
10

which is seen to follow from Ceva's Theorem on considering the
triangle ADE and the point 6.
The corresponding theorem in piano is:—

If a transversal ABC meets three concurrent lines OA, OB, OC,
and A', B', C, are points in these lines such that OA'B'C is a
parallelogram, then

OA'/OA - OB'/OB + OC'/OC = 0;
a theorem which is very easily proved.

If we invert the four points A, B, C, D, of the theorem proved
above into the points P, Q, B, S, taking O as centre and k as radius
of inversion, we have

Substituting in the relation
OA'/OA - OB'/OB + OC'/OC - OD'/OD = 0,

we get OA'.OP - OB'.OQ + OC.OR - OD'.OS = 0.
Hence if four points P, Q, R, S, lie on the same sphere with the
point O and a plane cuts OP, OQ, OR, OS, in A', B', C, D', so that
A'B'CD' is a parallelogram, then the above relation holds.

The condition that the extremities of four vectors lie on a sphere
passing through the origin, may be written

^ . a + -|.y8 + - l .y + -|-.8 = 0, where a + b+c + d=0;

0, where pa* + qfP + erf + dS* — 0.

On the number of elements in space.

By Rev. NORMAN FRABER, M.A.

On the solution of the equation xp—1=0
(p being a prime number).

By J. WATT BUTTERS.

[At the first meeting of this Session a paper was read on the
value of cos 2n-/17, which evidently may be made to depend on the
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solution of a? — 1 = 0.* The present paper is the outcome of a
suggestion then made, that a sketch of Gauss's treatment of the
general equation might prove interesting. To give completeness to
the subject the necessary theorems on congruences have been pre-
fixed. The convenient notation introduced by Gauss is here adopted;
thus, when the difference between a and b is divisible by p, instead
of writing a = Up + b, we may write a = b (mod p), the value of M
seldom being of importance. It is evident that if a = b, then na = nb,
and a" = b", n being any positive integer, and the same modulus p
being understood throughout. Also ajn = bjn provided n be prime
top. Other properties (similar to those of equations) are easily
seen, but only the above are needed here.

Besides the Disquisitions* Arithmetical of Gauss, which was pub-
lished in 1801, and of which there is a French translation, entitled,
Recherches Mathematiques, the following, among others, have been
consulted:—Legendre's Thdorie des If ombres, Murphy's Theory of
Equations (1839), two papers, by M. Bealis, in Nouvelhs Annales de
Mathimatiqum (1843), Barlow's Theory of Numbers (1811). Other
references will be found at the end.]

§ 1. If p be prime to a, then t can be found such that a'= 1
(mod p), and 0<t<p.

Consider the series
a, a*, ... a*-1 (1);
1,3, ... p-\ (2).

Since p is prime to a, and therefore to each power of a, if the terms
in (1) be divided by p, there can be no zero remainder. Hence
either (a) the remainders will be all different, and therefore the
same as (2), or (6) two at least will be .the same. If (a) be true, the
theorem follows directly; if (b), let am = a" (mod p) (where p > m > n),
then a"1""" = 1 where 0 < m - n<p.

Oor. 1. If a?ml, a'+1 = a, &c., i.e., the remainders of the powers
of a when divided by p vn3\ recur in groups of t terms. In symbols,
an+' = a'; or, if m s n (mod •<) then am = a" (mod p).

Cor. 2. If ad be the lowest power of a which is = 1 (mod p), then
the remainders got by dividing

•l,a,a», ... «*-* (3),
by p will be all different, and will be included in the series (2). In
such a case a is said to belong to the exponent d.

* An elementary algebraic eolation of this equation is given in Knowledge,
vol. iii., p. 316 (1888).
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§ 2. If p be a prime number which does not divide a, and a belong
to the exponent d, then din a. factor of p — 1.

Let the remainders got from the series (3) be
1, a, a', a", ... (d terms) (4).

If these (which by § 1. Cor. 2 are all different) include all the terms
of the series (2), then d—p - 1.

[a is then called a primitive root of p (Euler).]
If (4) is not the same as (2), let /3 be a term in (2) which is not in
(4), and let the remainders of ft, a/3, a'/?, a"/?, ... be

y8, p, /3", ... (d terms) (5).
(a) No two terms in (5) are congruent, and (b) no term in (5) is
congruent with a term in (4).

(a) For if /Jam=/Jan (mod p), then am = a", which is impossible
by § 1, Cor. 2.

