that % represents — ¢ in R(r) for » an odd
prime factor of ¢ [h|. If = g or 4q, Corollary 34b of [2] gives the desired result.
Now for any odd prime » we may consider

h = awx; + axs + axi (mod ).
First, if a1a, 2 0 (mod 7), then
a1 4 axxy = — g (mod r°)

solvable shows that & represents — ¢ in R(r). Second, two of a1,as,a; are divisible
by 7 if and only if 7 divides Q. Suppose ¢; = a> = 0 (mod 7). Then b = — ¢
is solvable in R(r) if and only if 7 = — ¢ (mod ) is solvable [2, Theorem 9a].
This completes the proof.

Since g is a ternary form adj(adj G) = dG where d = G!. If @ is the g.c.d.
of the 2 X 2 minors of G it divides all elements of dG, and g primitive implies
d = Q?A, where A is an integer. Furthermore, d is the g.c.d. of all elements of
adj(adj G) and hence of all 2-rowed minors of adj G. This implies that A is the
g.c.d. of the 2-rowed minors of the matrix of the reciprocal form of g. Hence
we have

THEOREM 4. Let p be a fixed odd prime and f a primitive form for which
Q = A =0 (mod p), neither Q nor A being divisible by 4 or p*, and g its p-related
form. Then the reciprocal form of g represents — q if and only if it represents it in
R(r) for all prime divisors r of 2A/p.

This has the effect of imposing on — ¢ certain conditions modulo powers of 2
and mod 7 for odd prime factors of A/p.

CoroLLARY. Condition (ii) of Theorem 2 may be replaced by the conditions of
Theorem 4.

Now let us consider further the condition (iii) of Theorem 2. It may be shown
that the number of solutions of the congruence (3) is

p — (qlp).
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The number of solutions with y = 0is 2, withx = 0is 1 4+ (— qu). Hence the
number of solutions with neither x nor y zero is

p— (glp) — (—4qlp) — 3
and the number of distinct pairs of solutions x2,y% with neither zero is one fourth
of this number. Hence the number of distinct (mod p) pairs x2,9? of solutions is

M = i{p — (glp) + (= qlp) + 3}.
That is
M=1(p+3)ifp =1 (mod4),

M=zi@p+1)ifp=—1(mod4)and (glp) =1,
M=21p+35)ifp=—1(mod4)and (g|p) = — 1.

First we consider two special cases. Suppose p = 3and g = 1 (mod 3). Then
there is only one pair of solutions of the congruence, namely, x2 =1, y> = 0

(mod 3), and hence condition (iii) of Theorem 2 holds. Then from Theorem 4
and Corollary 1 we prove

THEOREM 5. An indefinite primitive ternary quadratic form f is in a genus of
one class provided

(1) (2,A) divides 6,
(i) @ = 0 = A (mod 4),
(i) |f] & 0 (mod 81).

To prove this we need merely show the existence of a prime or double a prime
g with (g’S) = 1 and satisfying the conditions of Theorem 4. This means that
¢ =1 (mod 3) and satisfies certain congruence conditions modulo powers of 7
where 7 is a prime factor of 2A/3. Dirichlet’s theorem shows that such a ¢
exists provided that these conditions are consistent and the conditions of the
theorem imply that A/3 is not divisible by 3. This completes the proof.

Furthermore, for p = 3, (g|3) = 1, condition (iii) of Theorem 2 holds even if
¢ is negative and g a positive form. Thus we have

THEOREM 6. For p = 3, a positive ternary quadratic form f is in a genus of only
one class if its 3-related form g is, and if | f] # 0 (mod 81).

Two examples are
f=x"4+18" + 35", g = 32"+ 6y° + 2,
f=x"+187" 4+ 62°, g =3x"+ 6y° + 25",
Group theoretic considerations lead to another special case of interest. Let

T,U be the fundamental solution of x> — ¢y? = 1. It is well known that all
solutions are given by

b+ uqg = = (T + UVg)

for integral powers of #. Hence under this law of combination, the solutions
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(mod p) of the Pell equation form a multiplicative group H, which must be a
subgroup of the multiplicative group of solutions of the congruence (mod ).
Hence s, the order of I7,, is a divisor of 2u = p — (¢|p). Condition (iii) of
Theorem 2 will be met if and only if s = 2u. Now s must be even since (¢,1), a
solution of the Pell equation, implies that (— #u) is a solution and (0,%), a so-
lution, implies that (0,— #) is. Hence s = 2s’. But s > 2 unless, for the funda-
mental solution, U = 0 (mod p) and, with this exception, « a prime would imply
s =wu and s = 2u. Hence, if for proper choice of sign 3(p &= 1) is a prime,
condition (iii) of Theorem 2 holds and g may be chosen to satisfy conditions (i)
and (ii) unless U = 0 (mod p) for the fundamental solution of the Pell equation.