(6) If /3am = an, then, according as m> or <n, /So1* = o"4*""1 or
/3 = a*-*"; i.e. (since o*=l), /? s o*-'"-"> or •= a"-", which is contrary
to the hypothesis that /? is not in (4).

If series (4) and (5) exhaust (2), then 2d=p — 1; if not, we may
proceed in the same manner, always getting another group of d
terms (such that none of the terms in all the groups are congruent)
until (2) is exhausted, which must take place as p - 1 is finite. We
see, therefore, that (j> - l)/d is an integer.

[Cor. By raising each side of the congruence a* = 1 (mod p) to
the integral power (p-l)/d, we get ap~1=l (mod p), which is
Fermat's theorem.]

§ 3. Lemma:—If d, d', d", ... be all the divisors of p-1
(including p-1 and unity) and if <f>d denote the number of integers
not greater than d and prime to it*, then <}>d+<f>d'+ ... = J B - 1 .

If we multiply (p—l )/d by each integer prime to d and not greater
than it, we shall get <f>d integers, each not greater than p-1, and all
unequal. Similarly, from d we shall get <j>d' integers, all unequal,
and each "lf>p~ 1.. The integers in <f>d will also differ completely
from those in 4>d'.

For if not we should have mP~. = iiP~ where m is prime to d
d d

and n to d'. Consequently, md'^nd. We may suppose m>n, then
since tn is prime to d and divides nd it must divide n, which is im-
possible. Hence, from all the divisors d, d, <fec, we shall get

* Unity is considered as being prime to every number, itself inolnded.
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<l>d + <jid'+ ... different integers, each not greater than p—1, and
hence comprised in the series (2). Further, each term in (2) will be
found included in the <fxl + <jx£ + ... integers; for, let t be any term
of that series and S the G. 0. M. of t and p — 1, then (p — l)/8 will be a
divisor to which t/S is prime, and the product of (p — 1 )/{(/> — 1)/^}
bjt/S = t. Hence <t>d+<j>d' + ... =p-l.

§ 4. Theorem: The number of integers less than p belonging to
the exponent d is <j>d

If a be an integer belonging to d, then the terms in (3), or their
remainders, are roots of x" == 1 (mod p). Since this congruence cannot
have more than d different roots and the above remainders are d in
number and all different, it follows that the series (3) must contain
all the integers belonging to d. Let \pd denote the number of them.

Let ak be one of the series, then ak does or does not belong to d,
according as k is or is not prime to d.

1° Suppose k prime to d and let km = \ (mod d), then (§ L Cor. 1.)
atm = a (mod p). If possible, let (a*)« = 1, where e < d ; akme = 1 and
.•. a'si, which is contrary to the hypothesis that « belongs to d.
Hence a* belongs to d.

2°. Suppose k not prime to d and let S be a common divisor.
Since kd/S = O (mod d), a*<"J=l (mod p), i.e., (a*)<"* = l. Hence a*
does not belong to d.

Thus we have proved that if there be any integer belonging to
d, there are as many as there are integers not greater than d and
prime to it, i.e., i(>d = O or = <j>d.

Now, evidently each term of the series (2) must belong to one of
the divisors of p - 1,
and hence tf/d + ipd" + <f>d" + ... = p - l (A),
but <l>d+<t>d' + <l>d"+ ... =p-l (B),
and since no term in (A) can exceed the corresponding term in (B),
we must have \f/d = <f>d, &o.

Cor. This contains, as a particular case, the important theorem
that every prime number has at least one primitive root. This
amounts to saying that it is always possible to find an integer g, so
that to each term of the series

1. 9, f, ... ST1 (6)
there will be congruent, to the modulus p, one of the series

1,2,3, ... p-1. (2)
Further : If A. be not divisible by p, then the series

A, V, V . ••• V*-8 (6)
is congruent with the series (2).
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§ 5. Now, we know from the Theory of Equations that if r
denote any imaginary root of the equation cc* - 1 = 0, then all the
roots of X = {of - 1 )/(* - 1) = 0 are given by

r,r*,r*, ... r*"1 (7).
Moreover, since »*= 1, rp+1 = r, Ac., and generally rmr+a = r", we see
that ii a = b (mod p) then ra = rb. Hence, by § 4, Cor., instead of
the series (7) we may use

r\ r*9, rXp*, ... rXj"-*
to express the roots of X » 0.

To avoid the difficulty of printing the roots in this form, Gauss
expresses them by the notation

[A], [Kg], [ V ] , ... [ V ~ ] (8).
Evidently we have [*•].[>]/ = [A + /*] and [A.]K = [A/*]. Further,

the roots [A "̂*], [A^"] will be identical or different according as m is
congruent or is not congruent with n (mod p-l).

§ 6. Since p - 1 is not a prime number, we may suppose p - 1 = ef.
We may then write the roots as follows (putting A = 1) :—

[I]. [9-1 W\
01
1/1

Where the first column contains the first e roots, the second column
the second e roots, and so on.

If the series (8) be extended indefinitely, we know that any p-l
consecutive terms will denote the roots given by (8) itself. Hence,
considering the mode of formation of the above table, we see that if
any row be extended indefinitely it also will reproduce the same
roots as are given by the row itself. Hence if, for brevity, we put
<f = h, and denote the sum of the roots in any row by (/, A), we may
also denote it by (/, AA), (/, Atf), . . . ( / , AA^1).

When we wish to speak of the roots in (/, X) without expressing
the idea of summation, we may speak of the period (/, A). Periods
containing the same number of roots are called similar.

Cor. 1. If (/, X), (/, p.) denote similar periods, they will be
identical, if they contain a common root. If /* is not divisible by p,
then (yj /x) will be identical with one of the periods (/, 1), (/, g),
(/, 9l, -if, 9"1)- H / t*0 (mod p), then (/, /*) will be equal to
/ units. These results follow directly from the above table.
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Cor. 2. If / b e not a prime number, say, —ab, then any period
(/, A) may be written thus :—

[A], [AA'J, ... [AA<—]
[AA], [AA-+1], ... [**<-»-+>]

».«., we may break up any period (f, A) or (oft, A) into smaller periods
(b, A), (ft, AA), ... (6, AA"~'). If b hare factors, the process may be
repeated, and so on.

§ 7. If (/, A), ( / n) be two similar periods, then

By § 6. </• A)=(y; A A ) = ( / , AA«)= ... _ < / AA~) .

Hence (/; A).(/;,*) = [/*].(/ A)+ [/**].</, AA)+ ... + [/«A'-1].(/; AA")
[ +[AA

f
= (by adding the terms in each column together)

if, ^+/») + (/, M + /*) + (/, AA'+^)+ ... + ( / ,
Oor. 1. From the results of § 6, Cor. 1, we see that the above

product may be put in the form
(f, w , /»)=«/+ H/,i)+<f, 9)+d{/, ?)+ ... + Kf, <r>) (io)

where the coefficients a, b, ... k are known integers.
Cor. 2. The product of any number of similar periods can be

expressed in the form (10).
Cor. 3. Hence any rational integral function of similar periods

can be expressed in the same form.

§ 8. If {/, A) = n, then any similar period (/, /*) can be expressed
in the form {/, fi) = a + bn + cn*+ ...
where a, b, c, ... are rational coefficients.

Let n, n', n", ... denote the periods ( / A), (/, A )̂, (/, Ay*),... as
far as {/,' Ap*""1), with one of which, say »', {/, /*) must coincide
(unless /* = 0 (mod p), when (/, /*) = / ) .

Since the sum of the roots of X = 0 is - 1 we hare

and forming by § 7, Cor. 2, the valnes of n*, «s, ... n*-1 we get e - 2
other equations
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f +cn' +dn"
n3 = a[f + b'n+c'n'+d'n"
n* = a"/+ b"n + c"ri + d"n"

in which the coefficients are rational and independent of A.
From these e - 1 equations eliminate the e — 2 quantities n", ri",...

and we will get an equation of the form A + Bn + Cna + ...
4-Mn'""1 + N»' = 0 (where A, B, ... N are integers and not all zero),

which proves the theorem if N be not zero.
If we suppose that N = 0, then we get the equation

Mn-'H- ... +CV + Bn + A = 0.
Now, since the 6—1 equations from which this equation is deduced
are all independent of A, so will this equation be. I t should there-
fore have the e roots (/, 1), (/, g), (/, gr>), ... (/, g"1), but this is
impossible since its degree is e - 1; and therefore N cannot vanish.

[Gauss further considers the possibility of two of these roots
being equal and there being therefore apparently only 6—1 roots.]

Cor. If we form as above the values of na, n3, ... n' in terms of
n, n', n", ... and from the e equations eliminate the e - 1 quantities
n't »", ... we shall get an equation of the eth degree, the roots of
which will be the e quantities n, n\ n", • •.