To consider the general case we notice again that any solution #u of
x* — gy? = 1 is expressible in the form

tr+uNg ==+ (T+ UVq)
where T,U is the fundamental solution. Now

t, + un/qg = ts + us/q (mod p)

implies
tr - ur\/q = ts - us‘\/q (mOd p)

where if (g[p) = — 1 by such a congruence we mean that corresponding parts
are congruent and if (qlp) = 1 we replace v/¢ by a solution of ¢ = 7? (mod p).
Hence ¢, = t,, since p is odd and thus %, = u,.

First, if (g[p) =1, there are p — 1 solutions of the congruence and
+ (T + U+/q )* yields all solutions if and only if one of the following holds:

(a) o = T4+ U+/q is a primitive root (mod p).

(b) w belongs to £(p — 1) (mod p) and no power of w is congruent to — 1
(mod p).

We can show that condition (b) may be replaced by

(b")  belongs to 3(p — 1) (mod p) and p = 3 (mod 4).

Suppose p =1 (mod 4). Then v belonging to %(p — 1) would imply w'= —
(mod p) for t = +(p — 1). On the other hand, if p = 3 (mod 4), w'= — 1
(mod p) would imply %(p — 1) divides 2¢ and since the former is odd it must
divide ¢. This would make it impossible for w to belong to 3(p — 1).

Second, if (q[;‘)) = — 1 there are p + 1 solutions of the congruence and
+ (T + U+/q)¥ yields all solutions if and only if one of the following holds:

(a) w belongs to p + 1 (mod p).

(b) w belongs to 3(p + 1) (mod p) and no power of w is congruent to — 1
(mod p).

As above, we may replace condition (b) by

(b’) w belongs to 2(p 4+ 1) (mod ) and p = 1 (mod 4).
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5. Examples. We consider » = 5 and p = 7, giving explicit conditions for
primes g or doubles of primes ¢ satisfying condition (iii) of Theorem 2 and append
a short table of values.

p=3

Case 1. Suppose (qlp) = 1. The primitive roots (mod 5) are 2 and 3. Let

a? = g (mod 5) and have

T*—a’U=1(mod5), T — aU = =+ 2 (mod 5)

imply
T+ aU = & 3 (mod 5)
and hence
T = 0 (mod 5)
is the necessary and sufficient condition for (iii) of Theorem 2, since 72 = — 1
(mod 5) would imply a¢2U? = — 2 (mod 5) which is impossible.
Case 2. Suppose (g‘p) = — 1. Since p + 1 = 2 (mod 4) we want w = + 1

(mod 5) and w® = £ 1 (mod 5). Now
w' =T+ qU* 4+ 2UT+/q = 1 (mod 5)
only if UT = 0 (mod 5). But T = 0 (mod 5) would imply — qU? = 1 (mod 5)
which would deny (glp) = —1. Hence U=0 (mod 5), T = +1 (mod 5)
which must be excluded. Thus the necessary and sufficient condition for (iii) is
T = + 2 (mod 5).

We can include both case 1 and 2 by writing
(8) T =0,=+ 2 (mod>5).

The prime and double prime values of ¢ less than 50 for which (8) holds are:

3,6,7,11, 14,17, 19, 22, 31, 34, 37, 38, 43, 46, 47.

In terms of our general results this means that @ and A may have a common
factor 5 if the negative of one of the numbers in the table is represented by the
reciprocal form of g.

p=1T

Case 1. Suppose (glp) = 1. The primitive roots (mod 7) are 3 and 5. Here
we want w®= 41 and w # 4= 1, all congruences being (mod 7). Suppose
T+ aU = = 1; then T = 4 1 which is excluded. Similarly it is easily shown
that 77= 0 and 7 = =+ 2 are impossible. Hence a necessary and sufficient
condition for (iii) is

T =43 (mod7).

Case 2. Suppose (q[p) = — 1. Then w must belong to 8 (mod 7), that is,

w?# 1. But
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(T+ UV =T+ Ulq+2TUNg= £ 1
imply TU = 0. Thus U =0 and 772

which are excluded. But 72

)

1 or T=0 and ¢qU? = 4= 1 both of
9 is impossible. We include both cases in

+ 2, + 3 (mod 7).
The prime and double prime values of ¢ less than 50 for which (9) holds are:
3,5,6,10,11, 13,17, 19, 23, 26, 37, 38, 41, 43, 46.

T

Extensions of the results of this paper are being considered by the author and
his students.
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