We now require to form equations for the roots in each period.
This is shown to be possible by the following theorem.

§ 9. If F([A.], [A'], [A"], ... ) be any rational integral symmetric
function of the roots of any period (/, A), it may be expressed in the
form a + b(f, 1) + c(f, g) + ... + k(f, g-1). (10)

Is. I t is evident that F may be expressed in the form A + Br +
<>*+ ... +K**-1, or A + B[l] + C[2]+ ... + K [ > - 1 ] , for each term
of F must be the product of certain powers of r, and therefore itself
a power of r, and its exponent may be made less than p since r* = 1.

2°. The roots belonging to the same period will have equal
coefficients and therefore may be summed under the form M(yj p),
say. Let [o], [/3] be a pair of roots belonging to a given period; we
may suppose fi = ahr, where g^-1^^ h. In the identity

substitute AAm for A. This will not alter the value of F, since it is
a symmetric function of the roots of (/, A), and hence we get

F([A], [A'], [A"], ... ) = A + B[A-] + C[2A»]+ ... +K[(p- 1)A»].
Comparing these two expressions for F, we see that [1] and [A.™] have
equal coefficients, and similarly with [2] and [2hm], ... with [a] and
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[ahm]; i.e., with any two roots of the same period. Hence the
theorem follows.

Cor. Since the coefficients of an equation are symmetric functions
of its roots, we see that the coefficients of an equation determining
the roots of a given period may be expressed in the form (10).

§ 10. The two last paragraphs show us that if p - 1 = ef, we can
make the solution of x" - 1 = 0 depend upon the solution of equations
of the degrees e and,/! The following theorem shows us that if./"is
not prime, we may make the solution depend on equations of still
lower degree.

Let as in § 6, Cor. 2, /= ab and F be a symmetric function of the
periods (6, A), (b, AA), ... then F may be expressed in the form
a + b(f,l) + c(f,9)+ ... (10)
By the last paragraph F may be put in the form A + B(6, 1)
+ C(b,g) + ...

Now the periods (6, A), (b, M),.. . of which (/, A) is composed are
unaltered when AAom is put in place of A, hence in A + B(b, 1) +
C(6, g) + ... there ought to be a term (6, o) which has the same
coefficient as (b, aham) where »» may have the values 1, 2, 3, ... o - 1;
i e., all the periods forming (f, A) have the same coefficient. F may
therefore be put in the required form.

§ 11. We may now describe the general method of making the
solution of of - 1 = 0 (where p is a prime number) depend on equa-
tions of as low degree as possible.

1°. Find a primitive root g of the prime number p.
2°. Find the remainders (mod p) of the series 1, g, g3, ... g*-2.
3*. Resolve p - 1 into its prime factors, say p - 1 =abc ... k.
4°. As in § 6, write the roots in a rectangular array, the first a

in the first column, the second a in the second column, and so on,
thus getting a periods of be ... k terms. Treat similarly the roots of
each of these periods, getting b periods of e ... k terms from each ;
and so on.

5*. Form an equation (A) (Cor. § 8), which has for ita roots the
a periods; any root of this may be taken as the value of (6c ... k, \)f

for any root of X = 0 may be called r1, and therefore any period may
be considered as including [1]. The other periods (be ... k, g),
(be ... k, g*), ... may now be determined by § 8. Hence it is necessary
to find only one root of (A).
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We may distinguish the roots also by putting

1 = cos + tsin ,
P P

(where m is not divisible by p) and hence calculating from a
table of sines and cosines the values of [2], [3],...with sufficient
accuracy to determine their relative magnitude. We can thus dis-
tinguish the roots of (A) which should be denoted by (6c ... k, 1),
{6c ... k, g), ... respectively.

6°. Now, form an equation (B) (§ 10), which has for its roots the
b periods contained in (6c ... k, 1). As before, we may arbitrarily
assign any root of (6) as the value of (c ... k, 1) and calculate the
value of each similar period : or distinguish the roots by the help of
a table of sines as above. Proceeding in this way we at last find the
values of (k, 1), (k, g), ...

7". Now, form an equation (K) (Cor. § 9), which has for its roots
the roots of X = 0 contained in (A, 1). Any root of (K) being called
[1], its successive powers will give all the other roots of X = 0.

§ 12. I t is evident from the last paragragh that if p - 1 = 2«.3*.5°...
the solution of X = 0 may be made to depend on a equations of the
2nd degree, b equations of the 3rd degree, c of the 5th, <fec.

That the solution may depend on quadratic equations only, we
must have p - l = 2", i.e., p must be of the form 2*+l and be a
prime number. If a be odd then 2" +1 is divisible by 2 +1 and
hence p is not prime. Further if a contain an odd factor, say a = bc
where c is odd, then 2* + 1 is divisible by 2* + 1 and again p is not
prime. That the form 2° + 1 may be prime it is therefore necessary
that a should be of the form 2m, i.e., p = 2*" + 1 . But this condition
is not sufficient (as stated by Fermat) for Euler has shown that
2» + 1 (4,294,967,297) is divisible by 641.

When m = 0, 1, 2, 3, 4; p becomes 3, 5, 17, 257, 65537 which
are all prime. Hence the corresponding roots of unity may be found
by quadratic equations only. Further, we may inscribe in a circle
regular polygons of 3, 5, 17, &c., sides by means of ruler and com-
passes. The case of a 17-gon is given later on.

[From other considerations we know that if an ni-gon and an
m-gon (m prime to n) can be inscribed in a circle, so also may an
mn-gon. Further, we may inscribe a polygon, having double the
number of sides of any inscribed polygon. Hence an n-gon may be
inscribed in a circle if n contains no odd factor except of the form
22m + 1 , each such factor being prime and not repeated.]
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§ 13. As illustrative of the above, let us consider the case
where p = 17.

In the following table, each column (except the first) gives the
numbers which are congruent (mod 17) to the successive powers of
the first number in the column. The first column gives the corres-
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ponding exponent. For example, the column headed 6 gives the
remainders when 6, 69, 6s,... respectively are divided by 17.

This readily exemplifies the theorems in § 1 and Corollaries.
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The theorem of § 2 and Fermat's theorem are likewise illustrated ;
e.g., the only exponents to which numbers belong in this table are
1, 2, 4, 8, and 16, all of which are factors of 17 - 1.

§ 4 also finds illustration; e.g., belonging to the exponent 8 are
the numbers 2, 8, 9, 15 ; each of these numbers occurs as a remainder
in the columns headed by these numbers; the corresponding ex-
ponents are always prime to 8 (unity being considered as prime to
every number as in § 3); and the exponents corresponding to the
other remainders are not prime to 8; lastly, 17 has a primitive
root. (In fact there are #16 = 8 primitive roots—viz., 3, 5, 6, 7,
10, 11, 12, and 14.)

§ 14. In general we need to find only one primitive root, and
this may usually be done most simply by successive trial of the
small numbers 2, 3,... Use should be made of the results in §§ 2
and 4. E.g. By trial we find the remainders of 2, 22, 2s,... to be
2, 4, 8, 16, 15, 13, 9, 1. As a second trial we might take any of
the numbers not contained in this series. In this case this is un-
necessary, for, since 8 contains all the divisors of 16 (except 16
itself), we see that only the above numbers can belong to exponents
less than 16, and hence the primitive roots of 17 are 3, 5, 6, 7, 10,
11, 12, 14, as above.

We may now arrange the roots in two periods as in § 6. We
thus get:

(8, 1) containing [1], [9], [13], [15], [16], [8], [4], [2].
(8, 3) „ [3], [10], [5], [11], [14], [7], [12], [6].

Galling these periods n and »' respectively, we have:
n + «' = ( 1 6 , l ) = - l (a);

and § 7, nn' = (8,4) + (8, ll) + (8, 6) +(8, 12) + (8, 15)+ (8, 8) + (8,13) + (8, 7)
= n + n' + n' + it' + n + n + n + n'
= 4(n + n ' ) = - 4 (6),

and therefore n and ri are the roots of n* + n - 4 = 0.

We now break up the above periods into smaller periods, and
get from the period (8, 1)

(4, 1) containing [1], [13], [16], [ l j say m
(4, 9) „ [9], [15], [8], [2] „ m'.

Also from (8, 3) we get
(4, 3) containing [3], [5], [14], [12] say w"
(4,10) „ [10], [11], [7], [6] „ m"\

Here m + m' = (8, !) = «, say (c)
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and mm1 = (4, 10) + (4, 16) + (4, 9) + (4, 3)
= m'" + m + m' + TO"

— ft + n = — 1 («)
and hence (4, 1) and (4, 9) are the roots of m*-nm —1 =0. Simi-
larly (4, 3) and (4, 10) are the roots of ms - n'm - 1 = 0 , for we have
m" + tri" = n' (e) and m"rri" — - 1 ( / ) .

[To illustrate the application of § 9 Cor., we may find an equa-
tion for the roots contained in the period (4, 1). Let a;4 — Aa5* +
Bar* — Ca; + D = 0 be the required equation. A = 2a:' = TO

2x'x" = [14] + [17] + [5] + [12] + [17] + [3] = 2 + m" = B
1x'x"x'" = [16] + [4] + [1] + [13] = m = C

and x'x"x"'x"" = 1. Therefore the equation for the roots r1, r33, r16,
r4 of the original equation is a;4 - ma? + (2 + m")a^ -'ma; + 1 = 0 (A)
where m and TO' are known. Any root of this equation may be
called r, the others being determined by their relationship to r.

By symmetry we have other 3 equations to determine the other
12 roots; or all the roots may be determined from the value of r,
any root of (A) by forming the powers r2, r3,.'.. r16.]

Continuing, however, the process of separating the periods into
lower periods we get:

(2,1) containing [1], [16] (2, 3) containing [3], [14]
(2, 13) „ [13], [4] (2,5) „ [5], [12]
(2,9) „ [9], [8] (2,10) „ [10], [7]
(2, 15) „ [15], [2] (2,11) „ [11], [6]

Calling these periods ^, 2»...£8, we have
li + lz = m (gr), and Z, l2 = Zs + lt — m" (h);

.-. P-ml + m" = 0(B) has (2, 1) and (2, 13) for roots.
Lastly [1] + [16] = ^ and [1].[16] = 1 and therefore r is a root of

It is easy to see that the reciprocal equation (A) is equivalent to
the two quadratics (B) and (C).

§ 15. Inscription of a regular 17-gon in a given circle.

If AB be the side of a regular 34-gon then AB = 2 sin — (the
34

-radius being considered as unity), i.e. AB = 2 cos 4 —.

Now if we put [11 = cos _ • + 1 sin —

then [16] = cos —-i sin ^
17 17
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and (2, 1) = 2 cos ? 1 Accordingly AB = (2, 4).

From a table of cosines we get the following values to enable us
to distinguish the roots :

^ = 1-87; J,= -18; £,= -1-97; lt = l-i8;
?0=-89; le= - - 5 5 ; ^ = - 1 7 0 ; ?8= -1-21.

From these we get w» = 2-05; m'= - - 4 9 ; m"=-34; wi'"= -2-91.
Lastly, « = 1-56 and « '= - 2-56.

CONSTEUCTIOS :—Draw OX (fig. 3) a tangent and OY a diameter
to the given circle with centre A and radius unity. Consider through
out lengths to the right of O as positive and to the left as negative.
In OX take OB <=• — J. With B as centre and radius B A describe a
circle meeting OX in C and D, then 2OC, 2OD are the roots of (a)
and (b). For 2OC.2OD = - 40A* = - 4 = W and 2OC + 2OD =
4OB = - 1 =• n + n'. By the above values we see that 2OC =•= n and
20D = n\

With C as centre and CA as radius describe the circle EAF.
Then OE.OF = - OA* = - 1 = mm' (d)
and OE + OF = 2OC = » (c)
Hence; considering the above values, we get OE = m.

With D as centre and DA as radius describe the circle GAH.
Then OG.OH = - OAJ - - 1 ( / )
and OG + 0 H = 20D = n' («)
Hence OG = m"

Make OK = OA and on GEL describe a semicircle meeting OY
in L. Through M, the middle point of OE draw a parallel to OY
and through L a parallel to OX. Let these meet in F. With P
as centre and PL as radius describe a circle meeting OX in N and
Q. Then 0N.0Q = 0La = 0G.0K = 0G = m" (A); and ON + OQ =
2OM = O E - m (g). ON = £, = (2, 4) = the length of the side of a
regular 34-gon.

The above construction is based on that given in Serret's Algebre
Supe'rieure. A geometrical analysis of the problem is given in
Catalan's TMoremea et Problemes de G&ymttrte £lementaire, 64me ed.
p. 267 (1879), and also (somewhat simplified) in the appendix to
Casey's Elements of Euclid. Geometrical constructions are also
given, by H. Schroeter, in Crelle's Journal (1872), translated in
Nouvelles Annales de MatMmaiiques (1874), and by v. Staudt in
Crelle'i Journal (1842).
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